Simulation and Experimental Studies of Optimization of σ-Value for Block Matching and 3D Filtering Algorithm in Magnetic Resonance Images
In this study, we optimized the σ-values of a block matching and 3D filtering (BM3D) algorithm to reduce noise in magnetic resonance images. Brain T2-weighted images (T2WIs) were obtained using the BrainWeb simulation program and Rician noise with intensities of 0.05, 0.10, and 0.15. The BM3D algori...
Gespeichert in:
| Veröffentlicht in: | Applied sciences Jg. 13; H. 15; S. 8803 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.07.2023
|
| Schlagworte: | |
| ISSN: | 2076-3417, 2076-3417 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this study, we optimized the σ-values of a block matching and 3D filtering (BM3D) algorithm to reduce noise in magnetic resonance images. Brain T2-weighted images (T2WIs) were obtained using the BrainWeb simulation program and Rician noise with intensities of 0.05, 0.10, and 0.15. The BM3D algorithm was applied to the optimized BM3D algorithm and compared with conventional noise reduction algorithms using Gaussian, median, and Wiener filters. The clinical feasibility was assessed using real brain T2WIs from the Alzheimer’s Disease Neuroimaging Initiative. Quantitative evaluation was performed using the contrast-to-noise ratio, coefficient of variation, structural similarity index measurement, and root mean square error. The simulation results showed optimal image characteristics and similarity at a σ-value of 0.12, demonstrating superior noise reduction performance. The optimized BM3D algorithm showed the greatest improvement in the clinical study. In conclusion, applying the optimized BM3D algorithm with a σ-value of 0.12 achieved efficient noise reduction. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2076-3417 2076-3417 |
| DOI: | 10.3390/app13158803 |