An adaptive algorithm for anomaly and novelty detection in evolving data streams

In the era of big data, considerable research focus is being put on designing efficient algorithms capable of learning and extracting high-level knowledge from ubiquitous data streams in an online fashion. While, most existing algorithms assume that data samples are drawn from a stationary distribut...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Data mining and knowledge discovery Ročník 32; číslo 6; s. 1597 - 1633
Hlavní autori: Bouguelia, Mohamed-Rafik, Nowaczyk, Slawomir, Payberah, Amir H.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.11.2018
Springer Nature B.V
Predmet:
ISSN:1384-5810, 1573-756X, 1573-756X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In the era of big data, considerable research focus is being put on designing efficient algorithms capable of learning and extracting high-level knowledge from ubiquitous data streams in an online fashion. While, most existing algorithms assume that data samples are drawn from a stationary distribution, several complex environments deal with data streams that are subject to change over time. Taking this aspect into consideration is an important step towards building truly aware and intelligent systems. In this paper, we propose GNG-A, an adaptive method for incremental unsupervised learning from evolving data streams experiencing various types of change. The proposed method maintains a continuously updated network (graph) of neurons by extending the Growing Neural Gas algorithm with three complementary mechanisms, allowing it to closely track both gradual and sudden changes in the data distribution. First, an adaptation mechanism handles local changes where the distribution is only non-stationary in some regions of the feature space. Second, an adaptive forgetting mechanism identifies and removes neurons that become irrelevant due to the evolving nature of the stream. Finally, a probabilistic evolution mechanism creates new neurons when there is a need to represent data in new regions of the feature space. The proposed method is demonstrated for anomaly and novelty detection in non-stationary environments. Results show that the method handles different data distributions and efficiently reacts to various types of change.
AbstractList In the era of big data, considerable research focus is being put on designing efficient algorithms capable of learning and extracting high-level knowledge from ubiquitous data streams in an online fashion. While, most existing algorithms assume that data samples are drawn from a stationary distribution, several complex environments deal with data streams that are subject to change over time. Taking this aspect into consideration is an important step towards building truly aware and intelligent systems. In this paper, we propose GNG-A, an adaptive method for incremental unsupervised learning from evolving data streams experiencing various types of change. The proposed method maintains a continuously updated network (graph) of neurons by extending the Growing Neural Gas algorithm with three complementary mechanisms, allowing it to closely track both gradual and sudden changes in the data distribution. First, an adaptation mechanism handles local changes where the distribution is only non-stationary in some regions of the feature space. Second, an adaptive forgetting mechanism identifies and removes neurons that become irrelevant due to the evolving nature of the stream. Finally, a probabilistic evolution mechanism creates new neurons when there is a need to represent data in new regions of the feature space. The proposed method is demonstrated for anomaly and novelty detection in non-stationary environments. Results show that the method handles different data distributions and efficiently reacts to various types of change. 
In the era of big data, considerable research focus is being put on designing efficient algorithms capable of learning and extracting high-level knowledge from ubiquitous data streams in an online fashion. While, most existing algorithms assume that data samples are drawn from a stationary distribution, several complex environments deal with data streams that are subject to change over time. Taking this aspect into consideration is an important step towards building truly aware and intelligent systems. In this paper, we propose GNG-A, an adaptive method for incremental unsupervised learning from evolving data streams experiencing various types of change. The proposed method maintains a continuously updated network (graph) of neurons by extending the Growing Neural Gas algorithm with three complementary mechanisms, allowing it to closely track both gradual and sudden changes in the data distribution. First, an adaptation mechanism handles local changes where the distribution is only non-stationary in some regions of the feature space. Second, an adaptive forgetting mechanism identifies and removes neurons that become irrelevant due to the evolving nature of the stream. Finally, a probabilistic evolution mechanism creates new neurons when there is a need to represent data in new regions of the feature space. The proposed method is demonstrated for anomaly and novelty detection in non-stationary environments. Results show that the method handles different data distributions and efficiently reacts to various types of change. © 2018 The Author(s)
In the era of big data, considerable research focus is being put on designing efficient algorithms capable of learning and extracting high-level knowledge from ubiquitous data streams in an online fashion. While, most existing algorithms assume that data samples are drawn from a stationary distribution, several complex environments deal with data streams that are subject to change over time. Taking this aspect into consideration is an important step towards building truly aware and intelligent systems. In this paper, we propose GNG-A, an adaptive method for incremental unsupervised learning from evolving data streams experiencing various types of change. The proposed method maintains a continuously updated network (graph) of neurons by extending the Growing Neural Gas algorithm with three complementary mechanisms, allowing it to closely track both gradual and sudden changes in the data distribution. First, an adaptation mechanism handles local changes where the distribution is only non-stationary in some regions of the feature space. Second, an adaptive forgetting mechanism identifies and removes neurons that become irrelevant due to the evolving nature of the stream. Finally, a probabilistic evolution mechanism creates new neurons when there is a need to represent data in new regions of the feature space. The proposed method is demonstrated for anomaly and novelty detection in non-stationary environments. Results show that the method handles different data distributions and efficiently reacts to various types of change.
In the era of big data, considerable research focus is being put on designing efficient algorithms capable of learning and extracting high-level knowledge from ubiquitous data streams in an online fashion. While, most existing algorithms assume that data samples are drawn from a stationary distribution, several complex environments deal with data streams that are subject to change over time. Taking this aspect into consideration is an important step towards building truly aware and intelligent systems. In this paper, we propose GNG-A, an adaptive method for incremental unsupervised learning from evolving data streams experiencing various types of change. The proposed method maintains a continuously updated network (graph) of neurons by extending the Growing Neural Gas algorithm with three complementary mechanisms, allowing it to closely track both gradual and sudden changes in the data distribution. First, an adaptation mechanism handles local changes where the distribution is only non-stationary in some regions of the feature space. Second, an adaptive forgetting mechanism identifies and removes neurons that become irrelevant due to the evolving nature of the stream. Finally, a probabilistic evolution mechanism creates new neurons when there is a need to represent data in new regions of the feature space. The proposed method is demonstrated for anomaly and novelty detection in non-stationary environments. Results show that the method handles different data distributions and efficiently reacts to various types of change.
Author Payberah, Amir H.
Nowaczyk, Slawomir
Bouguelia, Mohamed-Rafik
Author_xml – sequence: 1
  givenname: Mohamed-Rafik
  orcidid: 0000-0002-2859-6155
  surname: Bouguelia
  fullname: Bouguelia, Mohamed-Rafik
  email: mohbou@hh.se
  organization: Center for Applied Intelligent Systems Research, Halmstad University
– sequence: 2
  givenname: Slawomir
  surname: Nowaczyk
  fullname: Nowaczyk, Slawomir
  organization: Center for Applied Intelligent Systems Research, Halmstad University
– sequence: 3
  givenname: Amir H.
  surname: Payberah
  fullname: Payberah, Amir H.
  organization: Swedish Institute of Computer Science
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-36752$$DView record from Swedish Publication Index (Högskolan i Halmstad)
https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-33882$$DView record from Swedish Publication Index
BookMark eNqNkUGLFDEQhYOs4O7oD_AW8CjtVjpJJ30cVleFBT2oeAvppHomS08yJplZ5t_bzawIguLhUaH4Xqiqd0UuYopIyEsGbxiAui4MOqYbWCQVa-AJuWRS8UbJ7vvF_OZaNFIzeEauSrkHANlyuCSf15Fab_c1HJHaaZNyqNsdHVOmNqadnU5z9TSmI071RD1WdDWkSEOkeEzTMcQN9bZaWmpGuyvPydPRTgVfPNYV-Xr77svNh-bu0_uPN-u7xgnOatMLO8qxB69877wYpEMxDCNI4UYQiBI1G5zQvW6d9KIDz1kv-l61fm4r5Cvy-vxvecD9YTD7HHY2n0yywbwN39Ym5Y3JwXCudft_9HZreKfkQr860_ucfhywVHOfDjnO65gWuNKSd7NWRJ0pl1MpGUfjQrXLcWq2YTIMzBKNOUdjYNEcjYHZyf5w_prnX572cYOZjRvMv2f6u-kn1tijqA
CitedBy_id crossref_primary_10_1016_j_ipm_2023_103532
crossref_primary_10_3390_pr12020251
crossref_primary_10_1109_ACCESS_2020_3010274
crossref_primary_10_1145_3657286
crossref_primary_10_1016_j_eswa_2022_119273
crossref_primary_10_1016_j_measen_2023_101004
crossref_primary_10_1109_ACCESS_2020_2983003
crossref_primary_10_1109_TITS_2022_3233536
crossref_primary_10_1007_s11042_024_20324_6
crossref_primary_10_1111_exsy_12571
crossref_primary_10_3390_app14104139
crossref_primary_10_1016_j_ins_2020_07_010
crossref_primary_10_3390_app10030950
crossref_primary_10_1109_ACCESS_2023_3294096
crossref_primary_10_1016_j_ins_2024_121762
crossref_primary_10_1016_j_knosys_2024_112831
crossref_primary_10_1007_s00500_019_04603_1
crossref_primary_10_1080_1206212X_2025_2449999
crossref_primary_10_1007_s10115_021_01582_4
crossref_primary_10_1007_s10115_023_02018_x
crossref_primary_10_1016_j_ins_2024_120933
Cites_doi 10.1109/TNN.2011.2160459
10.1137/1.9781611974010.98
10.1016/j.neunet.2014.08.014
10.1007/BFb0020222
10.1016/j.neucom.2012.10.003
10.1007/s10618-015-0448-4
10.1016/S0893-6080(02)00078-3
10.1007/s00500-014-1492-5
10.1109/ICSMC.2008.4811799
10.1016/S0168-1699(99)00046-0
10.15265/IYS-2016-s034
10.1109/TKDE.2012.136
10.1109/IJCNN.2005.1556026
10.1162/089976699300016890
10.1007/978-3-540-28645-5_29
10.1080/00031305.1969.10481817
10.1109/ICDM.2010.160
10.1109/NPC.2008.81
10.1145/1557019.1557060
10.1109/IJCNN.2015.7280610
10.1016/j.patrec.2013.02.005
10.1109/ICECENG.2011.6057677
10.1016/S0925-2312(98)00030-7
10.1109/72.238311
10.1016/j.procs.2015.07.322
10.1016/j.engappai.2011.03.002
10.1016/j.procs.2016.05.438
10.1016/B978-012088469-8.50019-X
10.1109/TNNLS.2013.2251352
10.1137/1.9781611972771.42
10.1023/A:1011117102175
10.1016/j.neucom.2007.12.024
10.3182/20130902-3-CN-3020.00044
10.1007/s10115-009-0206-2
10.1109/ICDM.2016.0040
10.1109/ICDM.2008.17
10.1145/2480362.2480516
ContentType Journal Article
Copyright The Author(s) 2018
Data Mining and Knowledge Discovery is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2018
– notice: Data Mining and Knowledge Discovery is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
AAXBQ
ADTPV
AOWAS
D8T
D8Z
ZZAVC
DOI 10.1007/s10618-018-0571-0
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
SWEPUB Högskolan i Halmstad full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Högskolan i Halmstad
SwePub Articles full text
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList


ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
EISSN 1573-756X
EndPage 1633
ExternalDocumentID oai_DiVA_org_ri_33882
oai_DiVA_org_hh_36752
10_1007_s10618_018_0571_0
GrantInformation_xml – fundername: Halmstad University
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
7WY
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
AAXBQ
ADTPV
AOWAS
D8T
D8Z
ZZAVC
ID FETCH-LOGICAL-c431t-94af5f90d7d9cd4b5ce4bbf054cf04ee5e81bc48982c5d460d31949972dbc47e3
IEDL.DBID RSV
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000444383000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1384-5810
1573-756X
IngestDate Tue Nov 04 16:19:54 EST 2025
Tue Nov 04 15:53:38 EST 2025
Wed Nov 26 13:41:46 EST 2025
Tue Nov 18 22:24:16 EST 2025
Sat Nov 29 01:44:25 EST 2025
Fri Feb 21 02:33:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Non-stationary environments
Data stream
Growing neural gas
Anomaly and novelty detection
Change detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c431t-94af5f90d7d9cd4b5ce4bbf054cf04ee5e81bc48982c5d460d31949972dbc47e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2859-6155
OpenAccessLink https://link.springer.com/10.1007/s10618-018-0571-0
PQID 2037853685
PQPubID 43030
PageCount 37
ParticipantIDs swepub_primary_oai_DiVA_org_ri_33882
swepub_primary_oai_DiVA_org_hh_36752
proquest_journals_2037853685
crossref_citationtrail_10_1007_s10618_018_0571_0
crossref_primary_10_1007_s10618_018_0571_0
springer_journals_10_1007_s10618_018_0571_0
PublicationCentury 2000
PublicationDate 2018-11-01
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Data mining and knowledge discovery
PublicationTitleAbbrev Data Min Knowl Disc
PublicationYear 2018
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Gama J, Medas P, Castillo G, Rodrigues P (2004) Learning with drift detection. In: Brazilian symposium on artificial intelligence. Springer, pp 286–295
Frezza-BuetHFollowing non-stationary distributions by controlling the vector quantization accuracy of a growing neural gas networkNeurocomputing2008717–91191120210.1016/j.neucom.2007.12.024
SantoshDHHVenkateshPPoorneshPRaoLNKumarNATracking multiple moving objects using Gaussian mixture modelInt J Soft Comput Eng IJSCE2013321149
MartinetzTMBerkovichSGSchultenKJ’Neural-gas’ network for vector quantization and its application to time-series predictionIEEE Trans Neural Netw19934455856910.1109/72.238311
BrzezinskiDStefanowskiJReacting to different types of concept drift: the accuracy updated ensemble algorithmIEEE Trans Neural Netw Learn Syst2014251819410.1109/TNNLS.2013.2251352
Prudent Y, Ennaji A (2005) An incremental growing neural gas learns topologies. In: IEEE international joint conference on neural networks (IJCNN). IEEE, vol 2, pp 1211–1216
GonçAlvesPMJrDe BarrosRSMRCD: a recurring concept drift frameworkPattern Recogn Lett20133491018102510.1016/j.patrec.2013.02.005
ByttnerSRögnvaldssonTSvenssonMConsensus self-organized models for fault detection (COSMO)Eng Appl Artif Intell201124583383910.1016/j.engappai.2011.03.002
HongSVatsavaiRRSliding window-based probabilistic change detection for remote-sensed imagesProcedia Comput Sci2016802348235210.1016/j.procs.2016.05.438
BlackardJADeanDJComparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variablesComput Electron Agric199924313115110.1016/S0168-1699(99)00046-0
MarslandSShapiroJNehmzowUA self-organising network that grows when requiredNeural Netw2002158–91041105810.1016/S0893-6080(02)00078-3
Harries M, Wales NS (1999) Splice-2 comparative evaluation: electricity pricing. Citeseer
KatakisITsoumakasGVlahavasITracking recurring contexts using ensemble classifiers: an application to email filteringKnowl Inf Syst201022337139110.1007/s10115-009-0206-2
WebbGIPazzaniMJBillsusDMachine learning for user modelingUser Model User-Adapt Interact2001111–2192910.1023/A:1011117102175
Bifet A, Pfahringer B, Read J, Holmes G (2013) Efficient data stream classification via probabilistic adaptive windows. In: Proceedings of the 28th annual ACM symposium on applied computing. ACM, pp 801–806
Fan Y, Nowaczyk S, Rögnvaldsson TS (2015b) Incorporating expert knowledge into a self-organized approach for predicting compressor faults in a city bus fleet. In: Scandinavian conference on artificial intelligence (SCAI), pp 58–67
KohonenTThe self-organizing mapNeurocomputing1998211–31610.1016/S0925-2312(98)00030-7
PatelHAThakoreDGMoving object tracking using kalman filterInt J Comput Sci Mob Comput201324326332
Losing V, Hammer B, Wersing H (2016) Knn classifier with self adjusting memory for heterogeneous concept drift. In: IEEE 16th international conference on data mining (ICDM). IEEE, pp 291–300
Fritzke B (1995) A growing neural gas network learns topologies. In: Advances in neural information processing systems (NIPS), pp 625–632
Gama J, Sebastião R, Rodrigues PP (2009) Issues in evaluation of stream learning algorithms. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 329–338
GamaJZliobaiteIBifetAPechenizkiyMBouchachiaAA survey on concept drift adaptationACM Comput Surv CSUR2014464441305.68141
ShenFOuyangQKasaiWHasegawaOA general associative memory based on self-organizing incremental neural networkNeurocomputing2013104577110.1016/j.neucom.2012.10.003
LiKLHuangHKTianSFXuWImproving one-class svm for anomaly detectionIEEE Int Conf Mach Learn Cybern2003530773081
WebbGIHydeRCaoHNguyenHLPetitjeanFCharacterizing concept driftData Min Knowl Disc2016304964994351324810.1007/s10618-015-0448-4
Souza VM, Silva DF, Gama J, Batista GE (2015) Data stream classification guided by clustering on nonstationary environments and extreme verification latency. In: Proceedings of the 2015 SIAM international conference on data mining. SIAM, pp 873–881
Liu FT, Ting KM, Zhou ZH (2008) Isolation forest. In: Eighth IEEE international conference on data mining (ICDM). IEEE, pp 413–422
Jiang D, Liu J, Xu Z, Qin W (2011) Network traffic anomaly detection based on sliding window. In: International conference on electrical and control engineering (ICECE). IEEE, pp 4830–4833
Street WN, Kim Y (2001) A streaming ensemble algorithm (sea) for large-scale classification. In: Proceedings of the seventh ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 377–382
Masud MM, Chen Q, Khan L, Aggarwal C, Gao J, Han J, Thuraisingham B (2010) Addressing concept-evolution in concept-drifting data streams. In: IEEE 10th international conference on data mining (ICDM). IEEE, pp 929–934
Fritzke B (1997) A self-organizing network that can follow non-stationary distributions. In: International conference on artificial neural networks. Springer, pp 613–618
KiferDanielBen-DavidShaiGehrkeJohannesDetecting Change in Data StreamsProceedings 2004 VLDB Conference200418019110.1016/B978-012088469-8.50019-X
ZhangLLinJKarimRSliding window-based fault detection from high-dimensional data streamsIEEE Trans Syst Man Cybern2017472289303
Dongre PB, Malik LG (2014) A review on real time data stream classification and adapting to various concept drift scenarios. In: IEEE international advance computing conference (IACC). IEEE, pp 533–537
ElwellRPolikarRIncremental learning of concept drift in nonstationary environmentsIEEE Trans Neural Netw201122101517153110.1109/TNN.2011.2160459
Nishida K, Shimada S, Ishikawa S, Yamauchi K (2008) Detecting sudden concept drift with knowledge of human behavior. In: IEEE international conference on systems, man and cybernetics. IEEE, pp 3261–3267
Losing V, Hammer B, Wersing H (2015) Interactive online learning for obstacle classification on a mobile robot. In: International joint conference on neural networks (IJCNN). IEEE, pp 1–8
Ahmed E, Clark A, Mohay G (2008) A novel sliding window based change detection algorithm for asymmetric traffic. In: IFIP international conference on network and parallel computing. IEEE, pp 168–175
Schölkopf B, Williamson RC, Smola AJ, Shawe-Taylor J, Platt JC (2000) Support vector method for novelty detection. In: Advances in neural information processing systems (NIPS), pp 582–588
Fan Y, Nowaczyk S, Rögnvaldsson TS (2015a) Evaluation of self-organized approach for predicting compressor faults in a city bus fleet. In: INNS conference on big data. Elsevier, pp 447–456
DingZFeiMAn anomaly detection approach based on isolation forest algorithm for streaming data using sliding windowIFAC Proc Vol20134620121710.3182/20130902-3-CN-3020.00044
PentlandALiuAModeling and prediction of human behaviorNeural Comput199911122924210.1162/089976699300016890
GuentherWCShortest confidence intervalsAm Stat19692312225
Bifet A, Gavalda R (2007) Learning from time-changing data with adaptive windowing. In: Proceedings of the 2007 SIAM international conference on data mining. SIAM, pp 443–448
DitzlerGPolikarRIncremental learning of concept drift from streaming imbalanced dataIEEE Trans Knowl Data Eng201325102283230110.1109/TKDE.2012.136
KrawczykBWoźniakMOne-class classifiers with incremental learning and forgetting for data streams with concept driftSoft Comput201519123387340010.1007/s00500-014-1492-5
Frank A, Asuncion A (2010) UCI machine learning repository. http://archive.ics.uci.edu/ml. School of Information and Computer Science, University of California, Irvine, vol 213
Bifet A (2010) Adaptive stream mining: pattern learning and mining from evolving data streams. In: Proceedings of the 2010 conference on adaptive stream mining. IOS Press, pp 1–212
SittigD. F.WrightA.MiddletonB.Clinical Decision Support: a 25 Year Retrospective and a 25 Year VisionYearbook of Medical Informatics201625S 01S103S11610.15265/IYS-2016-s034
ŽliobaitėIndrėPechenizkiyMykolaGamaJoãoAn Overview of Concept Drift ApplicationsStudies in Big Data2015ChamSpringer International Publishing91114
PedregosaFVaroquauxGGramfortAMichelVThirionBGriselOBlondelMPrettenhoferPWeissRDubourgVScikit-learn: machine learning in pythonJ Mach Learn Res201112Oct2825283028543481280.68189
Zeiler MD (2012) Adadelta: an adaptive learning rate method. arXiv:1212.5701
Frezza-BuetHOnline computing of non-stationary distributions velocity fields by an accuracy controlled growing neural gasNeural Netw20146020322110.1016/j.neunet.2014.08.014
Daniel Kifer (571_CR28) 2004
H Frezza-Buet (571_CR16) 2014; 60
F Pedregosa (571_CR41) 2011; 12
A Pentland (571_CR42) 1999; 11
571_CR39
KL Li (571_CR31) 2003; 5
L Zhang (571_CR52) 2017; 47
HA Patel (571_CR40) 2013; 2
571_CR34
G Ditzler (571_CR9) 2013; 25
571_CR37
571_CR43
F Shen (571_CR46) 2013; 104
WC Guenther (571_CR23) 1969; 23
S Hong (571_CR25) 2016; 80
DHH Santosh (571_CR44) 2013; 3
H Frezza-Buet (571_CR15) 2008; 71
571_CR45
571_CR47
571_CR48
571_CR10
I Katakis (571_CR27) 2010; 22
571_CR51
Indrė Žliobaitė (571_CR53) 2015
S Byttner (571_CR7) 2011; 24
R Elwell (571_CR11) 2011; 22
D. F. Sittig (571_CR38) 2016; 25
PM GonçAlves Jr (571_CR22) 2013; 34
GI Webb (571_CR49) 2001; 11
B Krawczyk (571_CR30) 2015; 19
S Marsland (571_CR35) 2002; 15
571_CR17
571_CR18
571_CR12
571_CR13
571_CR14
571_CR2
571_CR1
571_CR20
571_CR21
571_CR4
571_CR3
GI Webb (571_CR50) 2016; 30
T Kohonen (571_CR29) 1998; 21
TM Martinetz (571_CR36) 1993; 4
Z Ding (571_CR8) 2013; 46
571_CR24
J Gama (571_CR19) 2014; 46
571_CR26
571_CR32
D Brzezinski (571_CR6) 2014; 25
571_CR33
JA Blackard (571_CR5) 1999; 24
References_xml – reference: ShenFOuyangQKasaiWHasegawaOA general associative memory based on self-organizing incremental neural networkNeurocomputing2013104577110.1016/j.neucom.2012.10.003
– reference: BlackardJADeanDJComparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variablesComput Electron Agric199924313115110.1016/S0168-1699(99)00046-0
– reference: GonçAlvesPMJrDe BarrosRSMRCD: a recurring concept drift frameworkPattern Recogn Lett20133491018102510.1016/j.patrec.2013.02.005
– reference: Masud MM, Chen Q, Khan L, Aggarwal C, Gao J, Han J, Thuraisingham B (2010) Addressing concept-evolution in concept-drifting data streams. In: IEEE 10th international conference on data mining (ICDM). IEEE, pp 929–934
– reference: Fan Y, Nowaczyk S, Rögnvaldsson TS (2015a) Evaluation of self-organized approach for predicting compressor faults in a city bus fleet. In: INNS conference on big data. Elsevier, pp 447–456
– reference: Souza VM, Silva DF, Gama J, Batista GE (2015) Data stream classification guided by clustering on nonstationary environments and extreme verification latency. In: Proceedings of the 2015 SIAM international conference on data mining. SIAM, pp 873–881
– reference: Frezza-BuetHFollowing non-stationary distributions by controlling the vector quantization accuracy of a growing neural gas networkNeurocomputing2008717–91191120210.1016/j.neucom.2007.12.024
– reference: Frezza-BuetHOnline computing of non-stationary distributions velocity fields by an accuracy controlled growing neural gasNeural Netw20146020322110.1016/j.neunet.2014.08.014
– reference: PatelHAThakoreDGMoving object tracking using kalman filterInt J Comput Sci Mob Comput201324326332
– reference: MartinetzTMBerkovichSGSchultenKJ’Neural-gas’ network for vector quantization and its application to time-series predictionIEEE Trans Neural Netw19934455856910.1109/72.238311
– reference: Bifet A, Gavalda R (2007) Learning from time-changing data with adaptive windowing. In: Proceedings of the 2007 SIAM international conference on data mining. SIAM, pp 443–448
– reference: Losing V, Hammer B, Wersing H (2016) Knn classifier with self adjusting memory for heterogeneous concept drift. In: IEEE 16th international conference on data mining (ICDM). IEEE, pp 291–300
– reference: WebbGIHydeRCaoHNguyenHLPetitjeanFCharacterizing concept driftData Min Knowl Disc2016304964994351324810.1007/s10618-015-0448-4
– reference: Dongre PB, Malik LG (2014) A review on real time data stream classification and adapting to various concept drift scenarios. In: IEEE international advance computing conference (IACC). IEEE, pp 533–537
– reference: GuentherWCShortest confidence intervalsAm Stat19692312225
– reference: Liu FT, Ting KM, Zhou ZH (2008) Isolation forest. In: Eighth IEEE international conference on data mining (ICDM). IEEE, pp 413–422
– reference: Schölkopf B, Williamson RC, Smola AJ, Shawe-Taylor J, Platt JC (2000) Support vector method for novelty detection. In: Advances in neural information processing systems (NIPS), pp 582–588
– reference: Jiang D, Liu J, Xu Z, Qin W (2011) Network traffic anomaly detection based on sliding window. In: International conference on electrical and control engineering (ICECE). IEEE, pp 4830–4833
– reference: KiferDanielBen-DavidShaiGehrkeJohannesDetecting Change in Data StreamsProceedings 2004 VLDB Conference200418019110.1016/B978-012088469-8.50019-X
– reference: PedregosaFVaroquauxGGramfortAMichelVThirionBGriselOBlondelMPrettenhoferPWeissRDubourgVScikit-learn: machine learning in pythonJ Mach Learn Res201112Oct2825283028543481280.68189
– reference: BrzezinskiDStefanowskiJReacting to different types of concept drift: the accuracy updated ensemble algorithmIEEE Trans Neural Netw Learn Syst2014251819410.1109/TNNLS.2013.2251352
– reference: ByttnerSRögnvaldssonTSvenssonMConsensus self-organized models for fault detection (COSMO)Eng Appl Artif Intell201124583383910.1016/j.engappai.2011.03.002
– reference: Fan Y, Nowaczyk S, Rögnvaldsson TS (2015b) Incorporating expert knowledge into a self-organized approach for predicting compressor faults in a city bus fleet. In: Scandinavian conference on artificial intelligence (SCAI), pp 58–67
– reference: SittigD. F.WrightA.MiddletonB.Clinical Decision Support: a 25 Year Retrospective and a 25 Year VisionYearbook of Medical Informatics201625S 01S103S11610.15265/IYS-2016-s034
– reference: Frank A, Asuncion A (2010) UCI machine learning repository. http://archive.ics.uci.edu/ml. School of Information and Computer Science, University of California, Irvine, vol 213
– reference: HongSVatsavaiRRSliding window-based probabilistic change detection for remote-sensed imagesProcedia Comput Sci2016802348235210.1016/j.procs.2016.05.438
– reference: Street WN, Kim Y (2001) A streaming ensemble algorithm (sea) for large-scale classification. In: Proceedings of the seventh ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 377–382
– reference: Losing V, Hammer B, Wersing H (2015) Interactive online learning for obstacle classification on a mobile robot. In: International joint conference on neural networks (IJCNN). IEEE, pp 1–8
– reference: KohonenTThe self-organizing mapNeurocomputing1998211–31610.1016/S0925-2312(98)00030-7
– reference: GamaJZliobaiteIBifetAPechenizkiyMBouchachiaAA survey on concept drift adaptationACM Comput Surv CSUR2014464441305.68141
– reference: LiKLHuangHKTianSFXuWImproving one-class svm for anomaly detectionIEEE Int Conf Mach Learn Cybern2003530773081
– reference: Nishida K, Shimada S, Ishikawa S, Yamauchi K (2008) Detecting sudden concept drift with knowledge of human behavior. In: IEEE international conference on systems, man and cybernetics. IEEE, pp 3261–3267
– reference: WebbGIPazzaniMJBillsusDMachine learning for user modelingUser Model User-Adapt Interact2001111–2192910.1023/A:1011117102175
– reference: PentlandALiuAModeling and prediction of human behaviorNeural Comput199911122924210.1162/089976699300016890
– reference: Bifet A, Pfahringer B, Read J, Holmes G (2013) Efficient data stream classification via probabilistic adaptive windows. In: Proceedings of the 28th annual ACM symposium on applied computing. ACM, pp 801–806
– reference: ŽliobaitėIndrėPechenizkiyMykolaGamaJoãoAn Overview of Concept Drift ApplicationsStudies in Big Data2015ChamSpringer International Publishing91114
– reference: KatakisITsoumakasGVlahavasITracking recurring contexts using ensemble classifiers: an application to email filteringKnowl Inf Syst201022337139110.1007/s10115-009-0206-2
– reference: Zeiler MD (2012) Adadelta: an adaptive learning rate method. arXiv:1212.5701
– reference: Ahmed E, Clark A, Mohay G (2008) A novel sliding window based change detection algorithm for asymmetric traffic. In: IFIP international conference on network and parallel computing. IEEE, pp 168–175
– reference: SantoshDHHVenkateshPPoorneshPRaoLNKumarNATracking multiple moving objects using Gaussian mixture modelInt J Soft Comput Eng IJSCE2013321149
– reference: Fritzke B (1997) A self-organizing network that can follow non-stationary distributions. In: International conference on artificial neural networks. Springer, pp 613–618
– reference: ZhangLLinJKarimRSliding window-based fault detection from high-dimensional data streamsIEEE Trans Syst Man Cybern2017472289303
– reference: Gama J, Medas P, Castillo G, Rodrigues P (2004) Learning with drift detection. In: Brazilian symposium on artificial intelligence. Springer, pp 286–295
– reference: DingZFeiMAn anomaly detection approach based on isolation forest algorithm for streaming data using sliding windowIFAC Proc Vol20134620121710.3182/20130902-3-CN-3020.00044
– reference: Bifet A (2010) Adaptive stream mining: pattern learning and mining from evolving data streams. In: Proceedings of the 2010 conference on adaptive stream mining. IOS Press, pp 1–212
– reference: DitzlerGPolikarRIncremental learning of concept drift from streaming imbalanced dataIEEE Trans Knowl Data Eng201325102283230110.1109/TKDE.2012.136
– reference: ElwellRPolikarRIncremental learning of concept drift in nonstationary environmentsIEEE Trans Neural Netw201122101517153110.1109/TNN.2011.2160459
– reference: Prudent Y, Ennaji A (2005) An incremental growing neural gas learns topologies. In: IEEE international joint conference on neural networks (IJCNN). IEEE, vol 2, pp 1211–1216
– reference: Harries M, Wales NS (1999) Splice-2 comparative evaluation: electricity pricing. Citeseer
– reference: KrawczykBWoźniakMOne-class classifiers with incremental learning and forgetting for data streams with concept driftSoft Comput201519123387340010.1007/s00500-014-1492-5
– reference: Fritzke B (1995) A growing neural gas network learns topologies. In: Advances in neural information processing systems (NIPS), pp 625–632
– reference: MarslandSShapiroJNehmzowUA self-organising network that grows when requiredNeural Netw2002158–91041105810.1016/S0893-6080(02)00078-3
– reference: Gama J, Sebastião R, Rodrigues PP (2009) Issues in evaluation of stream learning algorithms. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 329–338
– start-page: 91
  volume-title: Studies in Big Data
  year: 2015
  ident: 571_CR53
– ident: 571_CR48
– volume: 22
  start-page: 1517
  issue: 10
  year: 2011
  ident: 571_CR11
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2011.2160459
– ident: 571_CR47
  doi: 10.1137/1.9781611974010.98
– volume: 60
  start-page: 203
  year: 2014
  ident: 571_CR16
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2014.08.014
– ident: 571_CR18
  doi: 10.1007/BFb0020222
– volume: 104
  start-page: 57
  year: 2013
  ident: 571_CR46
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.10.003
– volume: 30
  start-page: 964
  issue: 4
  year: 2016
  ident: 571_CR50
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-015-0448-4
– ident: 571_CR2
– ident: 571_CR10
– ident: 571_CR14
– volume: 15
  start-page: 1041
  issue: 8–9
  year: 2002
  ident: 571_CR35
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(02)00078-3
– volume: 19
  start-page: 3387
  issue: 12
  year: 2015
  ident: 571_CR30
  publication-title: Soft Comput
  doi: 10.1007/s00500-014-1492-5
– ident: 571_CR39
  doi: 10.1109/ICSMC.2008.4811799
– volume: 24
  start-page: 131
  issue: 3
  year: 1999
  ident: 571_CR5
  publication-title: Comput Electron Agric
  doi: 10.1016/S0168-1699(99)00046-0
– ident: 571_CR24
– ident: 571_CR45
– volume: 25
  start-page: S103
  issue: S 01
  year: 2016
  ident: 571_CR38
  publication-title: Yearbook of Medical Informatics
  doi: 10.15265/IYS-2016-s034
– volume: 25
  start-page: 2283
  issue: 10
  year: 2013
  ident: 571_CR9
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2012.136
– ident: 571_CR43
  doi: 10.1109/IJCNN.2005.1556026
– volume: 11
  start-page: 229
  issue: 1
  year: 1999
  ident: 571_CR42
  publication-title: Neural Comput
  doi: 10.1162/089976699300016890
– ident: 571_CR20
  doi: 10.1007/978-3-540-28645-5_29
– ident: 571_CR17
– volume: 23
  start-page: 22
  issue: 1
  year: 1969
  ident: 571_CR23
  publication-title: Am Stat
  doi: 10.1080/00031305.1969.10481817
– ident: 571_CR37
  doi: 10.1109/ICDM.2010.160
– ident: 571_CR1
  doi: 10.1109/NPC.2008.81
– ident: 571_CR21
  doi: 10.1145/1557019.1557060
– ident: 571_CR33
  doi: 10.1109/IJCNN.2015.7280610
– volume: 3
  start-page: 114
  issue: 2
  year: 2013
  ident: 571_CR44
  publication-title: Int J Soft Comput Eng IJSCE
– volume: 34
  start-page: 1018
  issue: 9
  year: 2013
  ident: 571_CR22
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2013.02.005
– ident: 571_CR51
– ident: 571_CR26
  doi: 10.1109/ICECENG.2011.6057677
– volume: 21
  start-page: 1
  issue: 1–3
  year: 1998
  ident: 571_CR29
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(98)00030-7
– volume: 5
  start-page: 3077
  year: 2003
  ident: 571_CR31
  publication-title: IEEE Int Conf Mach Learn Cybern
– volume: 4
  start-page: 558
  issue: 4
  year: 1993
  ident: 571_CR36
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.238311
– volume: 46
  start-page: 44
  issue: 4
  year: 2014
  ident: 571_CR19
  publication-title: ACM Comput Surv CSUR
– volume: 47
  start-page: 289
  issue: 2
  year: 2017
  ident: 571_CR52
  publication-title: IEEE Trans Syst Man Cybern
– ident: 571_CR13
  doi: 10.1016/j.procs.2015.07.322
– volume: 24
  start-page: 833
  issue: 5
  year: 2011
  ident: 571_CR7
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2011.03.002
– volume: 80
  start-page: 2348
  year: 2016
  ident: 571_CR25
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2016.05.438
– start-page: 180
  volume-title: Proceedings 2004 VLDB Conference
  year: 2004
  ident: 571_CR28
  doi: 10.1016/B978-012088469-8.50019-X
– volume: 25
  start-page: 81
  issue: 1
  year: 2014
  ident: 571_CR6
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2251352
– ident: 571_CR3
  doi: 10.1137/1.9781611972771.42
– volume: 11
  start-page: 19
  issue: 1–2
  year: 2001
  ident: 571_CR49
  publication-title: User Model User-Adapt Interact
  doi: 10.1023/A:1011117102175
– volume: 2
  start-page: 326
  issue: 4
  year: 2013
  ident: 571_CR40
  publication-title: Int J Comput Sci Mob Comput
– volume: 71
  start-page: 1191
  issue: 7–9
  year: 2008
  ident: 571_CR15
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2007.12.024
– volume: 46
  start-page: 12
  issue: 20
  year: 2013
  ident: 571_CR8
  publication-title: IFAC Proc Vol
  doi: 10.3182/20130902-3-CN-3020.00044
– volume: 22
  start-page: 371
  issue: 3
  year: 2010
  ident: 571_CR27
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-009-0206-2
– ident: 571_CR34
  doi: 10.1109/ICDM.2016.0040
– ident: 571_CR12
  doi: 10.1016/j.procs.2015.07.322
– volume: 12
  start-page: 2825
  issue: Oct
  year: 2011
  ident: 571_CR41
  publication-title: J Mach Learn Res
– ident: 571_CR32
  doi: 10.1109/ICDM.2008.17
– ident: 571_CR4
  doi: 10.1145/2480362.2480516
SSID ssj0005230
Score 2.3690867
Snippet In the era of big data, considerable research focus is being put on designing efficient algorithms capable of learning and extracting high-level knowledge from...
SourceID swepub
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1597
SubjectTerms Adaptive algorithms
Adaptive systems
Algorithms
Anomaly and novelty detection
Artificial Intelligence
Big data
Change detection
Chemistry and Earth Sciences
Computer Science
Data management
Data mining
Data Mining and Knowledge Discovery
Data stream
Data transmission
Evolution
Growing neural gas
Information Storage and Retrieval
Intelligent systems
Machine learning
Neurons
Non-stationary environment
Non-stationary environments
Novelty detection
Physics
Statistics for Engineering
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBZt2kMuTZs2ZJO06JBTisCWJVs-hSVtKBRCDm3JTcjSOLuwa2923YX8-8z4sZv2sD30IAy2LAvPaOYbaR6MnaPGkxIkCIp0FKrUUhQu1QKxK-obZ3wR-bbYRHZzY-7u8tt-w23Vu1UOMrEV1KH2tEeORnqSoWpJjb5cPAiqGkWnq30JjZfsVSxlTHz-PRPPXDySLkrYKKFNvDnV7ELn0pjcuLDpDC3qP_XSFmxuzkf_yiXa6p_rg_-d-Vv2pkeefNyxyjv2AqpDdjBUdeD9In_PbscVd8EtSA5yN7vHoZrJnCO45a6q5272iNfAq3oNs-aRB2hab66KTysOKOxoh4KT4ymnOBQ3X31gP6-__rj6Jvq6C8IjnGhErlypyzwKWch9UIX2oIqiRHDny0gBaECs65XJjfQ6qDQKuI4VReAGvJ1BcsT2qrqCY8bB6RggNj7OQHmX5qYgzpB5UM47LUcsGv669X1ScqqNMbPbdMpEKBtRQ0LZaMQuNq8suowcuzqfDTSx_eJc2S1BRuzzQN7t4x2DnXccsPku5eb-Mv01tvXy3k4mNkHzS_6j23JqkwTtmpPdUztl-5K4sw17PGN7zfI3fGSv_bqZrpafWj5_AvhWA9E
  priority: 102
  providerName: ProQuest
Title An adaptive algorithm for anomaly and novelty detection in evolving data streams
URI https://link.springer.com/article/10.1007/s10618-018-0571-0
https://www.proquest.com/docview/2037853685
https://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-36752
https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-33882
Volume 32
WOSCitedRecordID wos000444383000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-756X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005230
  issn: 1384-5810
  databaseCode: RSV
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH9iG0hcNhggOkblw04gS4ljJ86xjE1IiFINGIOL5djOGqlNpiRM2n_Pc5q0A6EhONhREn9E9nt-P8fvA-AIJR5jjjnqLR0pzwWjmY4FReyK8kZLkwWmCzaRTKfy4iKd9XbczaDtPhxJdiv1LWO3OPSKV5hEgnvgLdhBaSc9N559Or-l1xGtTIMlp0KG66PMPzXxqzDaIMz1oehvDkQ7oXO691-f-wh2e4xJJiuieAz3XLkPe0P8BtKz8z486NQ_TfMEZpOSaKuv_NpH9OKyqot2viQIaIkuq6Ve3ODVkrK6dov2hljXdhpcJSlK4nCB838liFc2Jd72RC-bp_Dl9OTz8Tvax1qgBiFES1Ouc5GngU1saizPhHE8y3IEdCYPuHPCIb41XKaSGWF5HFjkXe6tbi0-Tlz0DLbLqnTPgTgtQudCacLEcaPjVGaeGlhquTZasBEEw6Ar0zsi9_EwFmrjQtmPnQp8wrFTwQheratcrbxw3FX4cJhJ1TNko1gQJYhMYilG8HqYsM3rOxo7WhHAul_vj_ttcT5RVX2p5nMV4ZaL_aVYXagowr3MwT_1_QIeMk8_neXjIWy39Q_3Eu6b67Zo6jFsJV-_jWHnzcl0doZ37xOK-Yfg2OfsI-Yz8X3c8cZPKrkCpA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Lb9MwGP80BhK7MJ6iYwMfxgVkKXHsxDmgqdqYNm1UOwy0m3FsZ63UJl2bDfWf4m_kcx4tcCinHThYkRInceLf97K_B8A-SjzGHHPURzpSngtGMx0LiroryhstTRaYuthEMhjIq6v0YgN-drEw3q2y44k1o7al8WvkaKRHCYqWWIqD6Q31VaP87mpXQqOBxZlb_ECTbf7p9Ajn9z1jx58vD09oW1WAGhSWFU25zkWeBjaxqbE8E8bxLMtRdTF5wJ0TDjU5w2UqmRGWx4FFlHIfX2rxdOIifO4DeMg5koN3FQwOf3MpiZqoZMmpkOFyF7UJ1YtD7zaGTSRowf8pB1fK7XI_9q_cpbW8O97-3_7UU3jSatak35DCM9hwxXPY7qpWkJaJvYCLfkG01VPP54keX-PQq-GEoPJOdFFO9HiBR0uK8s6NqwWxrqq91QoyKohDZu5XYIh3rCU-zkZP5i_h67181yvYLMrCvQbitAidC6UJE8eNjlOZeeSz1HJttGA9CLpZVqZNuu5rf4zVKl20B4YKfENgqKAHH5a3TJuMI-s673YYUC3zmasVAHrwsYPT6vKah-03iFu-1-cePxp966tydq2GQxWhecn-0W02UlGEdtvO-qG9g8cnl1_O1fnp4OwNbDFPGXWI5y5sVrNbtwePzF01ms_e1jRG4Pt9Q_UXylFifg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Lb9MwGP80BkJcGE_RMcCHcQFZJI6dOAeEKkrFVFT1AGg349jOWqlNSpsN9V_jr-NzHi1wKKcdOFiREidx4t_3sr8HwClKPMYcc9RHOlKeC0YzHQuKuivKGy1NFpi62EQyHsvz83RyAD-7WBjvVtnxxJpR29L4NXI00qMERUssxZu8dYuYDIbvlt-pryDld1q7choNREZu8wPNt_XbswHO9UvGhh8-v_9I2woD1KDgrGjKdS7yNLCJTY3lmTCOZ1mOaozJA-6ccKjVGS5TyYywPA4sIpb7WFOLpxMX4XNvwE2UwsLT2Cihv7mXRE2EsuRUyHC7o9qE7cWhdyHDJhK05v-UiTtFd7s3-1ce01r2DY_-5792D-62GjfpNyRyHw5c8QCOumoWpGVuD2HSL4i2eun5P9HzCxx6NV0QVOqJLsqFnm_waElRXrl5tSHWVbUXW0FmBXHI5P3KDPEOt8TH3-jF-hF8uZbvegyHRVm4J0CcFqFzoTRh4rjRcSozTxEstVwbLVgPgm7GlWmTsfuaIHO1SyPtQaIC3xAkKujBq-0tyyYTyb7OJx0eVMuU1moHhh687qC1u7znYacN-rbv9TnJB7OvfVWuLtR0qiI0O9k_uq1mKorQnjveP7QXcBsRqj6djUdP4Q7zRFJHfp7AYbW6dM_glrmqZuvV85rcCHy7bqT-Aj5dayQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+adaptive+algorithm+for+anomaly+and+novelty+detection+in+evolving+data+streams&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Bouguelia%2C+Mohamed-Rafik&rft.au=Nowaczyk%2C+Slawomir&rft.au=Payberah%2C+Amir&rft.date=2018-11-01&rft.issn=1384-5810&rft.volume=32&rft.issue=6&rft.spage=1597&rft_id=info:doi/10.1007%2Fs10618-018-0571-0&rft.externalDocID=oai_DiVA_org_ri_33882
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon