An adaptive algorithm for anomaly and novelty detection in evolving data streams
In the era of big data, considerable research focus is being put on designing efficient algorithms capable of learning and extracting high-level knowledge from ubiquitous data streams in an online fashion. While, most existing algorithms assume that data samples are drawn from a stationary distribut...
Uložené v:
| Vydané v: | Data mining and knowledge discovery Ročník 32; číslo 6; s. 1597 - 1633 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.11.2018
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1384-5810, 1573-756X, 1573-756X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In the era of big data, considerable research focus is being put on designing efficient algorithms capable of learning and extracting high-level knowledge from ubiquitous data streams in an online fashion. While, most existing algorithms assume that data samples are drawn from a stationary distribution, several complex environments deal with data streams that are subject to change over time. Taking this aspect into consideration is an important step towards building truly aware and intelligent systems. In this paper, we propose GNG-A, an adaptive method for incremental unsupervised learning from evolving data streams experiencing various types of change. The proposed method maintains a continuously updated network (graph) of neurons by extending the
Growing Neural Gas
algorithm with three complementary mechanisms, allowing it to closely track both gradual and sudden changes in the data distribution. First, an adaptation mechanism handles local changes where the distribution is only non-stationary in some regions of the feature space. Second, an adaptive forgetting mechanism identifies and removes neurons that become irrelevant due to the evolving nature of the stream. Finally, a probabilistic evolution mechanism creates new neurons when there is a need to represent data in new regions of the feature space. The proposed method is demonstrated for anomaly and novelty detection in non-stationary environments. Results show that the method handles different data distributions and efficiently reacts to various types of change. |
|---|---|
| AbstractList | In the era of big data, considerable research focus is being put on designing efficient algorithms capable of learning and extracting high-level knowledge from ubiquitous data streams in an online fashion. While, most existing algorithms assume that data samples are drawn from a stationary distribution, several complex environments deal with data streams that are subject to change over time. Taking this aspect into consideration is an important step towards building truly aware and intelligent systems. In this paper, we propose GNG-A, an adaptive method for incremental unsupervised learning from evolving data streams experiencing various types of change. The proposed method maintains a continuously updated network (graph) of neurons by extending the Growing Neural Gas algorithm with three complementary mechanisms, allowing it to closely track both gradual and sudden changes in the data distribution. First, an adaptation mechanism handles local changes where the distribution is only non-stationary in some regions of the feature space. Second, an adaptive forgetting mechanism identifies and removes neurons that become irrelevant due to the evolving nature of the stream. Finally, a probabilistic evolution mechanism creates new neurons when there is a need to represent data in new regions of the feature space. The proposed method is demonstrated for anomaly and novelty detection in non-stationary environments. Results show that the method handles different data distributions and efficiently reacts to various types of change. In the era of big data, considerable research focus is being put on designing efficient algorithms capable of learning and extracting high-level knowledge from ubiquitous data streams in an online fashion. While, most existing algorithms assume that data samples are drawn from a stationary distribution, several complex environments deal with data streams that are subject to change over time. Taking this aspect into consideration is an important step towards building truly aware and intelligent systems. In this paper, we propose GNG-A, an adaptive method for incremental unsupervised learning from evolving data streams experiencing various types of change. The proposed method maintains a continuously updated network (graph) of neurons by extending the Growing Neural Gas algorithm with three complementary mechanisms, allowing it to closely track both gradual and sudden changes in the data distribution. First, an adaptation mechanism handles local changes where the distribution is only non-stationary in some regions of the feature space. Second, an adaptive forgetting mechanism identifies and removes neurons that become irrelevant due to the evolving nature of the stream. Finally, a probabilistic evolution mechanism creates new neurons when there is a need to represent data in new regions of the feature space. The proposed method is demonstrated for anomaly and novelty detection in non-stationary environments. Results show that the method handles different data distributions and efficiently reacts to various types of change. © 2018 The Author(s) In the era of big data, considerable research focus is being put on designing efficient algorithms capable of learning and extracting high-level knowledge from ubiquitous data streams in an online fashion. While, most existing algorithms assume that data samples are drawn from a stationary distribution, several complex environments deal with data streams that are subject to change over time. Taking this aspect into consideration is an important step towards building truly aware and intelligent systems. In this paper, we propose GNG-A, an adaptive method for incremental unsupervised learning from evolving data streams experiencing various types of change. The proposed method maintains a continuously updated network (graph) of neurons by extending the Growing Neural Gas algorithm with three complementary mechanisms, allowing it to closely track both gradual and sudden changes in the data distribution. First, an adaptation mechanism handles local changes where the distribution is only non-stationary in some regions of the feature space. Second, an adaptive forgetting mechanism identifies and removes neurons that become irrelevant due to the evolving nature of the stream. Finally, a probabilistic evolution mechanism creates new neurons when there is a need to represent data in new regions of the feature space. The proposed method is demonstrated for anomaly and novelty detection in non-stationary environments. Results show that the method handles different data distributions and efficiently reacts to various types of change. In the era of big data, considerable research focus is being put on designing efficient algorithms capable of learning and extracting high-level knowledge from ubiquitous data streams in an online fashion. While, most existing algorithms assume that data samples are drawn from a stationary distribution, several complex environments deal with data streams that are subject to change over time. Taking this aspect into consideration is an important step towards building truly aware and intelligent systems. In this paper, we propose GNG-A, an adaptive method for incremental unsupervised learning from evolving data streams experiencing various types of change. The proposed method maintains a continuously updated network (graph) of neurons by extending the Growing Neural Gas algorithm with three complementary mechanisms, allowing it to closely track both gradual and sudden changes in the data distribution. First, an adaptation mechanism handles local changes where the distribution is only non-stationary in some regions of the feature space. Second, an adaptive forgetting mechanism identifies and removes neurons that become irrelevant due to the evolving nature of the stream. Finally, a probabilistic evolution mechanism creates new neurons when there is a need to represent data in new regions of the feature space. The proposed method is demonstrated for anomaly and novelty detection in non-stationary environments. Results show that the method handles different data distributions and efficiently reacts to various types of change. |
| Author | Payberah, Amir H. Nowaczyk, Slawomir Bouguelia, Mohamed-Rafik |
| Author_xml | – sequence: 1 givenname: Mohamed-Rafik orcidid: 0000-0002-2859-6155 surname: Bouguelia fullname: Bouguelia, Mohamed-Rafik email: mohbou@hh.se organization: Center for Applied Intelligent Systems Research, Halmstad University – sequence: 2 givenname: Slawomir surname: Nowaczyk fullname: Nowaczyk, Slawomir organization: Center for Applied Intelligent Systems Research, Halmstad University – sequence: 3 givenname: Amir H. surname: Payberah fullname: Payberah, Amir H. organization: Swedish Institute of Computer Science |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-36752$$DView record from Swedish Publication Index (Högskolan i Halmstad) https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-33882$$DView record from Swedish Publication Index |
| BookMark | eNqNkUGLFDEQhYOs4O7oD_AW8CjtVjpJJ30cVleFBT2oeAvppHomS08yJplZ5t_bzawIguLhUaH4Xqiqd0UuYopIyEsGbxiAui4MOqYbWCQVa-AJuWRS8UbJ7vvF_OZaNFIzeEauSrkHANlyuCSf15Fab_c1HJHaaZNyqNsdHVOmNqadnU5z9TSmI071RD1WdDWkSEOkeEzTMcQN9bZaWmpGuyvPydPRTgVfPNYV-Xr77svNh-bu0_uPN-u7xgnOatMLO8qxB69877wYpEMxDCNI4UYQiBI1G5zQvW6d9KIDz1kv-l61fm4r5Cvy-vxvecD9YTD7HHY2n0yywbwN39Ym5Y3JwXCudft_9HZreKfkQr860_ucfhywVHOfDjnO65gWuNKSd7NWRJ0pl1MpGUfjQrXLcWq2YTIMzBKNOUdjYNEcjYHZyf5w_prnX572cYOZjRvMv2f6u-kn1tijqA |
| CitedBy_id | crossref_primary_10_1016_j_ipm_2023_103532 crossref_primary_10_3390_pr12020251 crossref_primary_10_1109_ACCESS_2020_3010274 crossref_primary_10_1145_3657286 crossref_primary_10_1016_j_eswa_2022_119273 crossref_primary_10_1016_j_measen_2023_101004 crossref_primary_10_1109_ACCESS_2020_2983003 crossref_primary_10_1109_TITS_2022_3233536 crossref_primary_10_1007_s11042_024_20324_6 crossref_primary_10_1111_exsy_12571 crossref_primary_10_3390_app14104139 crossref_primary_10_1016_j_ins_2020_07_010 crossref_primary_10_3390_app10030950 crossref_primary_10_1109_ACCESS_2023_3294096 crossref_primary_10_1016_j_ins_2024_121762 crossref_primary_10_1016_j_knosys_2024_112831 crossref_primary_10_1007_s00500_019_04603_1 crossref_primary_10_1080_1206212X_2025_2449999 crossref_primary_10_1007_s10115_021_01582_4 crossref_primary_10_1007_s10115_023_02018_x crossref_primary_10_1016_j_ins_2024_120933 |
| Cites_doi | 10.1109/TNN.2011.2160459 10.1137/1.9781611974010.98 10.1016/j.neunet.2014.08.014 10.1007/BFb0020222 10.1016/j.neucom.2012.10.003 10.1007/s10618-015-0448-4 10.1016/S0893-6080(02)00078-3 10.1007/s00500-014-1492-5 10.1109/ICSMC.2008.4811799 10.1016/S0168-1699(99)00046-0 10.15265/IYS-2016-s034 10.1109/TKDE.2012.136 10.1109/IJCNN.2005.1556026 10.1162/089976699300016890 10.1007/978-3-540-28645-5_29 10.1080/00031305.1969.10481817 10.1109/ICDM.2010.160 10.1109/NPC.2008.81 10.1145/1557019.1557060 10.1109/IJCNN.2015.7280610 10.1016/j.patrec.2013.02.005 10.1109/ICECENG.2011.6057677 10.1016/S0925-2312(98)00030-7 10.1109/72.238311 10.1016/j.procs.2015.07.322 10.1016/j.engappai.2011.03.002 10.1016/j.procs.2016.05.438 10.1016/B978-012088469-8.50019-X 10.1109/TNNLS.2013.2251352 10.1137/1.9781611972771.42 10.1023/A:1011117102175 10.1016/j.neucom.2007.12.024 10.3182/20130902-3-CN-3020.00044 10.1007/s10115-009-0206-2 10.1109/ICDM.2016.0040 10.1109/ICDM.2008.17 10.1145/2480362.2480516 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2018 Data Mining and Knowledge Discovery is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2018 – notice: Data Mining and Knowledge Discovery is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U AAXBQ ADTPV AOWAS D8T D8Z ZZAVC |
| DOI | 10.1007/s10618-018-0571-0 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic SWEPUB Högskolan i Halmstad full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Högskolan i Halmstad SwePub Articles full text |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics Computer Science |
| EISSN | 1573-756X |
| EndPage | 1633 |
| ExternalDocumentID | oai_DiVA_org_ri_33882 oai_DiVA_org_hh_36752 10_1007_s10618_018_0571_0 |
| GrantInformation_xml | – fundername: Halmstad University |
| GroupedDBID | -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 7WY 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X J-C J0Z J9A JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M2O M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI Q9U AAXBQ ADTPV AOWAS D8T D8Z ZZAVC |
| ID | FETCH-LOGICAL-c431t-94af5f90d7d9cd4b5ce4bbf054cf04ee5e81bc48982c5d460d31949972dbc47e3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000444383000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1384-5810 1573-756X |
| IngestDate | Tue Nov 04 16:19:54 EST 2025 Tue Nov 04 15:53:38 EST 2025 Wed Nov 26 13:41:46 EST 2025 Tue Nov 18 22:24:16 EST 2025 Sat Nov 29 01:44:25 EST 2025 Fri Feb 21 02:33:29 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Non-stationary environments Data stream Growing neural gas Anomaly and novelty detection Change detection |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c431t-94af5f90d7d9cd4b5ce4bbf054cf04ee5e81bc48982c5d460d31949972dbc47e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2859-6155 |
| OpenAccessLink | https://link.springer.com/10.1007/s10618-018-0571-0 |
| PQID | 2037853685 |
| PQPubID | 43030 |
| PageCount | 37 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_ri_33882 swepub_primary_oai_DiVA_org_hh_36752 proquest_journals_2037853685 crossref_citationtrail_10_1007_s10618_018_0571_0 crossref_primary_10_1007_s10618_018_0571_0 springer_journals_10_1007_s10618_018_0571_0 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-11-01 |
| PublicationDateYYYYMMDD | 2018-11-01 |
| PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Data mining and knowledge discovery |
| PublicationTitleAbbrev | Data Min Knowl Disc |
| PublicationYear | 2018 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Gama J, Medas P, Castillo G, Rodrigues P (2004) Learning with drift detection. In: Brazilian symposium on artificial intelligence. Springer, pp 286–295 Frezza-BuetHFollowing non-stationary distributions by controlling the vector quantization accuracy of a growing neural gas networkNeurocomputing2008717–91191120210.1016/j.neucom.2007.12.024 SantoshDHHVenkateshPPoorneshPRaoLNKumarNATracking multiple moving objects using Gaussian mixture modelInt J Soft Comput Eng IJSCE2013321149 MartinetzTMBerkovichSGSchultenKJ’Neural-gas’ network for vector quantization and its application to time-series predictionIEEE Trans Neural Netw19934455856910.1109/72.238311 BrzezinskiDStefanowskiJReacting to different types of concept drift: the accuracy updated ensemble algorithmIEEE Trans Neural Netw Learn Syst2014251819410.1109/TNNLS.2013.2251352 Prudent Y, Ennaji A (2005) An incremental growing neural gas learns topologies. In: IEEE international joint conference on neural networks (IJCNN). IEEE, vol 2, pp 1211–1216 GonçAlvesPMJrDe BarrosRSMRCD: a recurring concept drift frameworkPattern Recogn Lett20133491018102510.1016/j.patrec.2013.02.005 ByttnerSRögnvaldssonTSvenssonMConsensus self-organized models for fault detection (COSMO)Eng Appl Artif Intell201124583383910.1016/j.engappai.2011.03.002 HongSVatsavaiRRSliding window-based probabilistic change detection for remote-sensed imagesProcedia Comput Sci2016802348235210.1016/j.procs.2016.05.438 BlackardJADeanDJComparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variablesComput Electron Agric199924313115110.1016/S0168-1699(99)00046-0 MarslandSShapiroJNehmzowUA self-organising network that grows when requiredNeural Netw2002158–91041105810.1016/S0893-6080(02)00078-3 Harries M, Wales NS (1999) Splice-2 comparative evaluation: electricity pricing. Citeseer KatakisITsoumakasGVlahavasITracking recurring contexts using ensemble classifiers: an application to email filteringKnowl Inf Syst201022337139110.1007/s10115-009-0206-2 WebbGIPazzaniMJBillsusDMachine learning for user modelingUser Model User-Adapt Interact2001111–2192910.1023/A:1011117102175 Bifet A, Pfahringer B, Read J, Holmes G (2013) Efficient data stream classification via probabilistic adaptive windows. In: Proceedings of the 28th annual ACM symposium on applied computing. ACM, pp 801–806 Fan Y, Nowaczyk S, Rögnvaldsson TS (2015b) Incorporating expert knowledge into a self-organized approach for predicting compressor faults in a city bus fleet. In: Scandinavian conference on artificial intelligence (SCAI), pp 58–67 KohonenTThe self-organizing mapNeurocomputing1998211–31610.1016/S0925-2312(98)00030-7 PatelHAThakoreDGMoving object tracking using kalman filterInt J Comput Sci Mob Comput201324326332 Losing V, Hammer B, Wersing H (2016) Knn classifier with self adjusting memory for heterogeneous concept drift. In: IEEE 16th international conference on data mining (ICDM). IEEE, pp 291–300 Fritzke B (1995) A growing neural gas network learns topologies. In: Advances in neural information processing systems (NIPS), pp 625–632 Gama J, Sebastião R, Rodrigues PP (2009) Issues in evaluation of stream learning algorithms. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 329–338 GamaJZliobaiteIBifetAPechenizkiyMBouchachiaAA survey on concept drift adaptationACM Comput Surv CSUR2014464441305.68141 ShenFOuyangQKasaiWHasegawaOA general associative memory based on self-organizing incremental neural networkNeurocomputing2013104577110.1016/j.neucom.2012.10.003 LiKLHuangHKTianSFXuWImproving one-class svm for anomaly detectionIEEE Int Conf Mach Learn Cybern2003530773081 WebbGIHydeRCaoHNguyenHLPetitjeanFCharacterizing concept driftData Min Knowl Disc2016304964994351324810.1007/s10618-015-0448-4 Souza VM, Silva DF, Gama J, Batista GE (2015) Data stream classification guided by clustering on nonstationary environments and extreme verification latency. In: Proceedings of the 2015 SIAM international conference on data mining. SIAM, pp 873–881 Liu FT, Ting KM, Zhou ZH (2008) Isolation forest. In: Eighth IEEE international conference on data mining (ICDM). IEEE, pp 413–422 Jiang D, Liu J, Xu Z, Qin W (2011) Network traffic anomaly detection based on sliding window. In: International conference on electrical and control engineering (ICECE). IEEE, pp 4830–4833 Street WN, Kim Y (2001) A streaming ensemble algorithm (sea) for large-scale classification. In: Proceedings of the seventh ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 377–382 Masud MM, Chen Q, Khan L, Aggarwal C, Gao J, Han J, Thuraisingham B (2010) Addressing concept-evolution in concept-drifting data streams. In: IEEE 10th international conference on data mining (ICDM). IEEE, pp 929–934 Fritzke B (1997) A self-organizing network that can follow non-stationary distributions. In: International conference on artificial neural networks. Springer, pp 613–618 KiferDanielBen-DavidShaiGehrkeJohannesDetecting Change in Data StreamsProceedings 2004 VLDB Conference200418019110.1016/B978-012088469-8.50019-X ZhangLLinJKarimRSliding window-based fault detection from high-dimensional data streamsIEEE Trans Syst Man Cybern2017472289303 Dongre PB, Malik LG (2014) A review on real time data stream classification and adapting to various concept drift scenarios. In: IEEE international advance computing conference (IACC). IEEE, pp 533–537 ElwellRPolikarRIncremental learning of concept drift in nonstationary environmentsIEEE Trans Neural Netw201122101517153110.1109/TNN.2011.2160459 Nishida K, Shimada S, Ishikawa S, Yamauchi K (2008) Detecting sudden concept drift with knowledge of human behavior. In: IEEE international conference on systems, man and cybernetics. IEEE, pp 3261–3267 Losing V, Hammer B, Wersing H (2015) Interactive online learning for obstacle classification on a mobile robot. In: International joint conference on neural networks (IJCNN). IEEE, pp 1–8 Ahmed E, Clark A, Mohay G (2008) A novel sliding window based change detection algorithm for asymmetric traffic. In: IFIP international conference on network and parallel computing. IEEE, pp 168–175 Schölkopf B, Williamson RC, Smola AJ, Shawe-Taylor J, Platt JC (2000) Support vector method for novelty detection. In: Advances in neural information processing systems (NIPS), pp 582–588 Fan Y, Nowaczyk S, Rögnvaldsson TS (2015a) Evaluation of self-organized approach for predicting compressor faults in a city bus fleet. In: INNS conference on big data. Elsevier, pp 447–456 DingZFeiMAn anomaly detection approach based on isolation forest algorithm for streaming data using sliding windowIFAC Proc Vol20134620121710.3182/20130902-3-CN-3020.00044 PentlandALiuAModeling and prediction of human behaviorNeural Comput199911122924210.1162/089976699300016890 GuentherWCShortest confidence intervalsAm Stat19692312225 Bifet A, Gavalda R (2007) Learning from time-changing data with adaptive windowing. In: Proceedings of the 2007 SIAM international conference on data mining. SIAM, pp 443–448 DitzlerGPolikarRIncremental learning of concept drift from streaming imbalanced dataIEEE Trans Knowl Data Eng201325102283230110.1109/TKDE.2012.136 KrawczykBWoźniakMOne-class classifiers with incremental learning and forgetting for data streams with concept driftSoft Comput201519123387340010.1007/s00500-014-1492-5 Frank A, Asuncion A (2010) UCI machine learning repository. http://archive.ics.uci.edu/ml. School of Information and Computer Science, University of California, Irvine, vol 213 Bifet A (2010) Adaptive stream mining: pattern learning and mining from evolving data streams. In: Proceedings of the 2010 conference on adaptive stream mining. IOS Press, pp 1–212 SittigD. F.WrightA.MiddletonB.Clinical Decision Support: a 25 Year Retrospective and a 25 Year VisionYearbook of Medical Informatics201625S 01S103S11610.15265/IYS-2016-s034 ŽliobaitėIndrėPechenizkiyMykolaGamaJoãoAn Overview of Concept Drift ApplicationsStudies in Big Data2015ChamSpringer International Publishing91114 PedregosaFVaroquauxGGramfortAMichelVThirionBGriselOBlondelMPrettenhoferPWeissRDubourgVScikit-learn: machine learning in pythonJ Mach Learn Res201112Oct2825283028543481280.68189 Zeiler MD (2012) Adadelta: an adaptive learning rate method. arXiv:1212.5701 Frezza-BuetHOnline computing of non-stationary distributions velocity fields by an accuracy controlled growing neural gasNeural Netw20146020322110.1016/j.neunet.2014.08.014 Daniel Kifer (571_CR28) 2004 H Frezza-Buet (571_CR16) 2014; 60 F Pedregosa (571_CR41) 2011; 12 A Pentland (571_CR42) 1999; 11 571_CR39 KL Li (571_CR31) 2003; 5 L Zhang (571_CR52) 2017; 47 HA Patel (571_CR40) 2013; 2 571_CR34 G Ditzler (571_CR9) 2013; 25 571_CR37 571_CR43 F Shen (571_CR46) 2013; 104 WC Guenther (571_CR23) 1969; 23 S Hong (571_CR25) 2016; 80 DHH Santosh (571_CR44) 2013; 3 H Frezza-Buet (571_CR15) 2008; 71 571_CR45 571_CR47 571_CR48 571_CR10 I Katakis (571_CR27) 2010; 22 571_CR51 Indrė Žliobaitė (571_CR53) 2015 S Byttner (571_CR7) 2011; 24 R Elwell (571_CR11) 2011; 22 D. F. Sittig (571_CR38) 2016; 25 PM GonçAlves Jr (571_CR22) 2013; 34 GI Webb (571_CR49) 2001; 11 B Krawczyk (571_CR30) 2015; 19 S Marsland (571_CR35) 2002; 15 571_CR17 571_CR18 571_CR12 571_CR13 571_CR14 571_CR2 571_CR1 571_CR20 571_CR21 571_CR4 571_CR3 GI Webb (571_CR50) 2016; 30 T Kohonen (571_CR29) 1998; 21 TM Martinetz (571_CR36) 1993; 4 Z Ding (571_CR8) 2013; 46 571_CR24 J Gama (571_CR19) 2014; 46 571_CR26 571_CR32 D Brzezinski (571_CR6) 2014; 25 571_CR33 JA Blackard (571_CR5) 1999; 24 |
| References_xml | – reference: ShenFOuyangQKasaiWHasegawaOA general associative memory based on self-organizing incremental neural networkNeurocomputing2013104577110.1016/j.neucom.2012.10.003 – reference: BlackardJADeanDJComparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variablesComput Electron Agric199924313115110.1016/S0168-1699(99)00046-0 – reference: GonçAlvesPMJrDe BarrosRSMRCD: a recurring concept drift frameworkPattern Recogn Lett20133491018102510.1016/j.patrec.2013.02.005 – reference: Masud MM, Chen Q, Khan L, Aggarwal C, Gao J, Han J, Thuraisingham B (2010) Addressing concept-evolution in concept-drifting data streams. In: IEEE 10th international conference on data mining (ICDM). IEEE, pp 929–934 – reference: Fan Y, Nowaczyk S, Rögnvaldsson TS (2015a) Evaluation of self-organized approach for predicting compressor faults in a city bus fleet. In: INNS conference on big data. Elsevier, pp 447–456 – reference: Souza VM, Silva DF, Gama J, Batista GE (2015) Data stream classification guided by clustering on nonstationary environments and extreme verification latency. In: Proceedings of the 2015 SIAM international conference on data mining. SIAM, pp 873–881 – reference: Frezza-BuetHFollowing non-stationary distributions by controlling the vector quantization accuracy of a growing neural gas networkNeurocomputing2008717–91191120210.1016/j.neucom.2007.12.024 – reference: Frezza-BuetHOnline computing of non-stationary distributions velocity fields by an accuracy controlled growing neural gasNeural Netw20146020322110.1016/j.neunet.2014.08.014 – reference: PatelHAThakoreDGMoving object tracking using kalman filterInt J Comput Sci Mob Comput201324326332 – reference: MartinetzTMBerkovichSGSchultenKJ’Neural-gas’ network for vector quantization and its application to time-series predictionIEEE Trans Neural Netw19934455856910.1109/72.238311 – reference: Bifet A, Gavalda R (2007) Learning from time-changing data with adaptive windowing. In: Proceedings of the 2007 SIAM international conference on data mining. SIAM, pp 443–448 – reference: Losing V, Hammer B, Wersing H (2016) Knn classifier with self adjusting memory for heterogeneous concept drift. In: IEEE 16th international conference on data mining (ICDM). IEEE, pp 291–300 – reference: WebbGIHydeRCaoHNguyenHLPetitjeanFCharacterizing concept driftData Min Knowl Disc2016304964994351324810.1007/s10618-015-0448-4 – reference: Dongre PB, Malik LG (2014) A review on real time data stream classification and adapting to various concept drift scenarios. In: IEEE international advance computing conference (IACC). IEEE, pp 533–537 – reference: GuentherWCShortest confidence intervalsAm Stat19692312225 – reference: Liu FT, Ting KM, Zhou ZH (2008) Isolation forest. In: Eighth IEEE international conference on data mining (ICDM). IEEE, pp 413–422 – reference: Schölkopf B, Williamson RC, Smola AJ, Shawe-Taylor J, Platt JC (2000) Support vector method for novelty detection. In: Advances in neural information processing systems (NIPS), pp 582–588 – reference: Jiang D, Liu J, Xu Z, Qin W (2011) Network traffic anomaly detection based on sliding window. In: International conference on electrical and control engineering (ICECE). IEEE, pp 4830–4833 – reference: KiferDanielBen-DavidShaiGehrkeJohannesDetecting Change in Data StreamsProceedings 2004 VLDB Conference200418019110.1016/B978-012088469-8.50019-X – reference: PedregosaFVaroquauxGGramfortAMichelVThirionBGriselOBlondelMPrettenhoferPWeissRDubourgVScikit-learn: machine learning in pythonJ Mach Learn Res201112Oct2825283028543481280.68189 – reference: BrzezinskiDStefanowskiJReacting to different types of concept drift: the accuracy updated ensemble algorithmIEEE Trans Neural Netw Learn Syst2014251819410.1109/TNNLS.2013.2251352 – reference: ByttnerSRögnvaldssonTSvenssonMConsensus self-organized models for fault detection (COSMO)Eng Appl Artif Intell201124583383910.1016/j.engappai.2011.03.002 – reference: Fan Y, Nowaczyk S, Rögnvaldsson TS (2015b) Incorporating expert knowledge into a self-organized approach for predicting compressor faults in a city bus fleet. In: Scandinavian conference on artificial intelligence (SCAI), pp 58–67 – reference: SittigD. F.WrightA.MiddletonB.Clinical Decision Support: a 25 Year Retrospective and a 25 Year VisionYearbook of Medical Informatics201625S 01S103S11610.15265/IYS-2016-s034 – reference: Frank A, Asuncion A (2010) UCI machine learning repository. http://archive.ics.uci.edu/ml. School of Information and Computer Science, University of California, Irvine, vol 213 – reference: HongSVatsavaiRRSliding window-based probabilistic change detection for remote-sensed imagesProcedia Comput Sci2016802348235210.1016/j.procs.2016.05.438 – reference: Street WN, Kim Y (2001) A streaming ensemble algorithm (sea) for large-scale classification. In: Proceedings of the seventh ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 377–382 – reference: Losing V, Hammer B, Wersing H (2015) Interactive online learning for obstacle classification on a mobile robot. In: International joint conference on neural networks (IJCNN). IEEE, pp 1–8 – reference: KohonenTThe self-organizing mapNeurocomputing1998211–31610.1016/S0925-2312(98)00030-7 – reference: GamaJZliobaiteIBifetAPechenizkiyMBouchachiaAA survey on concept drift adaptationACM Comput Surv CSUR2014464441305.68141 – reference: LiKLHuangHKTianSFXuWImproving one-class svm for anomaly detectionIEEE Int Conf Mach Learn Cybern2003530773081 – reference: Nishida K, Shimada S, Ishikawa S, Yamauchi K (2008) Detecting sudden concept drift with knowledge of human behavior. In: IEEE international conference on systems, man and cybernetics. IEEE, pp 3261–3267 – reference: WebbGIPazzaniMJBillsusDMachine learning for user modelingUser Model User-Adapt Interact2001111–2192910.1023/A:1011117102175 – reference: PentlandALiuAModeling and prediction of human behaviorNeural Comput199911122924210.1162/089976699300016890 – reference: Bifet A, Pfahringer B, Read J, Holmes G (2013) Efficient data stream classification via probabilistic adaptive windows. In: Proceedings of the 28th annual ACM symposium on applied computing. ACM, pp 801–806 – reference: ŽliobaitėIndrėPechenizkiyMykolaGamaJoãoAn Overview of Concept Drift ApplicationsStudies in Big Data2015ChamSpringer International Publishing91114 – reference: KatakisITsoumakasGVlahavasITracking recurring contexts using ensemble classifiers: an application to email filteringKnowl Inf Syst201022337139110.1007/s10115-009-0206-2 – reference: Zeiler MD (2012) Adadelta: an adaptive learning rate method. arXiv:1212.5701 – reference: Ahmed E, Clark A, Mohay G (2008) A novel sliding window based change detection algorithm for asymmetric traffic. In: IFIP international conference on network and parallel computing. IEEE, pp 168–175 – reference: SantoshDHHVenkateshPPoorneshPRaoLNKumarNATracking multiple moving objects using Gaussian mixture modelInt J Soft Comput Eng IJSCE2013321149 – reference: Fritzke B (1997) A self-organizing network that can follow non-stationary distributions. In: International conference on artificial neural networks. Springer, pp 613–618 – reference: ZhangLLinJKarimRSliding window-based fault detection from high-dimensional data streamsIEEE Trans Syst Man Cybern2017472289303 – reference: Gama J, Medas P, Castillo G, Rodrigues P (2004) Learning with drift detection. In: Brazilian symposium on artificial intelligence. Springer, pp 286–295 – reference: DingZFeiMAn anomaly detection approach based on isolation forest algorithm for streaming data using sliding windowIFAC Proc Vol20134620121710.3182/20130902-3-CN-3020.00044 – reference: Bifet A (2010) Adaptive stream mining: pattern learning and mining from evolving data streams. In: Proceedings of the 2010 conference on adaptive stream mining. IOS Press, pp 1–212 – reference: DitzlerGPolikarRIncremental learning of concept drift from streaming imbalanced dataIEEE Trans Knowl Data Eng201325102283230110.1109/TKDE.2012.136 – reference: ElwellRPolikarRIncremental learning of concept drift in nonstationary environmentsIEEE Trans Neural Netw201122101517153110.1109/TNN.2011.2160459 – reference: Prudent Y, Ennaji A (2005) An incremental growing neural gas learns topologies. In: IEEE international joint conference on neural networks (IJCNN). IEEE, vol 2, pp 1211–1216 – reference: Harries M, Wales NS (1999) Splice-2 comparative evaluation: electricity pricing. Citeseer – reference: KrawczykBWoźniakMOne-class classifiers with incremental learning and forgetting for data streams with concept driftSoft Comput201519123387340010.1007/s00500-014-1492-5 – reference: Fritzke B (1995) A growing neural gas network learns topologies. In: Advances in neural information processing systems (NIPS), pp 625–632 – reference: MarslandSShapiroJNehmzowUA self-organising network that grows when requiredNeural Netw2002158–91041105810.1016/S0893-6080(02)00078-3 – reference: Gama J, Sebastião R, Rodrigues PP (2009) Issues in evaluation of stream learning algorithms. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 329–338 – start-page: 91 volume-title: Studies in Big Data year: 2015 ident: 571_CR53 – ident: 571_CR48 – volume: 22 start-page: 1517 issue: 10 year: 2011 ident: 571_CR11 publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2011.2160459 – ident: 571_CR47 doi: 10.1137/1.9781611974010.98 – volume: 60 start-page: 203 year: 2014 ident: 571_CR16 publication-title: Neural Netw doi: 10.1016/j.neunet.2014.08.014 – ident: 571_CR18 doi: 10.1007/BFb0020222 – volume: 104 start-page: 57 year: 2013 ident: 571_CR46 publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.10.003 – volume: 30 start-page: 964 issue: 4 year: 2016 ident: 571_CR50 publication-title: Data Min Knowl Disc doi: 10.1007/s10618-015-0448-4 – ident: 571_CR2 – ident: 571_CR10 – ident: 571_CR14 – volume: 15 start-page: 1041 issue: 8–9 year: 2002 ident: 571_CR35 publication-title: Neural Netw doi: 10.1016/S0893-6080(02)00078-3 – volume: 19 start-page: 3387 issue: 12 year: 2015 ident: 571_CR30 publication-title: Soft Comput doi: 10.1007/s00500-014-1492-5 – ident: 571_CR39 doi: 10.1109/ICSMC.2008.4811799 – volume: 24 start-page: 131 issue: 3 year: 1999 ident: 571_CR5 publication-title: Comput Electron Agric doi: 10.1016/S0168-1699(99)00046-0 – ident: 571_CR24 – ident: 571_CR45 – volume: 25 start-page: S103 issue: S 01 year: 2016 ident: 571_CR38 publication-title: Yearbook of Medical Informatics doi: 10.15265/IYS-2016-s034 – volume: 25 start-page: 2283 issue: 10 year: 2013 ident: 571_CR9 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2012.136 – ident: 571_CR43 doi: 10.1109/IJCNN.2005.1556026 – volume: 11 start-page: 229 issue: 1 year: 1999 ident: 571_CR42 publication-title: Neural Comput doi: 10.1162/089976699300016890 – ident: 571_CR20 doi: 10.1007/978-3-540-28645-5_29 – ident: 571_CR17 – volume: 23 start-page: 22 issue: 1 year: 1969 ident: 571_CR23 publication-title: Am Stat doi: 10.1080/00031305.1969.10481817 – ident: 571_CR37 doi: 10.1109/ICDM.2010.160 – ident: 571_CR1 doi: 10.1109/NPC.2008.81 – ident: 571_CR21 doi: 10.1145/1557019.1557060 – ident: 571_CR33 doi: 10.1109/IJCNN.2015.7280610 – volume: 3 start-page: 114 issue: 2 year: 2013 ident: 571_CR44 publication-title: Int J Soft Comput Eng IJSCE – volume: 34 start-page: 1018 issue: 9 year: 2013 ident: 571_CR22 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2013.02.005 – ident: 571_CR51 – ident: 571_CR26 doi: 10.1109/ICECENG.2011.6057677 – volume: 21 start-page: 1 issue: 1–3 year: 1998 ident: 571_CR29 publication-title: Neurocomputing doi: 10.1016/S0925-2312(98)00030-7 – volume: 5 start-page: 3077 year: 2003 ident: 571_CR31 publication-title: IEEE Int Conf Mach Learn Cybern – volume: 4 start-page: 558 issue: 4 year: 1993 ident: 571_CR36 publication-title: IEEE Trans Neural Netw doi: 10.1109/72.238311 – volume: 46 start-page: 44 issue: 4 year: 2014 ident: 571_CR19 publication-title: ACM Comput Surv CSUR – volume: 47 start-page: 289 issue: 2 year: 2017 ident: 571_CR52 publication-title: IEEE Trans Syst Man Cybern – ident: 571_CR13 doi: 10.1016/j.procs.2015.07.322 – volume: 24 start-page: 833 issue: 5 year: 2011 ident: 571_CR7 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2011.03.002 – volume: 80 start-page: 2348 year: 2016 ident: 571_CR25 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2016.05.438 – start-page: 180 volume-title: Proceedings 2004 VLDB Conference year: 2004 ident: 571_CR28 doi: 10.1016/B978-012088469-8.50019-X – volume: 25 start-page: 81 issue: 1 year: 2014 ident: 571_CR6 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2013.2251352 – ident: 571_CR3 doi: 10.1137/1.9781611972771.42 – volume: 11 start-page: 19 issue: 1–2 year: 2001 ident: 571_CR49 publication-title: User Model User-Adapt Interact doi: 10.1023/A:1011117102175 – volume: 2 start-page: 326 issue: 4 year: 2013 ident: 571_CR40 publication-title: Int J Comput Sci Mob Comput – volume: 71 start-page: 1191 issue: 7–9 year: 2008 ident: 571_CR15 publication-title: Neurocomputing doi: 10.1016/j.neucom.2007.12.024 – volume: 46 start-page: 12 issue: 20 year: 2013 ident: 571_CR8 publication-title: IFAC Proc Vol doi: 10.3182/20130902-3-CN-3020.00044 – volume: 22 start-page: 371 issue: 3 year: 2010 ident: 571_CR27 publication-title: Knowl Inf Syst doi: 10.1007/s10115-009-0206-2 – ident: 571_CR34 doi: 10.1109/ICDM.2016.0040 – ident: 571_CR12 doi: 10.1016/j.procs.2015.07.322 – volume: 12 start-page: 2825 issue: Oct year: 2011 ident: 571_CR41 publication-title: J Mach Learn Res – ident: 571_CR32 doi: 10.1109/ICDM.2008.17 – ident: 571_CR4 doi: 10.1145/2480362.2480516 |
| SSID | ssj0005230 |
| Score | 2.3690867 |
| Snippet | In the era of big data, considerable research focus is being put on designing efficient algorithms capable of learning and extracting high-level knowledge from... |
| SourceID | swepub proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1597 |
| SubjectTerms | Adaptive algorithms Adaptive systems Algorithms Anomaly and novelty detection Artificial Intelligence Big data Change detection Chemistry and Earth Sciences Computer Science Data management Data mining Data Mining and Knowledge Discovery Data stream Data transmission Evolution Growing neural gas Information Storage and Retrieval Intelligent systems Machine learning Neurons Non-stationary environment Non-stationary environments Novelty detection Physics Statistics for Engineering |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBZt2kMuTZs2ZJO06JBTisCWJVs-hSVtKBRCDm3JTcjSOLuwa2923YX8-8z4sZv2sD30IAy2LAvPaOYbaR6MnaPGkxIkCIp0FKrUUhQu1QKxK-obZ3wR-bbYRHZzY-7u8tt-w23Vu1UOMrEV1KH2tEeORnqSoWpJjb5cPAiqGkWnq30JjZfsVSxlTHz-PRPPXDySLkrYKKFNvDnV7ELn0pjcuLDpDC3qP_XSFmxuzkf_yiXa6p_rg_-d-Vv2pkeefNyxyjv2AqpDdjBUdeD9In_PbscVd8EtSA5yN7vHoZrJnCO45a6q5272iNfAq3oNs-aRB2hab66KTysOKOxoh4KT4ymnOBQ3X31gP6-__rj6Jvq6C8IjnGhErlypyzwKWch9UIX2oIqiRHDny0gBaECs65XJjfQ6qDQKuI4VReAGvJ1BcsT2qrqCY8bB6RggNj7OQHmX5qYgzpB5UM47LUcsGv669X1ScqqNMbPbdMpEKBtRQ0LZaMQuNq8suowcuzqfDTSx_eJc2S1BRuzzQN7t4x2DnXccsPku5eb-Mv01tvXy3k4mNkHzS_6j23JqkwTtmpPdUztl-5K4sw17PGN7zfI3fGSv_bqZrpafWj5_AvhWA9E priority: 102 providerName: ProQuest |
| Title | An adaptive algorithm for anomaly and novelty detection in evolving data streams |
| URI | https://link.springer.com/article/10.1007/s10618-018-0571-0 https://www.proquest.com/docview/2037853685 https://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-36752 https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-33882 |
| Volume | 32 |
| WOSCitedRecordID | wos000444383000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-756X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005230 issn: 1384-5810 databaseCode: RSV dateStart: 19970301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH9iG0hcNhggOkblw04gS4ljJ86xjE1IiFINGIOL5djOGqlNpiRM2n_Pc5q0A6EhONhREn9E9nt-P8fvA-AIJR5jjjnqLR0pzwWjmY4FReyK8kZLkwWmCzaRTKfy4iKd9XbczaDtPhxJdiv1LWO3OPSKV5hEgnvgLdhBaSc9N559Or-l1xGtTIMlp0KG66PMPzXxqzDaIMz1oehvDkQ7oXO691-f-wh2e4xJJiuieAz3XLkPe0P8BtKz8z486NQ_TfMEZpOSaKuv_NpH9OKyqot2viQIaIkuq6Ve3ODVkrK6dov2hljXdhpcJSlK4nCB838liFc2Jd72RC-bp_Dl9OTz8Tvax1qgBiFES1Ouc5GngU1saizPhHE8y3IEdCYPuHPCIb41XKaSGWF5HFjkXe6tbi0-Tlz0DLbLqnTPgTgtQudCacLEcaPjVGaeGlhquTZasBEEw6Ar0zsi9_EwFmrjQtmPnQp8wrFTwQheratcrbxw3FX4cJhJ1TNko1gQJYhMYilG8HqYsM3rOxo7WhHAul_vj_ttcT5RVX2p5nMV4ZaL_aVYXagowr3MwT_1_QIeMk8_neXjIWy39Q_3Eu6b67Zo6jFsJV-_jWHnzcl0doZ37xOK-Yfg2OfsI-Yz8X3c8cZPKrkCpA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Lb9MwGP80BhK7MJ6iYwMfxgVkKXHsxDmgqdqYNm1UOwy0m3FsZ63UJl2bDfWf4m_kcx4tcCinHThYkRInceLf97K_B8A-SjzGHHPURzpSngtGMx0LiroryhstTRaYuthEMhjIq6v0YgN-drEw3q2y44k1o7al8WvkaKRHCYqWWIqD6Q31VaP87mpXQqOBxZlb_ECTbf7p9Ajn9z1jx58vD09oW1WAGhSWFU25zkWeBjaxqbE8E8bxLMtRdTF5wJ0TDjU5w2UqmRGWx4FFlHIfX2rxdOIifO4DeMg5koN3FQwOf3MpiZqoZMmpkOFyF7UJ1YtD7zaGTSRowf8pB1fK7XI_9q_cpbW8O97-3_7UU3jSatak35DCM9hwxXPY7qpWkJaJvYCLfkG01VPP54keX-PQq-GEoPJOdFFO9HiBR0uK8s6NqwWxrqq91QoyKohDZu5XYIh3rCU-zkZP5i_h67181yvYLMrCvQbitAidC6UJE8eNjlOZeeSz1HJttGA9CLpZVqZNuu5rf4zVKl20B4YKfENgqKAHH5a3TJuMI-s673YYUC3zmasVAHrwsYPT6vKah-03iFu-1-cePxp966tydq2GQxWhecn-0W02UlGEdtvO-qG9g8cnl1_O1fnp4OwNbDFPGXWI5y5sVrNbtwePzF01ms_e1jRG4Pt9Q_UXylFifg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Lb9MwGP80BkJcGE_RMcCHcQFZJI6dOAeEKkrFVFT1AGg349jOWqlNSpsN9V_jr-NzHi1wKKcdOFiREidx4t_3sr8HwClKPMYcc9RHOlKeC0YzHQuKuivKGy1NFpi62EQyHsvz83RyAD-7WBjvVtnxxJpR29L4NXI00qMERUssxZu8dYuYDIbvlt-pryDld1q7choNREZu8wPNt_XbswHO9UvGhh8-v_9I2woD1KDgrGjKdS7yNLCJTY3lmTCOZ1mOaozJA-6ccKjVGS5TyYywPA4sIpb7WFOLpxMX4XNvwE2UwsLT2Cihv7mXRE2EsuRUyHC7o9qE7cWhdyHDJhK05v-UiTtFd7s3-1ce01r2DY_-5792D-62GjfpNyRyHw5c8QCOumoWpGVuD2HSL4i2eun5P9HzCxx6NV0QVOqJLsqFnm_waElRXrl5tSHWVbUXW0FmBXHI5P3KDPEOt8TH3-jF-hF8uZbvegyHRVm4J0CcFqFzoTRh4rjRcSozTxEstVwbLVgPgm7GlWmTsfuaIHO1SyPtQaIC3xAkKujBq-0tyyYTyb7OJx0eVMuU1moHhh687qC1u7znYacN-rbv9TnJB7OvfVWuLtR0qiI0O9k_uq1mKorQnjveP7QXcBsRqj6djUdP4Q7zRFJHfp7AYbW6dM_glrmqZuvV85rcCHy7bqT-Aj5dayQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+adaptive+algorithm+for+anomaly+and+novelty+detection+in+evolving+data+streams&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Bouguelia%2C+Mohamed-Rafik&rft.au=Nowaczyk%2C+Slawomir&rft.au=Payberah%2C+Amir&rft.date=2018-11-01&rft.issn=1384-5810&rft.volume=32&rft.issue=6&rft.spage=1597&rft_id=info:doi/10.1007%2Fs10618-018-0571-0&rft.externalDocID=oai_DiVA_org_ri_33882 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon |