Simulation and Experimental Studies of Optimization of σ-Value for Block Matching and 3D Filtering Algorithm in Magnetic Resonance Images
In this study, we optimized the σ-values of a block matching and 3D filtering (BM3D) algorithm to reduce noise in magnetic resonance images. Brain T2-weighted images (T2WIs) were obtained using the BrainWeb simulation program and Rician noise with intensities of 0.05, 0.10, and 0.15. The BM3D algori...
Uložené v:
| Vydané v: | Applied sciences Ročník 13; číslo 15; s. 8803 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.07.2023
|
| Predmet: | |
| ISSN: | 2076-3417, 2076-3417 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this study, we optimized the σ-values of a block matching and 3D filtering (BM3D) algorithm to reduce noise in magnetic resonance images. Brain T2-weighted images (T2WIs) were obtained using the BrainWeb simulation program and Rician noise with intensities of 0.05, 0.10, and 0.15. The BM3D algorithm was applied to the optimized BM3D algorithm and compared with conventional noise reduction algorithms using Gaussian, median, and Wiener filters. The clinical feasibility was assessed using real brain T2WIs from the Alzheimer’s Disease Neuroimaging Initiative. Quantitative evaluation was performed using the contrast-to-noise ratio, coefficient of variation, structural similarity index measurement, and root mean square error. The simulation results showed optimal image characteristics and similarity at a σ-value of 0.12, demonstrating superior noise reduction performance. The optimized BM3D algorithm showed the greatest improvement in the clinical study. In conclusion, applying the optimized BM3D algorithm with a σ-value of 0.12 achieved efficient noise reduction. |
|---|---|
| AbstractList | In this study, we optimized the σ-values of a block matching and 3D filtering (BM3D) algorithm to reduce noise in magnetic resonance images. Brain T2-weighted images (T2WIs) were obtained using the BrainWeb simulation program and Rician noise with intensities of 0.05, 0.10, and 0.15. The BM3D algorithm was applied to the optimized BM3D algorithm and compared with conventional noise reduction algorithms using Gaussian, median, and Wiener filters. The clinical feasibility was assessed using real brain T2WIs from the Alzheimer’s Disease Neuroimaging Initiative. Quantitative evaluation was performed using the contrast-to-noise ratio, coefficient of variation, structural similarity index measurement, and root mean square error. The simulation results showed optimal image characteristics and similarity at a σ-value of 0.12, demonstrating superior noise reduction performance. The optimized BM3D algorithm showed the greatest improvement in the clinical study. In conclusion, applying the optimized BM3D algorithm with a σ-value of 0.12 achieved efficient noise reduction. |
| Audience | Academic |
| Author | Kim, Kyuseok Lee, Youngjin Park, Minji Kang, Seong-Hyeon |
| Author_xml | – sequence: 1 givenname: Minji orcidid: 0000-0001-5593-6672 surname: Park fullname: Park, Minji – sequence: 2 givenname: Seong-Hyeon surname: Kang fullname: Kang, Seong-Hyeon – sequence: 3 givenname: Kyuseok surname: Kim fullname: Kim, Kyuseok – sequence: 4 givenname: Youngjin surname: Lee fullname: Lee, Youngjin |
| BookMark | eNptUstu1DAUjVCRKKUrfsASS5T2epyHsxxKS0cqqkSBrXXjR-ohsYPtSMCWHT_HL-HOgCio9sL20TnHx773aXHgvNNF8ZzCCWMdnOI8U0ZrzoE9Kg5X0DYlq2h7cG__pDiOcQt5dJRxCofFjxs7LSMm6x1Bp8j5l1kHO2mXcCQ3aVFWR-INuZ6Tney3PTGff34vP-K4aGJ8IK9GLz-Rt5jkrXXDzoe9Jhd2TNkrA-tx8MGm24lYl2mD08lK8k5H79BJTTYTDjo-Kx4bHKM-_r0eFR8uzt-fXZZX1282Z-urUlaMppK3FIFhW_OqX2kNrDFQ676ChlW95HVbdVRJAyBrpWoNDVeKNQ3r-KpXnWHsqNjsfZXHrZjzazF8FR6t2AE-DAJDDjhqAdK0gH3XSUYrxjFfCXVlNAXglCrMXi_2XnPwnxcdk9j6JbgcX6x4xTveUQp_WQNmU-uMTwHlZKMU67aBOteC3eU6eYCVp9KTlbnWxmb8HwHdC2TwMQZthLRpV6EstKOgIO4aQ9xrjKx5-Z_mzwc8xP4FR2-5zA |
| CitedBy_id | crossref_primary_10_3390_app142310886 crossref_primary_10_1088_1361_6560_ad94c7 crossref_primary_10_1007_s00348_025_03984_4 |
| Cites_doi | 10.1016/j.mri.2010.03.013 10.1002/mrm.21570 10.1016/j.mri.2012.05.005 10.1109/TIP.2007.901238 10.1016/j.bspc.2020.102036 10.1080/09553009414550021 10.46328/ijonest.76 10.1109/42.712135 10.1002/nbm.683 10.1016/j.poamed.2012.07.001 10.1002/ima.22225 10.3390/diagnostics13101696 10.1109/42.816072 10.5815/ijigsp.2014.12.06 10.1007/s11547-019-01035-7 10.1007/s11357-022-00568-6 10.1145/358198.358222 10.1002/mp.12715 10.1016/j.neurad.2017.05.008 10.3390/app10207028 10.1016/j.procs.2015.04.106 10.3390/diagnostics11101856 10.1109/ICCES.2016.7821992 10.1002/jmri.26965 10.1016/j.compeleceng.2012.04.003 10.1148/radiol.2021204587 10.1016/j.mri.2016.08.021 10.1016/j.mri.2013.07.001 10.1109/TBCAS.2020.2974154 10.1049/ipr2.12106 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| CorporateAuthor | for the Alzheimer’s Disease Neuroimaging Initiative |
| CorporateAuthor_xml | – name: for the Alzheimer’s Disease Neuroimaging Initiative |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI DOA |
| DOI | 10.3390/app13158803 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Coronavirus Research Database ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_0cf70ab99c31438a84b054fe100811da A760513833 10_3390_app13158803 |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC COVID DWQXO PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c431t-871a03a7584b2ee036f05eb40634bc857491dcf00c5dd5e068dd3663982bd9f33 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001046736000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2076-3417 |
| IngestDate | Thu Oct 30 07:35:09 EDT 2025 Mon Jun 30 06:35:11 EDT 2025 Tue Nov 11 10:10:25 EST 2025 Tue Nov 04 18:38:33 EST 2025 Sat Nov 29 07:13:56 EST 2025 Tue Nov 18 21:51:38 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c431t-871a03a7584b2ee036f05eb40634bc857491dcf00c5dd5e068dd3663982bd9f33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5593-6672 |
| OpenAccessLink | https://www.proquest.com/docview/2848989110?pq-origsite=%requestingapplication% |
| PQID | 2848989110 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0cf70ab99c31438a84b054fe100811da proquest_journals_2848989110 gale_infotracmisc_A760513833 gale_infotracacademiconefile_A760513833 crossref_citationtrail_10_3390_app13158803 crossref_primary_10_3390_app13158803 |
| PublicationCentury | 2000 |
| PublicationDate | 20230701 |
| PublicationDateYYYYMMDD | 2023-07-01 |
| PublicationDate_xml | – month: 07 year: 2023 text: 20230701 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Dabov (ref_22) 2007; 16 Verma (ref_24) 2015; 48 Henkelman (ref_18) 2001; 14 Goyal (ref_36) 2022; 3 Kwan (ref_26) 1999; 18 ref_11 Nasor (ref_23) 2020; 15 Sowa (ref_7) 2012; 19 Bojorquez (ref_17) 2017; 35 ref_19 Bhujle (ref_9) 2013; 31 Feruglio (ref_16) 2010; 55 Jahangirimehr (ref_1) 2023; 24 Goodhead (ref_4) 1994; 65 Saladi (ref_32) 2017; 27 Wei (ref_13) 2020; 14 Dixit (ref_20) 2014; 12 Sagheer (ref_10) 2020; 61 Patil (ref_14) 2022; 4 Chalian (ref_5) 2021; 301 Pmilio (ref_28) 2022; 44 Ali (ref_8) 2018; 14 Collins (ref_27) 1998; 17 Sneag (ref_31) 2019; 51 Li (ref_30) 2012; 30 ref_21 Anand (ref_34) 2010; 28 Yousefi (ref_33) 2020; 10 Chen (ref_12) 2008; 59 Bhadauria (ref_35) 2013; 39 ref_2 Naimi (ref_25) 2015; 27 Mubeen (ref_29) 2017; 44 Bartlett (ref_38) 2018; 45 Bruno (ref_3) 2019; 124 Xie (ref_37) 2023; 15 ref_6 Brownrigg (ref_15) 1984; 27 |
| References_xml | – volume: 28 start-page: 842 year: 2010 ident: ref_34 article-title: Wavelet domain non-linear filtering for MRI denoising publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2010.03.013 – volume: 59 start-page: 731 year: 2008 ident: ref_12 article-title: In vivo quantification of T1, T2 and apparent diffusion coefficient in the mouse retina at 11.74T publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21570 – volume: 3 start-page: 90 year: 2022 ident: ref_36 article-title: An adaptive bitonic filtering based edge fusion algorithm for Gaussian denoising publication-title: Int. J. Cogn. Comput. Eng. – volume: 24 start-page: e129546 year: 2023 ident: ref_1 article-title: Prognostic Factors for Predicting COVID-19 Severity and Mortality publication-title: Shariz E-Med. J. – volume: 30 start-page: 1313 year: 2012 ident: ref_30 article-title: Signal-to-noise ratio, contrast-to-noise ratio and pharmacokinetic modeling considerations in dynamic contrast-enhanced magnetic resonance imaging publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2012.05.005 – volume: 16 start-page: 2080 year: 2007 ident: ref_22 article-title: Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2007.901238 – volume: 61 start-page: 102036 year: 2020 ident: ref_10 article-title: A review on medical image denoising algorithms publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.102036 – volume: 65 start-page: 7 year: 1994 ident: ref_4 article-title: Initial Events in the Celluar Effects of Ionizing Radiations: Clustered Damage in DNA publication-title: Int. J. Radiat. Biol. doi: 10.1080/09553009414550021 – volume: 4 start-page: 21 year: 2022 ident: ref_14 article-title: Medical image denoising techniques: A review publication-title: Int. J. Eng. Sci. Technol. doi: 10.46328/ijonest.76 – volume: 17 start-page: 463 year: 1998 ident: ref_27 article-title: Design and construction of a realistic digital brain phantom publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.712135 – volume: 14 start-page: 57 year: 2001 ident: ref_18 article-title: Magnetization transfer in MRI: A review publication-title: NMR Biomed. doi: 10.1002/nbm.683 – volume: 19 start-page: 134 year: 2012 ident: ref_7 article-title: Ionizing and non-ionizing electromagnetic radiation in modern medicine publication-title: Pol. Ann. Med. doi: 10.1016/j.poamed.2012.07.001 – ident: ref_21 – volume: 27 start-page: 201 year: 2017 ident: ref_32 article-title: Analysis of denoising filters on MRI brain images publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22225 – ident: ref_2 doi: 10.3390/diagnostics13101696 – volume: 18 start-page: 1085 year: 1999 ident: ref_26 article-title: MRI simulation-based evaluation of image-processing and classification methods publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.816072 – volume: 55 start-page: 5401 year: 2010 ident: ref_16 article-title: Block matching 3D random noise filtering for absoption optical projection tomography publication-title: Inst. Phys. Eng. Med. – volume: 12 start-page: 39 year: 2014 ident: ref_20 article-title: A Comparative Study of Wavelet Thresholding for Image Denoising publication-title: I. J. Image Graph. Signal Process. doi: 10.5815/ijigsp.2014.12.06 – volume: 15 start-page: 1 year: 2023 ident: ref_37 article-title: For the Alzheimer’s Disease Neuroimaging Initiative publication-title: Alzheimer’s Res. Ther. – volume: 124 start-page: 243 year: 2019 ident: ref_3 article-title: Advanced magnetic resonance imaging (MRI) of soft tissue tumors: Techniques and applications publication-title: La Radiol. Medica doi: 10.1007/s11547-019-01035-7 – volume: 27 start-page: 40 year: 2015 ident: ref_25 article-title: Medical image denoising using dual tree compolex thresholding wavelet transform and Wiener filter publication-title: J. King Saud Univ.-Comput. Inf. Sci. – volume: 44 start-page: 1791 year: 2022 ident: ref_28 article-title: Diabetic patients treated with metformin during early stages of Alzheimer’s disease show a better integral performance: Data from ADNI study publication-title: GeroScience doi: 10.1007/s11357-022-00568-6 – volume: 27 start-page: 807 year: 1984 ident: ref_15 article-title: The weighted median filter publication-title: Commun. ACM doi: 10.1145/358198.358222 – volume: 45 start-page: 678 year: 2018 ident: ref_38 article-title: Noise contamination from PET blood sampling pump: Effects on structural MRI image quality in simultaneous PET/MR studies publication-title: Med. Phys. doi: 10.1002/mp.12715 – volume: 44 start-page: 381 year: 2017 ident: ref_29 article-title: A six-month longitudinal evaluation significantly improves accuracy of predicting incipient Alzheimer’s disease in mild cognitive impairment publication-title: J. Neuroradiol. doi: 10.1016/j.neurad.2017.05.008 – volume: 14 start-page: 111 year: 2018 ident: ref_8 article-title: MRI medical image denoising by fundamental filters publication-title: High-Resolut. Neuroimaging-Basic Phys. Princ. Clin. Appl. – volume: 10 start-page: 83 year: 2020 ident: ref_33 article-title: Biomedical Image Denoising Based on Hybrid Optimization Algorithm and Sequential Filters publication-title: J. Biomed. Phys. Eng. – ident: ref_19 doi: 10.3390/app10207028 – volume: 48 start-page: 29 year: 2015 ident: ref_24 article-title: An Enhancement in Adaptive Median Filter for Edge Preservation publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2015.04.106 – ident: ref_6 doi: 10.3390/diagnostics11101856 – ident: ref_11 doi: 10.1109/ICCES.2016.7821992 – volume: 51 start-page: 1128 year: 2019 ident: ref_31 article-title: Denoising of diffusion MRI improves peripheral nerve conspicuity and reproducibility publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.26965 – volume: 39 start-page: 1451 year: 2013 ident: ref_35 article-title: Medical image denoising using adaptive fusion of curvelet transform and total variation publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2012.04.003 – volume: 301 start-page: 423 year: 2021 ident: ref_5 article-title: The QIBA Profile for MRI-based Compositional Imaging of Knee Cartilage publication-title: Radiology doi: 10.1148/radiol.2021204587 – volume: 35 start-page: 69 year: 2017 ident: ref_17 article-title: What are normal relaxation time of tissues at 3T? publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2016.08.021 – volume: 31 start-page: 1599 year: 2013 ident: ref_9 article-title: Laplacian based non-local means denoising of MR images with Rician noise publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2013.07.001 – volume: 14 start-page: 145 year: 2020 ident: ref_13 article-title: A review of algorithm & hardware design for AI-based biomedical applications publication-title: IEEE Trans. Biomed. Circuits Syst. doi: 10.1109/TBCAS.2020.2974154 – volume: 15 start-page: 1310 year: 2020 ident: ref_23 article-title: Segmentation of osteoscarcoma in MRI images by K-means clustering, Chan-Vese segmentation, and iterative Gaussian filtering publication-title: IET Image Process. doi: 10.1049/ipr2.12106 |
| SSID | ssj0000913810 |
| Score | 2.2733264 |
| Snippet | In this study, we optimized the σ-values of a block matching and 3D filtering (BM3D) algorithm to reduce noise in magnetic resonance images. Brain T2-weighted... In this study, we optimized the σ -values of a block matching and 3D filtering (BM3D) algorithm to reduce noise in magnetic resonance images. Brain T2-weighted... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 8803 |
| SubjectTerms | Algorithms brain T2 weighted image Comparative analysis Gamma rays Magnetic fields magnetic resonance image Magnetic resonance imaging Medical imaging Medical imaging equipment Methods Noise control noise reduction algorithm Optimization optimization of block matching and 3D filtering algorithm quantitative evaluation of image qualities Radiation Random variables Rician noise Values Video compression Wavelet transforms |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYq1EM5oEKL2JZWPiAVkCLstbOxj0vLqpVaQCogbpZfgai7WbS78Ad665_rX-pMYlBWKuLCMc4kcTxvP74hZEe5KFwpi2wwYCqTMroM_LzOcnDF1udS-LKBzP9eHB-ry0t92in1hXvCWnjgduAOmC8LZp3WXmClbqukgyijjAhKw3loQiNW6E4y1dhgzRG6qj2QJyCvx_VgLngO4iqWXFCD1P-YPW6czOg1WUvRIR22vVonL2K9QVY7mIEbZD1p45zuJsjovTfkz89qkupwUVsHetTB7adpqyCdlvQEDMQknbzE67-_sws7vo0UQld6CH7tF_0BthlnpZr3iC90VOF6OjYMx1fTWbW4ntCqBrKrGs8_Upz_R9COSL9NwDbN35Lz0dHZ569ZqrKQeQgeFmAOuWXCQt4gXT9G8Ggly6MDRy-k8yovpObBl4z5PIQ8soEKQUCcolXfBV0KsUlW6mkdtwj1spABMQX73EtmlWYi4ks1V_C0zHtk_37gjU8Q5FgJY2wgFUEumQ6XemTngfimRd74P9khcvCBBOGymwYQIpOEyDwlRD3yCflvUKmhQ96mswnwWwiPZYYFZH0gUQI-t71ECcrol2_fS5BJxmBuIALAIp0QaL17js6-J6-w5n27Z3ibrCxmt_EDeenvFtV89rHRg39f6Ari priority: 102 providerName: Directory of Open Access Journals |
| Title | Simulation and Experimental Studies of Optimization of σ-Value for Block Matching and 3D Filtering Algorithm in Magnetic Resonance Images |
| URI | https://www.proquest.com/docview/2848989110 https://doaj.org/article/0cf70ab99c31438a84b054fe100811da |
| Volume | 13 |
| WOSCitedRecordID | wos001046736000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELag5QCHQgsV6Us-VOIhrbBjb9Y-oYQmohINES-Vk-W1vSEi2bTZlD_AjT_HX2Jm44REAi4c1zvrteXxN-Ox_Q0hpyoPIi9klrRaTCVShjwBO6-TFEyxdakUrqgp899k_b66vNSDGHCr4rHKJSbWQO2nDmPkLwBGMdMhWKuXV9cJZo3C3dWYQuM22UamMtDz7U63P3i3irIg66XibHExT8D6HveFueApqK3YMEU1Y__fcLk2Nr37_9vMB2Qnupm0vdCLXXIrlHvk3hr54B7ZjdO6ok8j9_Szh-TH-9EkJvSitvS0u5YAgMYzh3Ra0LeANJN4hROff35PPtnxTaDgA9MOGMiv9AJAHsNbdT3ijPZGuDGPBe3xEJo8_zKhoxLEhiVepKS4kYDsH4GeTwDkqkfkY6_74dXrJKZrSBx4IXPAVW6ZsLAAkXkzBDCNBUtDDh6DkLlTaSY1965gzKXep4G1lPcCHB6tmrnXhRD7ZKucluExoU5m0iM5YZM7yazSTASsVHMFX8u0QZ4vR864yGWOKTXGBtY0OMxmbZgb5HQlfLWg8PizWAdVYCWCvNt1wXQ2NHEaG-aKjNlcaycwb7yFroLPWwSkSOLc2wZ5ggpkEB2gQc7GSw7QLeTZMu0Mlo-gkgJ-d7QhCbPabb5e6peJqFKZ38p18O_Xh-RuE5yxxbHiI7I1n92EY3LHfZuPqtlJnCQndfwBngbnF4PPvwBvcx1w |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VKRJwAFpABArsoYiHZLH2ruPdA0IpbdSoSYhEQe3J2LvrEJE4JU5BnLnxY_gr_CVm7HVIJODWA0fbEz82334z-5hvCNmVqeVpJiKv1WLSE8KmHvh55YXgihMdCq6zUjK_Fw0G8uREDTfIjzoXBrdV1pxYErWZaZwjfw40ipUOwVu9PPvkYdUoXF2tS2hUsDiyX7_AkK140d2H__dREHQOjl8deq6qgKfBWS6g-_sJ4wnEySINrAUGz1hoU3BsXKRahpFQvtEZYzo0JrSsJY3h4JeVDFKjMpwABcrfFAj2BtkcdvvD0-WsDqpsSp9ViYCcK4br0D73Q-gmfM31lRUC_uYHSufWuf6_NcsNcs2F0bRd4X6LbNh8m1xdEVfcJluOtgr6xGlrP71Jvr8ZT13BMprkhh6sFDigbk8lnWX0NTDp1KWo4vHPb967ZHJuKcT4dA8CgI-0D04Mp-_K-_B92hnjxgM80Z6MoIkWH6Z0nIPZKMdEUYoLJahuYml3CiRe3CJvL6SFbpNGPsvtHUK1iIRB8cXA14IlUjFu8abKl_BrETbJsxopsXZa7VgyZBLDmA1hFa_Aqkl2l8ZnlUTJn832EHJLE9QVL0_M5qPY0VTMdBaxJFVKcwikZQKfCjF9ZlECyvdN0iSPEbAxsh-8kE5cEgd8FuqIxe0IhsfQBTg8bmfNElhLr1-u8Rw71izi32C---_LD8nlw-N-L-51B0f3yJUAAs9qC_UOaSzm5_Y-uaQ_L8bF_IHroJS8v2jw_wLnQHZ1 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELZWXYTgAOwCorCAD4t4SNE6cdLYB4S6dCuq3S2VeGg5Gcd2SkWbLm0XxJkbP4k_wV9iJnFKKwG3PXBMMs3D_fzN2B5_Q8iuyBzP8jgNWi0mgjh2WQB-XgYJuGJtkpibvJTMP0r7fXFyIgcb5Ee9FwbTKmtOLInaTg3Oke8BjWKlQ_BWe7lPixh0us9OPwVYQQpXWutyGhVEDt3XLzB8mz_tdeC_fhBF3YPXz18EvsJAYMBxLoAKQs24hpg5ziLngM1zlrgMnByPMyOSNJahNTljJrE2cawlrOXgo6WIMitznAwF-t-EkDyOGmRz0DsevFvO8KDipghZtSmQc8lwTTrkYQJdhq-5wbJawN98Qunoulf_5ya6Rq748Jq2q_6wRTZcsU0ur4gubpMtT2dz-shrbj--Tr6_Gk18ITOqC0sPVgofUJ9rSac5fQkMO_FbV_H457fgrR6fOQqxP92HwOAjPQbnhtN65X14h3ZHmJCAJ9rjITTR4sOEjgowGxa4gZTiAgqqnjjamwC5z2-QN-fSQjdJo5gW7hahBoBkUZQxCk3MtJCMO7ypDAX8Ok6a5EmNGmW8hjuWEhkrGMshxNQKxJpkd2l8WkmX_NlsH-G3NEG98fLEdDZUnr4UM3nKdCal4RBgCw2fCrF-7lAaKgytbpKHCF6FrAgvZLTf3AGfhfpiqp3CsBm6A4fH7axZApuZ9cs1tpVn07n6Dezb_758n1wExKujXv_wDrkUQTxaZVbvkMZidubukgvm82I0n93zfZWS9-eN_V_QIH81 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulation+and+Experimental+Studies+of+Optimization+of+%CF%83-Value+for+Block+Matching+and+3D+Filtering+Algorithm+in+Magnetic+Resonance+Images&rft.jtitle=Applied+sciences&rft.au=Park%2C+Minji&rft.au=Kang%2C+Seong-Hyeon&rft.au=Kim%2C+Kyuseok&rft.au=Lee%2C+Youngjin&rft.date=2023-07-01&rft.pub=MDPI+AG&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=13&rft.issue=15&rft_id=info:doi/10.3390%2Fapp13158803&rft.externalDocID=A760513833 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |