Variable Interactions in Query-Driven Visualization
Our ability to generate ever-larger, increasingly-complex data, has established the need for scalable methods that identify, and provide insight into, important variable trends and interactions. Query-driven methods are among the small subset of techniques that are able to address both large and hig...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on visualization and computer graphics Jg. 13; H. 6; S. 1400 - 1407 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
IEEE
01.11.2007
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1077-2626, 1941-0506 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Our ability to generate ever-larger, increasingly-complex data, has established the need for scalable methods that identify, and provide insight into, important variable trends and interactions. Query-driven methods are among the small subset of techniques that are able to address both large and highly complex datasets. This paper presents a new method that increases the utility of query-driven techniques by visually conveying statistical information about the trends that exist between variables in a query. In this method, correlation fields, created between pairs of variables, are used with the cumulative distribution functions of variables expressed in a users query. This integrated use of cumulative distribution functions and correlation fields visually reveals, with respect to the solution space of the query, statistically important interactions between any three variables, and allows for trends between these variables to be readily identified. We demonstrate our method by analyzing interactions between variables in two flame-front simulations. |
|---|---|
| AbstractList | Our ability to generate ever-larger, increasingly-complex data, has established the need for scalable methods that identify, and provide insight into, important variable trends and interactions. Query-driven methods are among the small subset of techniques that are able to address both large and highly complex datasets. This paper presents a new method that increases the utility of query-driven techniques by visually conveying statistical information about the trends that exist between variables in a query. In this method, correlation fields, created between pairs of variables, are used with the cumulative distribution functions of variables expressed in a users query. This integrated use of cumulative distribution functions and correlation fields visually reveals, with respect to the solution space of the query, statistically important interactions between any three variables, and allows for trends between these variables to be readily identified. We demonstrate our method by analyzing interactions between variables in two flame-front simulations. Our ability to generate ever-larger, increasingly-complex data, has established the need for scalable methods that identify, and provide insight into, important variable trends and interactions. Query-driven methods are among the small subset of techniques that are able to address both large and highly complex datasets. This paper presents a new method that increases the utility of query-driven techniques by visually conveying statistical information about the trends that exist between variables in a query. In this method, correlation fields, created between pairs of variables, are used with the cumulative distribution functions of variables expressed in a user's query. This integrated use of cumulative distribution functions and correlation fields visually reveals, with respect to the solution space of the query, statistically important interactions between any three variables, and allows for trends between these variables to be readily identified. We demonstrate our method by analyzing interactions between variables in two flame-front simulations. Our ability to generate ever-larger, increasingly-complex data, has established the need for scalable methods that identify, and provide insight into, important variable trends and interactions. Query-driven methods are among the small subset [abstract truncated by publisher]. Our ability to generate ever-larger, increasingly-complex data, has established the need for scalable methods that identify, and provide insight into, important variable trends and interactions. Query-driven methods are among the small subset of techniques that are able to address both large and highly complex datasets. This paper presents a new method that increases the utility of query-driven techniques by visually conveying statistical information about the trends that exist between variables in a query. In this method, correlation fields, created between pairs of variables, are used with the cumulative distribution functions of variables expressed in a user's query. This integrated use of cumulative distribution functions and correlation fields visually reveals, with respect to the solution space of the query, statistically important interactions between any three variables, and allows for trends between these variables to be readily identified. We demonstrate our method by analyzing interactions between variables in two flame-front simulations.Our ability to generate ever-larger, increasingly-complex data, has established the need for scalable methods that identify, and provide insight into, important variable trends and interactions. Query-driven methods are among the small subset of techniques that are able to address both large and highly complex datasets. This paper presents a new method that increases the utility of query-driven techniques by visually conveying statistical information about the trends that exist between variables in a query. In this method, correlation fields, created between pairs of variables, are used with the cumulative distribution functions of variables expressed in a user's query. This integrated use of cumulative distribution functions and correlation fields visually reveals, with respect to the solution space of the query, statistically important interactions between any three variables, and allows for trends between these variables to be readily identified. We demonstrate our method by analyzing interactions between variables in two flame-front simulations. |
| Author | Bethel, Wes Gosink, Luke Anderson, John Joy, Kenneth |
| Author_xml | – sequence: 1 givenname: Luke surname: Gosink fullname: Gosink, Luke email: ljgosink@ucdavis.edu organization: Institute for Data Analysis and Visualization (IDAV), University of California, Davis – sequence: 2 givenname: John surname: Anderson fullname: Anderson, John email: janderson@ucdavis organization: Institute for Data Analysis and Visualization (IDAV), University of California, Davis – sequence: 3 givenname: Wes surname: Bethel fullname: Bethel, Wes email: ewbethel@lbl.gov organization: Computing Sciences Division and Scientific Visualization Group, Lawrence Berkeley National Laboratory – sequence: 4 givenname: Kenneth surname: Joy fullname: Joy, Kenneth email: kijoy@ucdavis.edu organization: Institute for Data Analysis and Visualization (IDAV), University of California, Davis |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17968090$$D View this record in MEDLINE/PubMed |
| BookMark | eNqF0UtrGzEUBWBRUurY7bqLQjFdJKtxrt7SsjhPCIRA6q3QaO6AzHgmlWYC7q_v2E6yCDRdSaDvXNA9U3LUdi0S8pXCglKwZw-r5dWCAeiFBkntB3JMraAFSFBH4x20LphiakKmOa8BqBDGfiITqq0yYOGY8JVP0ZcNzm_aHpMPfezaPI_t_H7AtC3OU3zCdr6KefBN_ON3z5_Jx9o3Gb88nzPy6_LiYXld3N5d3Sx_3hZBcNoX1rOK1aZGEwIrae0xSMO11nWgQhtfAVbSIKss8JqXKtRcY8UCQCk0tYrPyOlh7mPqfg-Ye7eJOWDT-Ba7ITtjQEmjGRvlybtSmfHjmtv_Qi6kZHqkM_LjDVx3Q2rH7zqjuGVSGD6i789oKDdYuccUNz5t3ct6RyAPIKQu54S1C7Hf77BPPjaOgtvV6HY1ul2Nbl_jmDt7k3sd_c_Et0MiIuKrFlwrqjT_C6o-pbo |
| CODEN | ITVGEA |
| CitedBy_id | crossref_primary_10_1109_TVCG_2015_2467431 crossref_primary_10_1007_s12650_019_00584_3 crossref_primary_10_1109_ACCESS_2018_2864685 crossref_primary_10_1109_TVCG_2008_157 crossref_primary_10_1007_s00371_017_1359_8 crossref_primary_10_3390_e21070699 crossref_primary_10_1109_TVCG_2020_3006426 crossref_primary_10_1016_j_ejor_2011_01_005 crossref_primary_10_1109_TVCG_2010_80 crossref_primary_10_1109_ACCESS_2016_2601339 crossref_primary_10_1109_TVCG_2010_64 crossref_primary_10_1109_TVCG_2013_131 crossref_primary_10_1111_j_1467_8659_2011_01959_x crossref_primary_10_1109_TVCG_2008_143 crossref_primary_10_3390_ijgi7070266 crossref_primary_10_1109_TVCG_2009_25 crossref_primary_10_1145_3523698 crossref_primary_10_1016_j_cag_2022_03_004 crossref_primary_10_1109_TVCG_2009_200 crossref_primary_10_1109_TVCG_2023_3326855 crossref_primary_10_1016_j_cagd_2012_03_023 crossref_primary_10_1109_TVCG_2018_2864801 crossref_primary_10_1109_TVCG_2010_253 crossref_primary_10_1109_TVCG_2008_184 crossref_primary_10_1109_TVCG_2012_269 |
| Cites_doi | 10.1007/BF01898350 10.1023/A:1020830525823 10.1109/TVCG.2006.165 10.1145/1188455.1188542 10.1016/0021-9991(89)90035-1 10.1109/VIS.2005.84 10.1073/pnas.0504140102 10.1002/(SICI)1097-4601(1997)29:6<393::AID-KIN1>3.0.CO;2-P 10.1016/B978-012088469-8/50006-1 10.1088/1742-6596/46/1/005 10.1109/MCSE.2007.42 10.1145/1107499.1107503 10.1109/VISUAL.2003.1250362 10.1109/SSDBM.2006.27 10.1109/MCG.2002.999781 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 7X8 |
| DOI | 10.1109/TVCG.2007.70519 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | Technology Research Database PubMed Technology Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0506 |
| EndPage | 1407 |
| ExternalDocumentID | 2332872611 17968090 10_1109_TVCG_2007_70519 4376167 |
| Genre | orig-research Journal Article |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNI RNS RZB TN5 VH1 AAYXX CITATION NPM RIG 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 7X8 |
| ID | FETCH-LOGICAL-c431t-9a2d2f8fe8cc2b1faec583777fc1478ad0ed58e2d903f3b6cf37ed2c00b471963 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 31 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000250401100045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1077-2626 |
| IngestDate | Wed Oct 01 14:14:53 EDT 2025 Sat Sep 27 17:07:12 EDT 2025 Thu Oct 02 07:47:31 EDT 2025 Sun Nov 30 04:23:50 EST 2025 Mon Jul 21 05:55:30 EDT 2025 Sat Nov 29 06:05:25 EST 2025 Tue Nov 18 21:44:03 EST 2025 Wed Aug 27 02:29:47 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c431t-9a2d2f8fe8cc2b1faec583777fc1478ad0ed58e2d903f3b6cf37ed2c00b471963 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| PMID | 17968090 |
| PQID | 863925483 |
| PQPubID | 23500 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_4376167 crossref_citationtrail_10_1109_TVCG_2007_70519 proquest_miscellaneous_68448739 proquest_miscellaneous_34552787 pubmed_primary_17968090 proquest_journals_863925483 crossref_primary_10_1109_TVCG_2007_70519 proquest_miscellaneous_880658722 |
| PublicationCentury | 2000 |
| PublicationDate | 2007-11-01 |
| PublicationDateYYYYMMDD | 2007-11-01 |
| PublicationDate_xml | – month: 11 year: 2007 text: 2007-11-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on visualization and computer graphics |
| PublicationTitleAbbrev | TVCG |
| PublicationTitleAlternate | IEEE Trans Vis Comput Graph |
| PublicationYear | 2007 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 fua (ref9) 1999 ref12 ref15 ref14 ref11 ref22 ref10 edelsbrunner (ref7) 2004 ref1 ref17 ref19 ref18 becla (ref2) 0 ref4 wu (ref21) 2003 ref3 wong (ref20) 1994 ref6 ref5 st ger (ref16) 0 frenklach (ref8) 1995 |
| References_xml | – ident: ref13 doi: 10.1007/BF01898350 – ident: ref12 doi: 10.1023/A:1020830525823 – ident: ref14 doi: 10.1109/TVCG.2006.165 – ident: ref15 doi: 10.1145/1188455.1188542 – year: 1995 ident: ref8 publication-title: Gri-mechan optimized detailed chemical reaction mechanism for methane combustion – start-page: 3 year: 1994 ident: ref20 publication-title: Scientific Visualization – start-page: 43 year: 1999 ident: ref9 article-title: Hierarchical parallel coordinates for exploration of large datasets publication-title: IEEE Visualization – ident: ref4 doi: 10.1016/0021-9991(89)90035-1 – ident: ref17 doi: 10.1109/VIS.2005.84 – ident: ref3 doi: 10.1073/pnas.0504140102 – ident: ref5 doi: 10.1002/(SICI)1097-4601(1997)29:6<393::AID-KIN1>3.0.CO;2-P – ident: ref22 doi: 10.1016/B978-012088469-8/50006-1 – year: 0 ident: ref2 – start-page: 65 year: 2003 ident: ref21 publication-title: Scientific and Statistical Database Management – start-page: 275 year: 2004 ident: ref7 publication-title: IEEE Visualization – year: 0 ident: ref16 – ident: ref6 doi: 10.1088/1742-6596/46/1/005 – ident: ref1 doi: 10.1109/MCSE.2007.42 – ident: ref11 doi: 10.1145/1107499.1107503 – ident: ref19 doi: 10.1109/VISUAL.2003.1250362 – ident: ref10 doi: 10.1109/SSDBM.2006.27 – ident: ref18 doi: 10.1109/MCG.2002.999781 |
| SSID | ssj0014489 |
| Score | 2.1002812 |
| Snippet | Our ability to generate ever-larger, increasingly-complex data, has established the need for scalable methods that identify, and provide insight into,... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1400 |
| SubjectTerms | Analytical models Chemicals Combustion Correlation Data visualization Distribution functions Fires Histograms Large-scale systems Mathematical analysis Mathematical models Multivariate Data Performance analysis Query processing Query-Driven Visualization Throughput Trends Utilities Visualization |
| Title | Variable Interactions in Query-Driven Visualization |
| URI | https://ieeexplore.ieee.org/document/4376167 https://www.ncbi.nlm.nih.gov/pubmed/17968090 https://www.proquest.com/docview/863925483 https://www.proquest.com/docview/34552787 https://www.proquest.com/docview/68448739 https://www.proquest.com/docview/880658722 |
| Volume | 13 |
| WOSCitedRecordID | wos000250401100045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0506 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014489 issn: 1077-2626 databaseCode: RIE dateStart: 19950101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9swDCXaYof10K6fc9t1PuywQ53akmPKxyJbu8MQdEAW5GbYEgUEKJwhTgr035eSXbeH5dCbAdOwTJPSoyg-AnwzIrWp4khVMB6IUqriqDJJHqkqK21V2TKznjL_N47HajbL77fgqq-FISJ_-IwG7tLn8s1Cr91W2XXK3pBkuA3biNjWavUZAw4z8vZ8IUaCUXpH45PE-fVkOrpryQrRARbHE4p5pmI3D79ZjHx3lc1A0y84t_vvG-on2OuAZXjTWsIBbFF9CLtv6AaPQE45MHalUqHfB2xLGppwXod_1rR8in4s3dQXTueNq7Rs6zOP4e_tz8noV9Q1TYg0Y4FVlJfCCKssKa1FldiS9JCDUESrkxRVaWIyQ0XC5LG0ssq0lUhG6DiueJ1idzyBnXpR02cIh9oQaWu1RJNaBgYKhWY8wzNiahKpAxi8aK_QHaO4a2zxUPjIIs4Lp3nX6BILr_kAvvcP_GvJNDaLHjml9mKdPgM4f_k9RedsTaEYZXGcq2QAX_u77CUu9VHWtFg3hUwd05zCzRKZYgtCyS8ON0gol4NmFYgATlvDeP2Izp7O_j_qc_jot4R9CeMF7KyWa_oCH_Tjat4sL9maZ-rSW_MzAgXwLA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xkqAHKM8GSsmhBw4EEtsbO0cEBaouKyptV9yixB5LK6Es2uxW6r9n7ISUA3vgFikTxZnM2N94PN8AfDdMWKEoUmWEByKBZRyVJskiVaaFLUtbpNZT5vflYKAeH7OHJTjramEQ0R8-w3N36XP5ZqLnbqvsQpA3JKlchtWeECxpqrW6nAEFGllzwlBGjHB6S-STxNnFcHR129AVSgdZHFOozFIVu5n4zXLk-6sshpp-ybnZ-thgP8NmCy3Dy8YWtmEJqx349IZwcBf4iEJjVywV-p3ApqihDsdV-HuO03_R9dRNfuFoXLtay6ZCcw_-3PwYXt1FbduESBMamEVZwQyzyqLSmpWJLVD3KAyV0upESFWYGE1PITNZzC0vU225RMN0HJe0UpFD7sNKNanwC4Q9bRC1tZpLIyxBAyWZJkRDc6IwCdcBnL9qL9ctp7hrbfGU-9giznKnedfqUuZe8wGcdg88N3Qai0V3nVI7sVafARy9_p68dbc6V4SzKNJVPICT7i75iUt-FBVO5nXOheOaU3KxRKrIgiSnF4cLJJTLQpMKWAAHjWH8_4jWng7fH_UJrN8N7_t5_-fg1xFs-A1iX9D4FVZm0zkew5r-OxvX02_epl8A-ejyiw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variable+interactions+in+query-driven+visualization&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Gosink%2C+Luke&rft.au=Anderson%2C+John&rft.au=Bethel%2C+Wes&rft.au=Joy%2C+Kenneth&rft.date=2007-11-01&rft.issn=1077-2626&rft.volume=13&rft.issue=6&rft.spage=1400&rft_id=info:doi/10.1109%2FTVCG.2007.70519&rft_id=info%3Apmid%2F17968090&rft.externalDocID=17968090 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon |