Variable Interactions in Query-Driven Visualization

Our ability to generate ever-larger, increasingly-complex data, has established the need for scalable methods that identify, and provide insight into, important variable trends and interactions. Query-driven methods are among the small subset of techniques that are able to address both large and hig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics Jg. 13; H. 6; S. 1400 - 1407
Hauptverfasser: Gosink, Luke, Anderson, John, Bethel, Wes, Joy, Kenneth
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.11.2007
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1077-2626, 1941-0506
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Our ability to generate ever-larger, increasingly-complex data, has established the need for scalable methods that identify, and provide insight into, important variable trends and interactions. Query-driven methods are among the small subset of techniques that are able to address both large and highly complex datasets. This paper presents a new method that increases the utility of query-driven techniques by visually conveying statistical information about the trends that exist between variables in a query. In this method, correlation fields, created between pairs of variables, are used with the cumulative distribution functions of variables expressed in a users query. This integrated use of cumulative distribution functions and correlation fields visually reveals, with respect to the solution space of the query, statistically important interactions between any three variables, and allows for trends between these variables to be readily identified. We demonstrate our method by analyzing interactions between variables in two flame-front simulations.
AbstractList Our ability to generate ever-larger, increasingly-complex data, has established the need for scalable methods that identify, and provide insight into, important variable trends and interactions. Query-driven methods are among the small subset of techniques that are able to address both large and highly complex datasets. This paper presents a new method that increases the utility of query-driven techniques by visually conveying statistical information about the trends that exist between variables in a query. In this method, correlation fields, created between pairs of variables, are used with the cumulative distribution functions of variables expressed in a users query. This integrated use of cumulative distribution functions and correlation fields visually reveals, with respect to the solution space of the query, statistically important interactions between any three variables, and allows for trends between these variables to be readily identified. We demonstrate our method by analyzing interactions between variables in two flame-front simulations.
Our ability to generate ever-larger, increasingly-complex data, has established the need for scalable methods that identify, and provide insight into, important variable trends and interactions. Query-driven methods are among the small subset of techniques that are able to address both large and highly complex datasets. This paper presents a new method that increases the utility of query-driven techniques by visually conveying statistical information about the trends that exist between variables in a query. In this method, correlation fields, created between pairs of variables, are used with the cumulative distribution functions of variables expressed in a user's query. This integrated use of cumulative distribution functions and correlation fields visually reveals, with respect to the solution space of the query, statistically important interactions between any three variables, and allows for trends between these variables to be readily identified. We demonstrate our method by analyzing interactions between variables in two flame-front simulations.
Our ability to generate ever-larger, increasingly-complex data, has established the need for scalable methods that identify, and provide insight into, important variable trends and interactions. Query-driven methods are among the small subset [abstract truncated by publisher].
Our ability to generate ever-larger, increasingly-complex data, has established the need for scalable methods that identify, and provide insight into, important variable trends and interactions. Query-driven methods are among the small subset of techniques that are able to address both large and highly complex datasets. This paper presents a new method that increases the utility of query-driven techniques by visually conveying statistical information about the trends that exist between variables in a query. In this method, correlation fields, created between pairs of variables, are used with the cumulative distribution functions of variables expressed in a user's query. This integrated use of cumulative distribution functions and correlation fields visually reveals, with respect to the solution space of the query, statistically important interactions between any three variables, and allows for trends between these variables to be readily identified. We demonstrate our method by analyzing interactions between variables in two flame-front simulations.Our ability to generate ever-larger, increasingly-complex data, has established the need for scalable methods that identify, and provide insight into, important variable trends and interactions. Query-driven methods are among the small subset of techniques that are able to address both large and highly complex datasets. This paper presents a new method that increases the utility of query-driven techniques by visually conveying statistical information about the trends that exist between variables in a query. In this method, correlation fields, created between pairs of variables, are used with the cumulative distribution functions of variables expressed in a user's query. This integrated use of cumulative distribution functions and correlation fields visually reveals, with respect to the solution space of the query, statistically important interactions between any three variables, and allows for trends between these variables to be readily identified. We demonstrate our method by analyzing interactions between variables in two flame-front simulations.
Author Bethel, Wes
Gosink, Luke
Anderson, John
Joy, Kenneth
Author_xml – sequence: 1
  givenname: Luke
  surname: Gosink
  fullname: Gosink, Luke
  email: ljgosink@ucdavis.edu
  organization: Institute for Data Analysis and Visualization (IDAV), University of California, Davis
– sequence: 2
  givenname: John
  surname: Anderson
  fullname: Anderson, John
  email: janderson@ucdavis
  organization: Institute for Data Analysis and Visualization (IDAV), University of California, Davis
– sequence: 3
  givenname: Wes
  surname: Bethel
  fullname: Bethel, Wes
  email: ewbethel@lbl.gov
  organization: Computing Sciences Division and Scientific Visualization Group, Lawrence Berkeley National Laboratory
– sequence: 4
  givenname: Kenneth
  surname: Joy
  fullname: Joy, Kenneth
  email: kijoy@ucdavis.edu
  organization: Institute for Data Analysis and Visualization (IDAV), University of California, Davis
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17968090$$D View this record in MEDLINE/PubMed
BookMark eNqF0UtrGzEUBWBRUurY7bqLQjFdJKtxrt7SsjhPCIRA6q3QaO6AzHgmlWYC7q_v2E6yCDRdSaDvXNA9U3LUdi0S8pXCglKwZw-r5dWCAeiFBkntB3JMraAFSFBH4x20LphiakKmOa8BqBDGfiITqq0yYOGY8JVP0ZcNzm_aHpMPfezaPI_t_H7AtC3OU3zCdr6KefBN_ON3z5_Jx9o3Gb88nzPy6_LiYXld3N5d3Sx_3hZBcNoX1rOK1aZGEwIrae0xSMO11nWgQhtfAVbSIKss8JqXKtRcY8UCQCk0tYrPyOlh7mPqfg-Ye7eJOWDT-Ba7ITtjQEmjGRvlybtSmfHjmtv_Qi6kZHqkM_LjDVx3Q2rH7zqjuGVSGD6i789oKDdYuccUNz5t3ct6RyAPIKQu54S1C7Hf77BPPjaOgtvV6HY1ul2Nbl_jmDt7k3sd_c_Et0MiIuKrFlwrqjT_C6o-pbo
CODEN ITVGEA
CitedBy_id crossref_primary_10_1109_TVCG_2015_2467431
crossref_primary_10_1007_s12650_019_00584_3
crossref_primary_10_1109_ACCESS_2018_2864685
crossref_primary_10_1109_TVCG_2008_157
crossref_primary_10_1007_s00371_017_1359_8
crossref_primary_10_3390_e21070699
crossref_primary_10_1109_TVCG_2020_3006426
crossref_primary_10_1016_j_ejor_2011_01_005
crossref_primary_10_1109_TVCG_2010_80
crossref_primary_10_1109_ACCESS_2016_2601339
crossref_primary_10_1109_TVCG_2010_64
crossref_primary_10_1109_TVCG_2013_131
crossref_primary_10_1111_j_1467_8659_2011_01959_x
crossref_primary_10_1109_TVCG_2008_143
crossref_primary_10_3390_ijgi7070266
crossref_primary_10_1109_TVCG_2009_25
crossref_primary_10_1145_3523698
crossref_primary_10_1016_j_cag_2022_03_004
crossref_primary_10_1109_TVCG_2009_200
crossref_primary_10_1109_TVCG_2023_3326855
crossref_primary_10_1016_j_cagd_2012_03_023
crossref_primary_10_1109_TVCG_2018_2864801
crossref_primary_10_1109_TVCG_2010_253
crossref_primary_10_1109_TVCG_2008_184
crossref_primary_10_1109_TVCG_2012_269
Cites_doi 10.1007/BF01898350
10.1023/A:1020830525823
10.1109/TVCG.2006.165
10.1145/1188455.1188542
10.1016/0021-9991(89)90035-1
10.1109/VIS.2005.84
10.1073/pnas.0504140102
10.1002/(SICI)1097-4601(1997)29:6<393::AID-KIN1>3.0.CO;2-P
10.1016/B978-012088469-8/50006-1
10.1088/1742-6596/46/1/005
10.1109/MCSE.2007.42
10.1145/1107499.1107503
10.1109/VISUAL.2003.1250362
10.1109/SSDBM.2006.27
10.1109/MCG.2002.999781
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7X8
DOI 10.1109/TVCG.2007.70519
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Technology Research Database

PubMed
Technology Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0506
EndPage 1407
ExternalDocumentID 2332872611
17968090
10_1109_TVCG_2007_70519
4376167
Genre orig-research
Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RZB
TN5
VH1
AAYXX
CITATION
NPM
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7X8
ID FETCH-LOGICAL-c431t-9a2d2f8fe8cc2b1faec583777fc1478ad0ed58e2d903f3b6cf37ed2c00b471963
IEDL.DBID RIE
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000250401100045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1077-2626
IngestDate Wed Oct 01 14:14:53 EDT 2025
Sat Sep 27 17:07:12 EDT 2025
Thu Oct 02 07:47:31 EDT 2025
Sun Nov 30 04:23:50 EST 2025
Mon Jul 21 05:55:30 EDT 2025
Sat Nov 29 06:05:25 EST 2025
Tue Nov 18 21:44:03 EST 2025
Wed Aug 27 02:29:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c431t-9a2d2f8fe8cc2b1faec583777fc1478ad0ed58e2d903f3b6cf37ed2c00b471963
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 17968090
PQID 863925483
PQPubID 23500
PageCount 8
ParticipantIDs ieee_primary_4376167
crossref_citationtrail_10_1109_TVCG_2007_70519
proquest_miscellaneous_68448739
proquest_miscellaneous_34552787
pubmed_primary_17968090
proquest_journals_863925483
crossref_primary_10_1109_TVCG_2007_70519
proquest_miscellaneous_880658722
PublicationCentury 2000
PublicationDate 2007-11-01
PublicationDateYYYYMMDD 2007-11-01
PublicationDate_xml – month: 11
  year: 2007
  text: 2007-11-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on visualization and computer graphics
PublicationTitleAbbrev TVCG
PublicationTitleAlternate IEEE Trans Vis Comput Graph
PublicationYear 2007
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
fua (ref9) 1999
ref12
ref15
ref14
ref11
ref22
ref10
edelsbrunner (ref7) 2004
ref1
ref17
ref19
ref18
becla (ref2) 0
ref4
wu (ref21) 2003
ref3
wong (ref20) 1994
ref6
ref5
st ger (ref16) 0
frenklach (ref8) 1995
References_xml – ident: ref13
  doi: 10.1007/BF01898350
– ident: ref12
  doi: 10.1023/A:1020830525823
– ident: ref14
  doi: 10.1109/TVCG.2006.165
– ident: ref15
  doi: 10.1145/1188455.1188542
– year: 1995
  ident: ref8
  publication-title: Gri-mechan optimized detailed chemical reaction mechanism for methane combustion
– start-page: 3
  year: 1994
  ident: ref20
  publication-title: Scientific Visualization
– start-page: 43
  year: 1999
  ident: ref9
  article-title: Hierarchical parallel coordinates for exploration of large datasets
  publication-title: IEEE Visualization
– ident: ref4
  doi: 10.1016/0021-9991(89)90035-1
– ident: ref17
  doi: 10.1109/VIS.2005.84
– ident: ref3
  doi: 10.1073/pnas.0504140102
– ident: ref5
  doi: 10.1002/(SICI)1097-4601(1997)29:6<393::AID-KIN1>3.0.CO;2-P
– ident: ref22
  doi: 10.1016/B978-012088469-8/50006-1
– year: 0
  ident: ref2
– start-page: 65
  year: 2003
  ident: ref21
  publication-title: Scientific and Statistical Database Management
– start-page: 275
  year: 2004
  ident: ref7
  publication-title: IEEE Visualization
– year: 0
  ident: ref16
– ident: ref6
  doi: 10.1088/1742-6596/46/1/005
– ident: ref1
  doi: 10.1109/MCSE.2007.42
– ident: ref11
  doi: 10.1145/1107499.1107503
– ident: ref19
  doi: 10.1109/VISUAL.2003.1250362
– ident: ref10
  doi: 10.1109/SSDBM.2006.27
– ident: ref18
  doi: 10.1109/MCG.2002.999781
SSID ssj0014489
Score 2.1002812
Snippet Our ability to generate ever-larger, increasingly-complex data, has established the need for scalable methods that identify, and provide insight into,...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1400
SubjectTerms Analytical models
Chemicals
Combustion
Correlation
Data visualization
Distribution functions
Fires
Histograms
Large-scale systems
Mathematical analysis
Mathematical models
Multivariate Data
Performance analysis
Query processing
Query-Driven Visualization
Throughput
Trends
Utilities
Visualization
Title Variable Interactions in Query-Driven Visualization
URI https://ieeexplore.ieee.org/document/4376167
https://www.ncbi.nlm.nih.gov/pubmed/17968090
https://www.proquest.com/docview/863925483
https://www.proquest.com/docview/34552787
https://www.proquest.com/docview/68448739
https://www.proquest.com/docview/880658722
Volume 13
WOSCitedRecordID wos000250401100045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0506
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014489
  issn: 1077-2626
  databaseCode: RIE
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9swDCXaYof10K6fc9t1PuywQ53akmPKxyJbu8MQdEAW5GbYEgUEKJwhTgr035eSXbeH5dCbAdOwTJPSoyg-AnwzIrWp4khVMB6IUqriqDJJHqkqK21V2TKznjL_N47HajbL77fgqq-FISJ_-IwG7tLn8s1Cr91W2XXK3pBkuA3biNjWavUZAw4z8vZ8IUaCUXpH45PE-fVkOrpryQrRARbHE4p5pmI3D79ZjHx3lc1A0y84t_vvG-on2OuAZXjTWsIBbFF9CLtv6AaPQE45MHalUqHfB2xLGppwXod_1rR8in4s3dQXTueNq7Rs6zOP4e_tz8noV9Q1TYg0Y4FVlJfCCKssKa1FldiS9JCDUESrkxRVaWIyQ0XC5LG0ssq0lUhG6DiueJ1idzyBnXpR02cIh9oQaWu1RJNaBgYKhWY8wzNiahKpAxi8aK_QHaO4a2zxUPjIIs4Lp3nX6BILr_kAvvcP_GvJNDaLHjml9mKdPgM4f_k9RedsTaEYZXGcq2QAX_u77CUu9VHWtFg3hUwd05zCzRKZYgtCyS8ON0gol4NmFYgATlvDeP2Izp7O_j_qc_jot4R9CeMF7KyWa_oCH_Tjat4sL9maZ-rSW_MzAgXwLA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xkqAHKM8GSsmhBw4EEtsbO0cEBaouKyptV9yixB5LK6Es2uxW6r9n7ISUA3vgFikTxZnM2N94PN8AfDdMWKEoUmWEByKBZRyVJskiVaaFLUtbpNZT5vflYKAeH7OHJTjramEQ0R8-w3N36XP5ZqLnbqvsQpA3JKlchtWeECxpqrW6nAEFGllzwlBGjHB6S-STxNnFcHR129AVSgdZHFOozFIVu5n4zXLk-6sshpp-ybnZ-thgP8NmCy3Dy8YWtmEJqx349IZwcBf4iEJjVywV-p3ApqihDsdV-HuO03_R9dRNfuFoXLtay6ZCcw_-3PwYXt1FbduESBMamEVZwQyzyqLSmpWJLVD3KAyV0upESFWYGE1PITNZzC0vU225RMN0HJe0UpFD7sNKNanwC4Q9bRC1tZpLIyxBAyWZJkRDc6IwCdcBnL9qL9ctp7hrbfGU-9giznKnedfqUuZe8wGcdg88N3Qai0V3nVI7sVafARy9_p68dbc6V4SzKNJVPICT7i75iUt-FBVO5nXOheOaU3KxRKrIgiSnF4cLJJTLQpMKWAAHjWH8_4jWng7fH_UJrN8N7_t5_-fg1xFs-A1iX9D4FVZm0zkew5r-OxvX02_epl8A-ejyiw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variable+interactions+in+query-driven+visualization&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Gosink%2C+Luke&rft.au=Anderson%2C+John&rft.au=Bethel%2C+Wes&rft.au=Joy%2C+Kenneth&rft.date=2007-11-01&rft.issn=1077-2626&rft.volume=13&rft.issue=6&rft.spage=1400&rft_id=info:doi/10.1109%2FTVCG.2007.70519&rft_id=info%3Apmid%2F17968090&rft.externalDocID=17968090
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon