Hardware, Software, and Wetware Codesign Environment for Synthetic Biology

Synthetic biology is the process of forward engineering living systems. These systems can be used to produce biobased materials, agriculture, medicine, and energy. One approach to designing these systems is to employ techniques from the design of embedded electronics. These techniques include abstra...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Biodesign research Ročník 2022; s. 9794510
Hlavní autori: Oliveira, Samuel M.D., Densmore, Douglas
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: AAAS 2022
American Association for the Advancement of Science (AAAS)
Predmet:
ISSN:2693-1257, 2693-1257
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Synthetic biology is the process of forward engineering living systems. These systems can be used to produce biobased materials, agriculture, medicine, and energy. One approach to designing these systems is to employ techniques from the design of embedded electronics. These techniques include abstraction, standards, modularity, automated design, and formal semantic models of computation. Together, these elements form the foundation of "biodesign automation," where software, robotics, and microfluidic devices combine to create exciting biological systems of the future. This paper describes a "hardware, software, wetware" codesign vision where software tools can be made to act as "genetic compilers" that transform high-level specifications into engineered "genetic circuits" (wetware). This is followed by a process where automation equipment, well-defined experimental workflows, and microfluidic devices are explicitly designed to house, execute, and test these circuits (hardware). These systems can be used as either massively parallel experimental platforms or distributed bioremediation and biosensing devices. Next, scheduling and control algorithms (software) manage these systems' actual execution and data analysis tasks. A distinguishing feature of this approach is how all three of these aspects (hardware, software, and wetware) may be derived from the same basic specification in parallel and generated to fulfill specific cost, performance, and structural requirements.Synthetic biology is the process of forward engineering living systems. These systems can be used to produce biobased materials, agriculture, medicine, and energy. One approach to designing these systems is to employ techniques from the design of embedded electronics. These techniques include abstraction, standards, modularity, automated design, and formal semantic models of computation. Together, these elements form the foundation of "biodesign automation," where software, robotics, and microfluidic devices combine to create exciting biological systems of the future. This paper describes a "hardware, software, wetware" codesign vision where software tools can be made to act as "genetic compilers" that transform high-level specifications into engineered "genetic circuits" (wetware). This is followed by a process where automation equipment, well-defined experimental workflows, and microfluidic devices are explicitly designed to house, execute, and test these circuits (hardware). These systems can be used as either massively parallel experimental platforms or distributed bioremediation and biosensing devices. Next, scheduling and control algorithms (software) manage these systems' actual execution and data analysis tasks. A distinguishing feature of this approach is how all three of these aspects (hardware, software, and wetware) may be derived from the same basic specification in parallel and generated to fulfill specific cost, performance, and structural requirements.
AbstractList Synthetic biology is the process of forward engineering living systems. These systems can be used to produce biobased materials, agriculture, medicine, and energy. One approach to designing these systems is to employ techniques from the design of embedded electronics. These techniques include abstraction, standards, modularity, automated design, and formal semantic models of computation. Together, these elements form the foundation of “biodesign automation,” where software, robotics, and microfluidic devices combine to create exciting biological systems of the future. This paper describes a “hardware, software, wetware” codesign vision where software tools can be made to act as “genetic compilers” that transform high-level specifications into engineered “genetic circuits” (wetware). This is followed by a process where automation equipment, well-defined experimental workflows, and microfluidic devices are explicitly designed to house, execute, and test these circuits (hardware). These systems can be used as either massively parallel experimental platforms or distributed bioremediation and biosensing devices. Next, scheduling and control algorithms (software) manage these systems’ actual execution and data analysis tasks. A distinguishing feature of this approach is how all three of these aspects (hardware, software, and wetware) may be derived from the same basic specification in parallel and generated to fulfill specific cost, performance, and structural requirements.
Synthetic biology is the process of forward engineering living systems. These systems can be used to produce biobased materials, agriculture, medicine, and energy. One approach to designing these systems is to employ techniques from the design of embedded electronics. These techniques include abstraction, standards, modularity, automated design, and formal semantic models of computation. Together, these elements form the foundation of "biodesign automation," where software, robotics, and microfluidic devices combine to create exciting biological systems of the future. This paper describes a "hardware, software, wetware" codesign vision where software tools can be made to act as "genetic compilers" that transform high-level specifications into engineered "genetic circuits" (wetware). This is followed by a process where automation equipment, well-defined experimental workflows, and microfluidic devices are explicitly designed to house, execute, and test these circuits (hardware). These systems can be used as either massively parallel experimental platforms or distributed bioremediation and biosensing devices. Next, scheduling and control algorithms (software) manage these systems' actual execution and data analysis tasks. A distinguishing feature of this approach is how all three of these aspects (hardware, software, and wetware) may be derived from the same basic specification in parallel and generated to fulfill specific cost, performance, and structural requirements.Synthetic biology is the process of forward engineering living systems. These systems can be used to produce biobased materials, agriculture, medicine, and energy. One approach to designing these systems is to employ techniques from the design of embedded electronics. These techniques include abstraction, standards, modularity, automated design, and formal semantic models of computation. Together, these elements form the foundation of "biodesign automation," where software, robotics, and microfluidic devices combine to create exciting biological systems of the future. This paper describes a "hardware, software, wetware" codesign vision where software tools can be made to act as "genetic compilers" that transform high-level specifications into engineered "genetic circuits" (wetware). This is followed by a process where automation equipment, well-defined experimental workflows, and microfluidic devices are explicitly designed to house, execute, and test these circuits (hardware). These systems can be used as either massively parallel experimental platforms or distributed bioremediation and biosensing devices. Next, scheduling and control algorithms (software) manage these systems' actual execution and data analysis tasks. A distinguishing feature of this approach is how all three of these aspects (hardware, software, and wetware) may be derived from the same basic specification in parallel and generated to fulfill specific cost, performance, and structural requirements.
ArticleNumber 9794510
Author Oliveira, Samuel M.D.
Densmore, Douglas
AuthorAffiliation 1 Department of Electrical and Computer Engineering , Boston University , MA 02215 , USA
2 Biological Design Center , Boston University , MA 02215 , USA
AuthorAffiliation_xml – name: 1 Department of Electrical and Computer Engineering , Boston University , MA 02215 , USA
– name: 2 Biological Design Center , Boston University , MA 02215 , USA
Author_xml – sequence: 1
  givenname: Samuel M.D.
  surname: Oliveira
  fullname: Oliveira, Samuel M.D.
– sequence: 2
  givenname: Douglas
  orcidid: 0000-0002-7666-6808
  surname: Densmore
  fullname: Densmore, Douglas
BookMark eNptkb1vFDEQxa0oSAkhJf2WFCzx19q7FYJTIEGRUiQSpTVrjy-O9uxg7wXdf4_vA4mgVH72vPlpnuctOY4pIiHvGf0kJBPiglPOLwY9yI7RI3LK1SBaxjt9_I8-IeelPFJKea-VZuqU_LiC7H5Dxo_NXfLzXkF0zU_cXZpFcljCMjaX8TnkFFcY58an3Nxt4vyAc7DN15CmtNy8I288TAXPD-cZuf92eb-4am9uv18vvty0Vgo2t4PvNQOpwI7gxtFJPzKPqBkbxaCV4067WhtHOlTle-yZYx1ILgUfOiHOyPUe6xI8mqccVpA3JkEwu4eUlwZyHWtC4z0IUXNbD1pix6ETvVXOdRStU37L-rxnPa3HFTpbs2WYXkBfVmJ4MMv0bBjtOFNKVsKHAyGnX2sss1mFYnGaIGJaF1M_usZlfU-rVeytNqdSMnpjwwxzSFt0mCrT7DZptps0h03Wrva_rr_Tve7_AwXLoj0
CitedBy_id crossref_primary_10_1109_TCAD_2024_3435706
crossref_primary_10_1016_j_bidere_2025_100007
crossref_primary_10_1134_S2635167623010032
crossref_primary_10_1039_D4NP00003J
crossref_primary_10_1016_j_tibtech_2024_05_005
crossref_primary_10_1038_s41587_025_02709_6
Cites_doi 10.1111/mmi.13257
10.1039/B510127A
10.1038/nmicrobiol.2017.83
10.1007/s43393-020-00005-9
10.1145/2660773
10.1093/nar/24.15.3053
10.1038/nature06450
10.1038/nbt.4151
10.1016/j.cbpa.2013.10.003
10.1186/s13036-016-0024-5
10.1016/j.ohx.2019.e00063
10.1093/nar/gkq163
10.1039/C7LC00576H
10.1021/acssynbio.5b00124
10.1038/s41467-020-15056-8
10.1038/nature04342
10.1073/pnas.1321321111
10.1016/j.vlsi.2021.09.002
10.1021/acssynbio.0c00105
10.1126/science.aay0339
10.1016/j.cub.2010.04.045
10.1016/j.copbio.2013.08.014
10.3389/fmicb.2017.01125
10.1063/1.2164911
10.1039/D0LC00763C
10.1016/j.aca.2020.03.011
10.1038/ncomms15128
10.1021/acssynbio.6b00108
10.1016/j.copbio.2009.08.007
10.1023/A:1023307812034
10.1038/nature07389
10.1016/j.cell.2012.05.045
10.1103/PhysRevLett.86.4163
10.1098/rsif.2014.1000
10.1038/nmeth.2926
10.1038/s41467-020-20284-z
10.1186/s12934-019-1083-3
10.1126/sciadv.aaz8344
10.1016/j.ymben.2020.11.012
10.1016/j.procs.2015.03.054
10.1007/s11693-014-9132-z
10.1038/nature12051
10.1038/nrg2775
10.1016/j.tim.2021.04.001
10.1073/pnas.1901788116
10.1016/j.tibtech.2013.10.005
10.1016/j.copbio.2006.09.001
10.1371/journal.pcbi.1005174
10.1186/1754-1611-7-13
10.1126/science.1099390
10.1007/s10404-018-2048-2
10.1073/pnas.1006888107
10.1039/C4LC00078A
10.1073/pnas.1720676115
10.1039/C6RA15734C
10.1016/j.ymben.2020.12.001
10.1021/acssynbio.9b00146
10.1146/annurev-bioeng-082219-033358
10.1038/nrg2625
10.1021/acs.analchem.8b02709
10.1039/c0lc00501k
10.1039/c2lc00009a
10.3109/07388551.2015.1084266
10.1016/j.cell.2009.04.048
10.1038/nature01257
10.1038/s41598-019-45623-z
10.1038/s41467-019-10079-2
10.1063/1.2218058
10.1109/43.898830
10.1063/1.3431281
10.1039/c3mb70203k
10.1093/nar/gkt350
10.1134/S1990747815050104
10.1016/j.tibtech.2017.01.001
10.1126/science.1205369
10.1038/s41596-021-00675-2
10.1093/synbio/ysab006
10.1021/sb300030d
10.1126/science.288.5463.113
10.1016/S1369-5274(03)00033-X
10.15252/msb.20209942
10.1016/j.copbio.2010.07.005
10.1038/s41589-019-0244-3
10.1093/bib/bbaa150
10.1038/nrm4014
10.1016/j.cell.2014.10.004
10.1016/j.cels.2015.12.002
10.1038/s41587-020-0571-7
10.1021/sb3001112
10.1126/science.aac7341
10.1038/s41565-021-00878-4
10.1016/j.copbio.2019.08.004
10.1007/10_2020_140
10.1002/ange.200602273
10.1126/science.aap8987
10.1039/C4LC00509K
10.1073/pnas.1508521112
10.1021/acssynbio.7b00403
10.1088/1478-3975/11/6/066005
10.1109/TCAD.2017.2729463
10.1039/C5MB00012B
10.1186/s12896-018-0439-9
10.1038/s41579-019-0255-9
10.1039/C8LC01253A
10.1038/nature04335
ContentType Journal Article
Copyright Copyright © 2022 Samuel M. D. Oliveira and Douglas Densmore.
Copyright © 2022 Samuel M. D. Oliveira and Douglas Densmore. 2022 Copyright © 2022 Samuel M. D. Oliveira and Douglas Densmore.
Copyright_xml – notice: Copyright © 2022 Samuel M. D. Oliveira and Douglas Densmore.
– notice: Copyright © 2022 Samuel M. D. Oliveira and Douglas Densmore. 2022 Copyright © 2022 Samuel M. D. Oliveira and Douglas Densmore.
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.34133/2022/9794510
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2693-1257
ExternalDocumentID oai_doaj_org_article_ffa33125cfa74e52a538c6dd50ecd6f3
PMC10521664
10_34133_2022_9794510
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 2027045; 2211040
GroupedDBID AALRI
AAXUO
AAYWO
AAYXX
AENVI
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
CITATION
FDB
GROUPED_DOAJ
OK1
PGMZT
RPM
7X8
5PM
ID FETCH-LOGICAL-c431t-9f871a46acbadbbd4fb1fee711b3976d2d7dacbbb09d7df8e81d15a424329533
IEDL.DBID DOA
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001281920500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2693-1257
IngestDate Fri Oct 03 12:42:16 EDT 2025
Tue Nov 04 02:06:19 EST 2025
Fri Sep 05 14:25:46 EDT 2025
Sat Nov 29 04:22:09 EST 2025
Tue Nov 18 21:48:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License Exclusive Licensee Nanjing Agricultural University. Distributed under a Creative Commons Attribution License (CC BY 4.0).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c431t-9f871a46acbadbbd4fb1fee711b3976d2d7dacbbb09d7df8e81d15a424329533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
S.M.D.O declares that there is no conflict of interest regarding the publication of this article. D.D. is a cofounder of Asimov, Lattice Automation, and BioSens8. These are companies that use synthetic biology, create biodesign software, and design biosensors.
ORCID 0000-0002-7666-6808
OpenAccessLink https://doaj.org/article/ffa33125cfa74e52a538c6dd50ecd6f3
PQID 2878711880
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_ffa33125cfa74e52a538c6dd50ecd6f3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10521664
proquest_miscellaneous_2878711880
crossref_citationtrail_10_34133_2022_9794510
crossref_primary_10_34133_2022_9794510
PublicationCentury 2000
PublicationDate 2022-00-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022-00-00
PublicationDecade 2020
PublicationTitle Biodesign research
PublicationYear 2022
Publisher AAAS
American Association for the Advancement of Science (AAAS)
Publisher_xml – name: AAAS
– name: American Association for the Advancement of Science (AAAS)
References Watson (10.34133/2022/9794510_bib115) 2019; 5
Slomovic (10.34133/2022/9794510_bib110) 2015; 112
Hasty (10.34133/2022/9794510_bib35) 2002; 420
Casini (10.34133/2022/9794510_bib81) 2015; 16
Oliveira (10.34133/2022/9794510_bib89) 2015; 11
Wan (10.34133/2022/9794510_bib111) 2019; 15
Liu (10.34133/2022/9794510_bib53) 2020; 1113
McIntyre (10.34133/2022/9794510_bib57) 2020
Gupta (10.34133/2022/9794510_bib99) 2014; 11
Sanka (10.34133/2022/9794510_bib77) 2019; 9
Abul (10.34133/2022/9794510_bib13) 2015; 1
Chandraseelan (10.34133/2022/9794510_bib34) 2013; 9
Siegel (10.34133/2022/9794510_bib62) 2006; 118
Moffitt (10.34133/2022/9794510_bib16) 2012; 12
Paddon (10.34133/2022/9794510_bib30) 2013; 496
Densmore (10.34133/2022/9794510_bib11) 2014; 32
McLaughlin (10.34133/2022/9794510_bib14) 2018; 7
Clancy (10.34133/2022/9794510_bib91) 2010; 21
Said (10.34133/2022/9794510_bib67) 2017; 8
Hengoju (10.34133/2022/9794510_bib48) 2020
Sanka (10.34133/2022/9794510_bib74) 2019
Iverson (10.34133/2022/9794510_bib90) 2016; 5
Lashkaripour (10.34133/2022/9794510_bib56) 2021; 12
Puchkov (10.34133/2022/9794510_bib26) 2016; 10
Bates (10.34133/2022/9794510_bib94) 2017; 6
LeProust (10.34133/2022/9794510_bib86) 2010; 38
Septak (10.34133/2022/9794510_bib87) 1996; 24
Thorsen (10.34133/2022/9794510_bib49) 2001; 86
Beal (10.34133/2022/9794510_bib10) 2012; 1
Andrews (10.34133/2022/9794510_bib33) 2018; 361
Tsur (10.34133/2022/9794510_bib78) 2020; 22
Urbanski (10.34133/2022/9794510_bib113) 2006; 6
Otero-Muras (10.34133/2022/9794510_bib84) 2021; 63
Stricker (10.34133/2022/9794510_bib102) 2008; 456
Soto (10.34133/2022/9794510_bib44) 2015
Nielsen (10.34133/2022/9794510_bib32) 2016; 352
Khalil (10.34133/2022/9794510_bib28) 2012; 150
Crites (10.34133/2022/9794510_bib70) 2018
Lawson (10.34133/2022/9794510_bib19) 2019; 17
Keutzer (10.34133/2022/9794510_bib43) 2000; 19
Khatun (10.34133/2022/9794510_bib4) 2018; 90
Alnahhas (10.34133/2022/9794510_bib66) 2019; 8
Wong (10.34133/2022/9794510_bib75) 2018; 36
Mondragón-Palomino (10.34133/2022/9794510_bib105) 2011; 333
Araci (10.34133/2022/9794510_bib72) 2014; 25
Marchisio (10.34133/2022/9794510_bib41) 2009; 20
Dumont (10.34133/2022/9794510_bib7) 2016; 36
Dinmukhamed (10.34133/2022/9794510_bib82) 2021; 1
Mäkelä (10.34133/2022/9794510_bib24) 2013; 41
Brophy (10.34133/2022/9794510_bib36) 2014; 11
Sprinzak (10.34133/2022/9794510_bib42) 2005; 438
Khalil (10.34133/2022/9794510_bib2) 2010; 11
Kim (10.34133/2022/9794510_bib39) 2020; 62
Abate (10.34133/2022/9794510_bib52) 2010; 107
Taguchi (10.34133/2022/9794510_bib55) 1986; 658
Vrana (10.34133/2022/9794510_bib68) 2021; 6
Jung (10.34133/2022/9794510_bib21) 2020; 38
Mashaghi (10.34133/2022/9794510_bib31) 2014; 8
Philip (10.34133/2022/9794510_bib54) 2017; 17
Lashkaripour (10.34133/2022/9794510_bib76) 2018; 22
Pardee (10.34133/2022/9794510_bib109) 2014; 159
Nielsen (10.34133/2022/9794510_bib3) 2013; 17
Khilko (10.34133/2022/9794510_bib17) 2018; 18
Sciambi (10.34133/2022/9794510_bib64) 2014; 14
Grandel (10.34133/2022/9794510_bib47) 2021; 29
Wang (10.34133/2022/9794510_bib106) 2010; 20
Ostrov (10.34133/2022/9794510_bib95) 2019; 366
Hampson (10.34133/2022/9794510_bib46) 2015; 44
Balaban (10.34133/2022/9794510_bib104) 2004; 305
Scott (10.34133/2022/9794510_bib9) 2017; 2
Ahn (10.34133/2022/9794510_bib51) 2006; 88
Lin (10.34133/2022/9794510_bib112) 2016; 6
Mulani (10.34133/2022/9794510_bib45) 2009
Abate (10.34133/2022/9794510_bib60) 2010; 96
Kotula (10.34133/2022/9794510_bib61) 2014; 111
Wolf (10.34133/2022/9794510_bib23) 2003; 6
Terrell (10.34133/2022/9794510_bib20) 2021; 16
Miano (10.34133/2022/9794510_bib107) 2020; 11
Kahl (10.34133/2022/9794510_bib27) 2013; 7
Walsh (10.34133/2022/9794510_bib80) 2017; 35
Oliveira (10.34133/2022/9794510_bib98) 2016; 12
Tabor (10.34133/2022/9794510_bib8) 2009; 137
Amin (10.34133/2022/9794510_bib114) 2009
Jones (10.34133/2022/9794510_bib12) 2022; 17
McIntyre (10.34133/2022/9794510_bib65) 2020; 20
McDaniel (10.34133/2022/9794510_bib69) 2014
Chory (10.34133/2022/9794510_bib96) 2021; 17
Miyamoto (10.34133/2022/9794510_bib40) 2013; 2
Kis (10.34133/2022/9794510_bib29) 2015; 12
Din (10.34133/2022/9794510_bib58) 2020; 6
Stratford (10.34133/2022/9794510_bib25) 2019; 116
So (10.34133/2022/9794510_bib63) 2011; 11
Jin (10.34133/2022/9794510_bib6) 2018; 115
Roell (10.34133/2022/9794510_bib100) 2019; 18
Alberts (10.34133/2022/9794510_bib22) 2002
Hillson (10.34133/2022/9794510_bib97) 2019; 10
10.34133/2022/9794510_bib88
Unger (10.34133/2022/9794510_bib103) 2000; 288
Linshiz (10.34133/2022/9794510_bib79) 2016; 10
Sequeiros-Borja (10.34133/2022/9794510_bib83) 2021; 22
Bennett (10.34133/2022/9794510_bib101) 2009; 10
Huang (10.34133/2022/9794510_bib73) 2014; 11
Venturelli (10.34133/2022/9794510_bib38) 2017; 8
Weiss (10.34133/2022/9794510_bib93) 2003; 2
Liu (10.34133/2022/9794510_bib18) 2021; 82
Atsumi (10.34133/2022/9794510_bib5) 2008; 451
Shannon (10.34133/2022/9794510_bib59) 2020; 9
Young (10.34133/2022/9794510_bib85) 2021; 63
Endy (10.34133/2022/9794510_bib1) 2005; 438
Ahn (10.34133/2022/9794510_bib50) 2006; 88
Lashkaripour (10.34133/2022/9794510_bib37) 2019; 19
Voigt (10.34133/2022/9794510_bib92) 2006; 17
Oliveira (10.34133/2022/9794510_bib108) 2016; 99
Minhass (10.34133/2022/9794510_bib71) 2018; 37
Huang (10.34133/2022/9794510_bib15) 2014; 14
References_xml – volume: 99
  start-page: 686
  issue: 4
  year: 2016
  ident: 10.34133/2022/9794510_bib108
  article-title: “Increased cytoplasm viscosity hampers aggregate polar segregation in Escherichia coli,”
  publication-title: Molecular Microbiology
  doi: 10.1111/mmi.13257
– volume: 6
  start-page: 96
  issue: 1
  year: 2006
  ident: 10.34133/2022/9794510_bib113
  article-title: “Digital microfluidics using soft lithography,”
  publication-title: Lab on a Chip
  doi: 10.1039/B510127A
– volume: 2
  start-page: 1
  year: 2017
  ident: 10.34133/2022/9794510_bib9
  article-title: “A stabilized microbial ecosystem of self-limiting bacteria using synthetic quorum-regulated lysis,”
  publication-title: Nature Microbiology
  doi: 10.1038/nmicrobiol.2017.83
– volume: 1
  start-page: 15
  issue: 1
  year: 2021
  ident: 10.34133/2022/9794510_bib82
  article-title: “Current advances in design and engineering strategies of industrial enzymes,”
  publication-title: Systems Microbiology and Biomanufacturing
  doi: 10.1007/s43393-020-00005-9
– volume: 11
  start-page: 1
  issue: 3
  year: 2014
  ident: 10.34133/2022/9794510_bib73
  article-title: “Fluigi,”
  publication-title: ACM Journal on Emerging Technologies in Computing Systems
  doi: 10.1145/2660773
– volume: 24
  start-page: 3053
  issue: 15
  year: 1996
  ident: 10.34133/2022/9794510_bib87
  article-title: “Kinetic studies on depurination and detritylation of CPG-bound intermediates during oligonucleotide synthesis,”
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/24.15.3053
– volume: 451
  start-page: 86
  issue: 7174
  year: 2008
  ident: 10.34133/2022/9794510_bib5
  article-title: “Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels,”
  publication-title: Nature
  doi: 10.1038/nature06450
– volume: 36
  start-page: 614
  issue: 7
  year: 2018
  ident: 10.34133/2022/9794510_bib75
  article-title: “Precise, automated control of conditions for high-throughput growth of yeast and bacteria with eVOLVER,”
  publication-title: Nature Biotechnology
  doi: 10.1038/nbt.4151
– volume: 17
  start-page: 878
  issue: 6
  year: 2013
  ident: 10.34133/2022/9794510_bib3
  article-title: “Advances in genetic circuit design: novel biochemistries, deep part mining, and precision gene expression,”
  publication-title: Current Opinion in Chemical Biology
  doi: 10.1016/j.cbpa.2013.10.003
– volume: 10
  start-page: 3
  issue: 1
  year: 2016
  ident: 10.34133/2022/9794510_bib79
  article-title: “End-to-end automated microfluidic platform for synthetic biology: from design to functional analysis,”
  publication-title: Journal of Biological Engineering
  doi: 10.1186/s13036-016-0024-5
– volume: 5
  year: 2019
  ident: 10.34133/2022/9794510_bib115
  article-title: “All-in-one automated microfluidics control system,”
  publication-title: HardwareX
  doi: 10.1016/j.ohx.2019.e00063
– volume: 38
  start-page: 2522
  issue: 8
  year: 2010
  ident: 10.34133/2022/9794510_bib86
  article-title: “Synthesis of high-quality libraries of long (150mer) oligonucleotides by a novel depurination controlled process,”
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkq163
– volume: 17
  start-page: 3388
  issue: 20
  year: 2017
  ident: 10.34133/2022/9794510_bib54
  article-title: “Droplet microfluidics for synthetic biology,”
  publication-title: Lab on a Chip
  doi: 10.1039/C7LC00576H
– volume: 5
  start-page: 99
  issue: 1
  year: 2016
  ident: 10.34133/2022/9794510_bib90
  article-title: “CIDAR MoClo: improved MoClo assembly standard and newE. colipart library enable rapid combinatorial design for synthetic and traditional biology,”
  publication-title: ACS Synthetic Biology
  doi: 10.1021/acssynbio.5b00124
– volume: 11
  issue: 1
  year: 2020
  ident: 10.34133/2022/9794510_bib107
  article-title: “Inducible cell-to-cell signaling for tunable dynamics in microbial communities,”
  publication-title: Nature Communications
  doi: 10.1038/s41467-020-15056-8
– volume: 438
  start-page: 449
  issue: 7067
  year: 2005
  ident: 10.34133/2022/9794510_bib1
  article-title: “Foundations for engineering biology,”
  publication-title: Nature
  doi: 10.1038/nature04342
– volume: 111
  start-page: 4838
  issue: 13
  year: 2014
  ident: 10.34133/2022/9794510_bib61
  article-title: “Programmable bacteria detect and record an environmental signal in the mammalian gut,”
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1321321111
– volume: 82
  start-page: 48
  year: 2021
  ident: 10.34133/2022/9794510_bib18
  article-title: “Design automation for continuous-flow microfluidic biochips: a comprehensive review,”
  publication-title: Integration
  doi: 10.1016/j.vlsi.2021.09.002
– volume: 9
  start-page: 2617
  issue: 10
  year: 2020
  ident: 10.34133/2022/9794510_bib59
  article-title: “In vivofeedback control of an antithetic molecular-titration motif inEscherichia coliusing microfluidics,”
  publication-title: ACS Synthetic Biology
  doi: 10.1021/acssynbio.0c00105
– volume: 366
  start-page: 310
  issue: 6463
  year: 2019
  ident: 10.34133/2022/9794510_bib95
  article-title: “Technological challenges and milestones for writing genomes,”
  publication-title: Science
  doi: 10.1126/science.aay0339
– volume: 20
  start-page: 1099
  issue: 12
  year: 2010
  ident: 10.34133/2022/9794510_bib106
  article-title: “Robust growth of _Escherichia coli_,”
  publication-title: Current Biology
  doi: 10.1016/j.cub.2010.04.045
– year: 2002
  ident: 10.34133/2022/9794510_bib22
– start-page: 78
  year: 2018
  ident: 10.34133/2022/9794510_bib70
  article-title: “ParchMint: a microfluidics benchmark suite
– volume: 25
  start-page: 60
  year: 2014
  ident: 10.34133/2022/9794510_bib72
  article-title: “Recent developments in microfluidic large scale integration,”
  publication-title: Current Opinion in Biotechnology
  doi: 10.1016/j.copbio.2013.08.014
– volume: 8
  start-page: 1125
  year: 2017
  ident: 10.34133/2022/9794510_bib67
  article-title: “Synthetic microbial ecology: engineering habitats for modular consortia,”
  publication-title: Frontiers in Microbiology
  doi: 10.3389/fmicb.2017.01125
– volume: 88
  issue: 2
  year: 2006
  ident: 10.34133/2022/9794510_bib51
  article-title: “Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices,”
  publication-title: Applied Physics Letters
  doi: 10.1063/1.2164911
– volume: 20
  start-page: 3690
  issue: 20
  year: 2020
  ident: 10.34133/2022/9794510_bib65
  article-title: “Rapid and inexpensive microfluidic electrode integration with conductive ink,”
  publication-title: Lab on a Chip
  doi: 10.1039/D0LC00763C
– volume: 1113
  start-page: 66
  year: 2020
  ident: 10.34133/2022/9794510_bib53
  article-title: ““Development and application of analytical detection techniques for droplet- based microfluidics”-a review,”
  publication-title: Analytica Chimica Acta
  doi: 10.1016/j.aca.2020.03.011
– volume: 8
  start-page: 15128
  issue: 1
  year: 2017
  ident: 10.34133/2022/9794510_bib38
  article-title: “Programming mRNA decay to modulate synthetic circuit resource allocation,”
  publication-title: Nature Communications
  doi: 10.1038/ncomms15128
– volume: 6
  start-page: 167
  issue: 1
  year: 2017
  ident: 10.34133/2022/9794510_bib94
  article-title: “Wet lab accelerator: a web-based application democratizing laboratory automation for synthetic biology,”
  publication-title: ACS Synthetic Biology
  doi: 10.1021/acssynbio.6b00108
– volume: 20
  start-page: 479
  issue: 4
  year: 2009
  ident: 10.34133/2022/9794510_bib41
  article-title: “Computational design tools for synthetic biology,”
  publication-title: Current Opinion in Biotechnology
  doi: 10.1016/j.copbio.2009.08.007
– volume: 2
  start-page: 47
  issue: 1
  year: 2003
  ident: 10.34133/2022/9794510_bib93
  article-title: “Genetic circuit building blocks for cellular computation, communications, and signal processing,”
  publication-title: Natural Computing
  doi: 10.1023/A:1023307812034
– volume: 456
  start-page: 516
  issue: 7221
  year: 2008
  ident: 10.34133/2022/9794510_bib102
  article-title: “A fast, robust and tunable synthetic gene oscillator,”
  publication-title: Nature
  doi: 10.1038/nature07389
– volume: 150
  start-page: 647
  issue: 3
  year: 2012
  ident: 10.34133/2022/9794510_bib28
  article-title: “A synthetic biology framework for programming eukaryotic transcription functions,”
  publication-title: Cell
  doi: 10.1016/j.cell.2012.05.045
– volume: 86
  start-page: 4163
  issue: 18
  year: 2001
  ident: 10.34133/2022/9794510_bib49
  article-title: “Dynamic pattern formation in a vesicle-generating microfluidic device,”
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.86.4163
– volume: 12
  issue: 106
  year: 2015
  ident: 10.34133/2022/9794510_bib29
  article-title: “Mammalian synthetic biology: emerging medical applications,”
  publication-title: Journal of Royal Society Interface
  doi: 10.1098/rsif.2014.1000
– volume: 11
  start-page: 508
  issue: 5
  year: 2014
  ident: 10.34133/2022/9794510_bib36
  article-title: “Principles of genetic circuit design,”
  publication-title: Nature Methods
  doi: 10.1038/nmeth.2926
– volume: 12
  start-page: 25
  issue: 1
  year: 2021
  ident: 10.34133/2022/9794510_bib56
  article-title: “Machine learning enables design automation of microfluidic flow-focusing droplet generation,”
  publication-title: Nature Communications
  doi: 10.1038/s41467-020-20284-z
– volume: 18
  start-page: 35
  issue: 1
  year: 2019
  ident: 10.34133/2022/9794510_bib100
  article-title: “Engineering microbial consortia by division of labor,”
  publication-title: Microbial Cell Factories
  doi: 10.1186/s12934-019-1083-3
– volume: 6
  start-page: 1
  issue: 21
  year: 2020
  ident: 10.34133/2022/9794510_bib58
  article-title: “Interfacing gene circuits with microelectronics through engineered population dynamics,”
  publication-title: Science Advances
  doi: 10.1126/sciadv.aaz8344
– volume: 63
  start-page: 61
  year: 2021
  ident: 10.34133/2022/9794510_bib84
  article-title: “Automated engineering of synthetic metabolic pathways for efficient biomanufacturing,”
  publication-title: Metabolic Engineering
  doi: 10.1016/j.ymben.2020.11.012
– volume: 44
  start-page: 403
  year: 2015
  ident: 10.34133/2022/9794510_bib46
  article-title: “Technical evaluation of the systems modeling language (SysML),”
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2015.03.054
– volume: 658
  start-page: T3
  issue: 562
  year: 1986
  ident: 10.34133/2022/9794510_bib55
  publication-title: “Introduction to quality engineering: designing quality into products and processes,”
– ident: 10.34133/2022/9794510_bib88
– volume: 8
  start-page: 173
  issue: 3
  year: 2014
  ident: 10.34133/2022/9794510_bib31
  article-title: “Systems and synthetic biology approaches to cell division,”
  publication-title: Systems and Synthetic Biology
  doi: 10.1007/s11693-014-9132-z
– volume: 496
  start-page: 528
  issue: 7446
  year: 2013
  ident: 10.34133/2022/9794510_bib30
  article-title: “High-level semi-synthetic production of the potent antimalarial artemisinin,”
  publication-title: Nature
  doi: 10.1038/nature12051
– volume: 11
  start-page: 367
  issue: 5
  year: 2010
  ident: 10.34133/2022/9794510_bib2
  article-title: “Synthetic biology: applications come of age,”
  publication-title: Nature Reviews. Genetics
  doi: 10.1038/nrg2775
– volume: 29
  start-page: 1105
  issue: 12
  year: 2021
  ident: 10.34133/2022/9794510_bib47
  article-title: “Control of synthetic microbial consortia in time, space, and composition,”
  publication-title: Trends in Microbiology
  doi: 10.1016/j.tim.2021.04.001
– volume: 116
  start-page: 9552
  issue: 19
  year: 2019
  ident: 10.34133/2022/9794510_bib25
  article-title: “Electrically induced bacterial membrane-potential dynamics correspond to cellular proliferation capacity,”
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.1901788116
– volume: 32
  start-page: 111
  issue: 3
  year: 2014
  ident: 10.34133/2022/9794510_bib11
  article-title: “Bio-design automation: software + biology + robots,”
  publication-title: Trends in Biotechnology
  doi: 10.1016/j.tibtech.2013.10.005
– volume: 17
  start-page: 548
  issue: 5
  year: 2006
  ident: 10.34133/2022/9794510_bib92
  article-title: “Genetic parts to program bacteria,”
  publication-title: Current Opinion in Biotechnology
  doi: 10.1016/j.copbio.2006.09.001
– volume: 12
  start-page: 1
  issue: 10
  year: 2016
  ident: 10.34133/2022/9794510_bib98
  article-title: “Temperature-dependent model of multi-step transcription initiation in Escherichia coli based on live single-cell measurements,”
  publication-title: PLoS Computational Biology
  doi: 10.1371/journal.pcbi.1005174
– volume: 7
  start-page: 13
  issue: 1
  year: 2013
  ident: 10.34133/2022/9794510_bib27
  article-title: “A survey of enabling technologies in synthetic biology,”
  publication-title: Journal of Biological Engineering
  doi: 10.1186/1754-1611-7-13
– volume: 305
  start-page: 1622
  issue: 5690
  year: 2004
  ident: 10.34133/2022/9794510_bib104
  article-title: “Bacterial persistence as a phenotypic switch,”
  publication-title: Science
  doi: 10.1126/science.1099390
– volume: 22
  start-page: 31
  issue: 3
  year: 2018
  ident: 10.34133/2022/9794510_bib76
  article-title: “Desktop micromilled microfluidics,”
  publication-title: Microfluidics and Nanofluidics
  doi: 10.1007/s10404-018-2048-2
– start-page: 2
  year: 2009
  ident: 10.34133/2022/9794510_bib114
  article-title: “Computer-aided design for microfluidic chips based on multilayer soft lithography
– volume: 107
  start-page: 19163
  issue: 45
  year: 2010
  ident: 10.34133/2022/9794510_bib52
  article-title: “High-throughput injection with microfluidics using picoinjectors,”
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1006888107
– volume: 14
  start-page: 2605
  issue: 15
  year: 2014
  ident: 10.34133/2022/9794510_bib64
  article-title: “Generating electric fields in PDMS microfluidic devices with salt water electrodes,”
  publication-title: Lab on a Chip
  doi: 10.1039/C4LC00078A
– volume: 115
  start-page: 3698
  issue: 14
  year: 2018
  ident: 10.34133/2022/9794510_bib6
  article-title: “Biofilm lithography enables high-resolution cell patterning via optogenetic adhesin expression,”
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1720676115
– volume: 6
  start-page: 75215
  issue: 79
  year: 2016
  ident: 10.34133/2022/9794510_bib112
  article-title: “Efficient cell capture in an agarose–PDMS hybrid chip for shaped 2D culture under temozolomide stimulation,”
  publication-title: RSC Advances
  doi: 10.1039/C6RA15734C
– start-page: 1
  year: 2019
  ident: 10.34133/2022/9794510_bib74
  article-title: “Specification, integration, and benchmarking of continuous flow microfluidic devices: invited paper
– volume: 63
  start-page: 81
  year: 2021
  ident: 10.34133/2022/9794510_bib85
  article-title: “Combinatorial metabolic pathway assembly approaches and toolkits for modular assembly,”
  publication-title: Metabolic Engineering
  doi: 10.1016/j.ymben.2020.12.001
– volume: 8
  start-page: 2051
  issue: 9
  year: 2019
  ident: 10.34133/2022/9794510_bib66
  article-title: “Spatiotemporal dynamics of synthetic microbial consortia in microfluidic devices,”
  publication-title: ACS Synthetic Biology
  doi: 10.1021/acssynbio.9b00146
– volume: 22
  start-page: 285
  issue: 1
  year: 2020
  ident: 10.34133/2022/9794510_bib78
  article-title: “Computer-aided design of microfluidic circuits,”
  publication-title: Annual Review of Biomedical Engineering
  doi: 10.1146/annurev-bioeng-082219-033358
– volume: 10
  start-page: 628
  issue: 9
  year: 2009
  ident: 10.34133/2022/9794510_bib101
  article-title: “Microfluidic devices for measuring gene network dynamics in single cells,”
  publication-title: Nature Reviews. Genetics
  doi: 10.1038/nrg2625
– volume: 90
  start-page: 10577
  issue: 17
  year: 2018
  ident: 10.34133/2022/9794510_bib4
  article-title: “Bacterial consortium-based sensing system for detecting organophosphorus pesticides,”
  publication-title: Analytical Chemistry
  doi: 10.1021/acs.analchem.8b02709
– volume: 11
  start-page: 905
  issue: 5
  year: 2011
  ident: 10.34133/2022/9794510_bib63
  article-title: “Inherently aligned microfluidic electrodes composed of liquid metal,”
  publication-title: Lab on a Chip
  doi: 10.1039/c0lc00501k
– volume: 12
  start-page: 1487
  issue: 8
  year: 2012
  ident: 10.34133/2022/9794510_bib16
  article-title: “The single-cell chemostat: an agarose-based, microfluidic device for high-throughput, single-cell studies of bacteria and bacterial communities,”
  publication-title: Lab on a Chip
  doi: 10.1039/c2lc00009a
– volume: 36
  start-page: 1110
  issue: 6
  year: 2016
  ident: 10.34133/2022/9794510_bib7
  article-title: “Human cell lines for biopharmaceutical manufacturing: history, status, and future perspectives,”
  publication-title: Critical Reviews in Biotechnology
  doi: 10.3109/07388551.2015.1084266
– volume: 137
  start-page: 1272
  issue: 7
  year: 2009
  ident: 10.34133/2022/9794510_bib8
  article-title: “A synthetic genetic edge detection program,”
  publication-title: Cell
  doi: 10.1016/j.cell.2009.04.048
– volume: 420
  start-page: 224
  issue: 6912
  year: 2002
  ident: 10.34133/2022/9794510_bib35
  article-title: “Engineered gene circuits,”
  publication-title: Nature
  doi: 10.1038/nature01257
– volume: 9
  start-page: 9166
  issue: 1
  year: 2019
  ident: 10.34133/2022/9794510_bib77
  article-title: “3D _μ_ F - interactive design environment for continuous flow microfluidic devices,”
  publication-title: Scientific Reports
  doi: 10.1038/s41598-019-45623-z
– volume: 10
  start-page: 2040
  issue: 1
  year: 2019
  ident: 10.34133/2022/9794510_bib97
  article-title: “Building a global alliance of biofoundries,”
  publication-title: Nature Communications
  doi: 10.1038/s41467-019-10079-2
– volume: 88
  issue: 26
  year: 2006
  ident: 10.34133/2022/9794510_bib50
  article-title: “Electrocoalescence of drops synchronized by size-dependent flow in microfluidic channels,”
  publication-title: Applied Physics Letters
  doi: 10.1063/1.2218058
– volume: 19
  start-page: 1523
  issue: 12
  year: 2000
  ident: 10.34133/2022/9794510_bib43
  article-title: “System-level design: orthogonalization of concerns and platform-based design,”
  publication-title: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
  doi: 10.1109/43.898830
– volume: 96
  issue: 20
  year: 2010
  ident: 10.34133/2022/9794510_bib60
  article-title: “Microfluidic sorting with high-speed single-layer membrane valves,”
  publication-title: Applied Physics Letters
  doi: 10.1063/1.3431281
– volume: 9
  start-page: 3117
  issue: 12
  year: 2013
  ident: 10.34133/2022/9794510_bib34
  article-title: “Effects of temperature on the dynamics of the LacI-TetR-CI repressilator,”
  publication-title: Molecular BioSystems
  doi: 10.1039/c3mb70203k
– volume: 41
  start-page: 6544
  issue: 13
  year: 2013
  ident: 10.34133/2022/9794510_bib24
  article-title: “In vivo single-molecule kinetics of activation and subsequent activity of the arabinose promoter,”
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkt350
– volume: 10
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.34133/2022/9794510_bib26
  article-title: “Intercellular signaling in microbial world: a panoramic view,”
  publication-title: Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology
  doi: 10.1134/S1990747815050104
– volume: 35
  start-page: 383
  issue: 5
  year: 2017
  ident: 10.34133/2022/9794510_bib80
  article-title: “Enabling microfluidics: from clean rooms to makerspaces,”
  publication-title: Trends in Biotechnology
  doi: 10.1016/j.tibtech.2017.01.001
– volume: 333
  start-page: 1315
  issue: 6047
  year: 2011
  ident: 10.34133/2022/9794510_bib105
  article-title: “Entrainment of a population of synthetic genetic oscillators,”
  publication-title: Science
  doi: 10.1126/science.1205369
– volume: 17
  start-page: 1097
  issue: 4
  year: 2022
  ident: 10.34133/2022/9794510_bib12
  article-title: “Genetic circuit design automation with Cello 2.0,”
  publication-title: Nature Protocols
  doi: 10.1038/s41596-021-00675-2
– volume: 6
  start-page: ysab006
  issue: 1
  year: 2021
  ident: 10.34133/2022/9794510_bib68
  article-title: “Aquarium: open-source laboratory software for design, execution and data management,”
  publication-title: Synthetic Biology
  doi: 10.1093/synbio/ysab006
– start-page: 378
  year: 2009
  ident: 10.34133/2022/9794510_bib45
  article-title: “SoC level verification using System Verilog
– volume: 1
  start-page: 317
  issue: 8
  year: 2012
  ident: 10.34133/2022/9794510_bib10
  article-title: “An end-to-end workflow for engineering of biological networks from high-level specifications,”
  publication-title: ACS Synth Biology
  doi: 10.1021/sb300030d
– volume: 288
  start-page: 113
  issue: 5463
  year: 2000
  ident: 10.34133/2022/9794510_bib103
  article-title: “Monolithic microfabricated valves and pumps by multilayer soft lithography,”
  publication-title: Science
  doi: 10.1126/science.288.5463.113
– start-page: 37
  year: 2015
  ident: 10.34133/2022/9794510_bib44
  article-title: “System C/TLM flow for SoC design and verification
– year: 2020
  ident: 10.34133/2022/9794510_bib57
  article-title: “Active learning for efficient microfluidic design automation,”
  publication-title: IWBDA 2020
– volume: 6
  start-page: 125
  issue: 2
  year: 2003
  ident: 10.34133/2022/9794510_bib23
  article-title: “Motifs, modules and games in bacteria,”
  publication-title: Current Opinion in Microbiology
  doi: 10.1016/S1369-5274(03)00033-X
– volume: 17
  start-page: e9942
  issue: 3
  year: 2021
  ident: 10.34133/2022/9794510_bib96
  article-title: “Enabling high-throughput biology with flexible open-source automation,”
  publication-title: Molecular Systems Biology
  doi: 10.15252/msb.20209942
– volume: 21
  start-page: 572
  issue: 4
  year: 2010
  ident: 10.34133/2022/9794510_bib91
  article-title: “Programming cells: towards an automated ‘genetic compiler’,”
  publication-title: Current Opinion in Biotechnology
  doi: 10.1016/j.copbio.2010.07.005
– volume: 15
  start-page: 540
  issue: 5
  year: 2019
  ident: 10.34133/2022/9794510_bib111
  article-title: “Cascaded amplifying circuits enable ultrasensitive cellular sensors for toxic metals,”
  publication-title: Nature Chemical Biology
  doi: 10.1038/s41589-019-0244-3
– volume: 22
  start-page: bbaa 150
  issue: 3
  year: 2021
  ident: 10.34133/2022/9794510_bib83
  article-title: “Recent advances in user-friendly computational tools to engineer protein function,”
  publication-title: Briefings in Bioinformatics
  doi: 10.1093/bib/bbaa150
– start-page: 1
  year: 2014
  ident: 10.34133/2022/9794510_bib69
  article-title: “Simulated annealing-based placement for microfluidic large scale integration (mLSI) chips
– volume: 16
  start-page: 568
  issue: 9
  year: 2015
  ident: 10.34133/2022/9794510_bib81
  article-title: “Bricks and blueprints: methods and standards for DNA assembly,”
  publication-title: Nature Reviews Molecular Cell Biology
  doi: 10.1038/nrm4014
– volume: 159
  start-page: 940
  issue: 4
  year: 2014
  ident: 10.34133/2022/9794510_bib109
  article-title: “Paper-based synthetic gene networks,”
  publication-title: Cell
  doi: 10.1016/j.cell.2014.10.004
– volume: 1
  start-page: 396
  issue: 6
  year: 2015
  ident: 10.34133/2022/9794510_bib13
  article-title: “A systematic ensemble approach to thermodynamic modeling of gene expression from sequence data,”
  publication-title: Cell Systems
  doi: 10.1016/j.cels.2015.12.002
– volume: 38
  start-page: 1451
  issue: 12
  year: 2020
  ident: 10.34133/2022/9794510_bib21
  article-title: “Cell-free biosensors for rapid detection of water contaminants,”
  publication-title: Nature Biotechnology
  doi: 10.1038/s41587-020-0571-7
– volume: 2
  start-page: 72
  issue: 2
  year: 2013
  ident: 10.34133/2022/9794510_bib40
  article-title: “Synthesizing biomolecule-based Boolean logic gates,”
  publication-title: ACS Synthic Biology
  doi: 10.1021/sb3001112
– volume: 352
  start-page: aac7341
  issue: 6281
  year: 2016
  ident: 10.34133/2022/9794510_bib32
  article-title: “Genetic circuit design automation,”
  publication-title: Science
  doi: 10.1126/science.aac7341
– volume: 16
  start-page: 688
  issue: 6
  year: 2021
  ident: 10.34133/2022/9794510_bib20
  article-title: “Bioelectronic control of a microbial community using surface-assembled electrogenetic cells to route signals,”
  publication-title: Nature Nanotechnology
  doi: 10.1038/s41565-021-00878-4
– volume: 62
  start-page: 29
  year: 2020
  ident: 10.34133/2022/9794510_bib39
  article-title: “Trade-offs between gene expression, growth and phenotypic diversity in microbial populations,”
  publication-title: Current Opinion in Biotechnology
  doi: 10.1016/j.copbio.2019.08.004
– year: 2020
  ident: 10.34133/2022/9794510_bib48
  article-title: “Droplet microfluidics for microbial biotechnology,”
  doi: 10.1007/10_2020_140
– volume: 118
  start-page: 7031
  issue: 41
  year: 2006
  ident: 10.34133/2022/9794510_bib62
  article-title: “Cofabrication of electromagnets and microfluidic systems in poly(dimethylsiloxane),”
  publication-title: Angewandte Chemie
  doi: 10.1002/ange.200602273
– volume: 361
  issue: 6408
  year: 2018
  ident: 10.34133/2022/9794510_bib33
  article-title: “Cellular checkpoint control using programmable sequential logic,”
  publication-title: Science
  doi: 10.1126/science.aap8987
– volume: 14
  start-page: 3459
  issue: 18
  year: 2014
  ident: 10.34133/2022/9794510_bib15
  article-title: “Integration of microfluidics into the synthetic biology design flow,”
  publication-title: Lab on a Chip
  doi: 10.1039/C4LC00509K
– volume: 112
  start-page: 14429
  issue: 47
  year: 2015
  ident: 10.34133/2022/9794510_bib110
  article-title: “Synthetic biology devices for in vitro and in vivo diagnostics,”
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.1508521112
– volume: 7
  start-page: 682
  issue: 2
  year: 2018
  ident: 10.34133/2022/9794510_bib14
  article-title: “SynBioHub: a standards-enabled design repository for synthetic biology,”
  publication-title: ACS Synthetic Biology
  doi: 10.1021/acssynbio.7b00403
– volume: 11
  issue: 6
  year: 2014
  ident: 10.34133/2022/9794510_bib99
  article-title: “Robustness of the division symmetry inEscherichia coliand functional consequences of symmetry breaking,”
  publication-title: Physical Biology
  doi: 10.1088/1478-3975/11/6/066005
– volume: 37
  start-page: 615
  issue: 3
  year: 2018
  ident: 10.34133/2022/9794510_bib71
  article-title: “Scheduling and fluid routing for flow-based microfluidic laboratories-on-a-chip,”
  publication-title: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
  doi: 10.1109/TCAD.2017.2729463
– volume: 11
  start-page: 1939
  issue: 7
  year: 2015
  ident: 10.34133/2022/9794510_bib89
  article-title: “Single-cell kinetics of a repressilator when implemented in a single-copy plasmid,”
  publication-title: Molecular BioSystems
  doi: 10.1039/C5MB00012B
– volume: 18
  start-page: 37
  issue: 1
  year: 2018
  ident: 10.34133/2022/9794510_bib17
  article-title: “DNA assembly with error correction on a droplet digital microfluidics platform,”
  publication-title: BMC Biotechnology
  doi: 10.1186/s12896-018-0439-9
– volume: 17
  start-page: 725
  issue: 12
  year: 2019
  ident: 10.34133/2022/9794510_bib19
  article-title: “Common principles and best practices for engineering microbiomes,”
  publication-title: Nature Reviews Microbiology
  doi: 10.1038/s41579-019-0255-9
– volume: 19
  start-page: 1041
  issue: 6
  year: 2019
  ident: 10.34133/2022/9794510_bib37
  article-title: “Performance tuning of microfluidic flow-focusing droplet generators,”
  publication-title: Lab on a Chip
  doi: 10.1039/C8LC01253A
– volume: 438
  start-page: 443
  issue: 7067
  year: 2005
  ident: 10.34133/2022/9794510_bib42
  article-title: “Reconstruction of genetic circuits,”
  publication-title: Nature
  doi: 10.1038/nature04335
SSID ssj0002876716
Score 2.2297304
SecondaryResourceType review_article
Snippet Synthetic biology is the process of forward engineering living systems. These systems can be used to produce biobased materials, agriculture, medicine, and...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 9794510
SubjectTerms Opinion
Title Hardware, Software, and Wetware Codesign Environment for Synthetic Biology
URI https://www.proquest.com/docview/2878711880
https://pubmed.ncbi.nlm.nih.gov/PMC10521664
https://doaj.org/article/ffa33125cfa74e52a538c6dd50ecd6f3
Volume 2022
WOSCitedRecordID wos001281920500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2693-1257
  dateEnd: 20241231
  omitProxy: false
  ssIdentifier: ssj0002876716
  issn: 2693-1257
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB508aAH8YnriwjiybJ9pK-jyoqIiKDo3srkhYp0ZR_K_nsnaV3bg3jx1jahTb9JMjPJ5BuA4yxSsUb0PSTxejxSwssCVF6upc1WiFy4HEuPN-ntbTYY5HeNVF82JqyiB66A6xmDUURaWBpMuY5DpBEqE6ViX0uVGMfz6ad5w5l6dUtGaUKeQEWqaSfqyHr5YS-n7hfb07INJeS4-lsGZjs8sqFvLtdgtTYU2VnVwHVY0OUGrDToAzfh2m67f-JIn7J7mk2rKywVe9Luhl0MlQvQYP2f42yMrFR2PyvJ8KM3syoX5WwLHi77DxdXXp0bwZOk8idebsjTQZ6gFKiEUNyIwGidBoGwFoYKVaqoTAg_pyuTabJLgxh5yKPQRpRuQ6cclnoHmJY0xtNIamkyLnyOEgVy44ucJ7Hy4y6cfmNVyJo33KaveCvIf3DQFhbaooa2Cyfz6u8VYcZvFc8t8PNKlufaPSDpF7X0i7-k34Wjb7EVNC7sZgeWejgdF9QDCCHLNteFrCXP1hfbJeXLs2PYDuyR5iThu__Rxj1Ytv9drdvsQ2cymuoDWJIfk5fx6BAW00F26HrvFxOc9qM
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hardware%2C+Software%2C+and+Wetware+Codesign+Environment+for+Synthetic+Biology&rft.jtitle=Biodesign+research&rft.au=Samuel+M.+D.+Oliveira&rft.au=Douglas+Densmore&rft.date=2022&rft.pub=American+Association+for+the+Advancement+of+Science+%28AAAS%29&rft.eissn=2693-1257&rft.volume=2022&rft_id=info:doi/10.34133%2F2022%2F9794510&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ffa33125cfa74e52a538c6dd50ecd6f3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2693-1257&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2693-1257&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2693-1257&client=summon