Changes of Southern Hemisphere westerlies in the future warming climate

The Southern Hemisphere westerlies (SHWs) play a key role in regulating global climate and ocean circulation, but their future changes under low to high greenhouse gas forcings remain unclear. This study investigates the long-term trends in strength and position of the SHWs and their linkage with hu...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Atmospheric research Ročník 270; s. 106040
Hlavní autori: Deng, Kaiqiang, Azorin-Molina, Cesar, Yang, Song, Hu, Chundi, Zhang, Gangfeng, Minola, Lorenzo, Chen, Deliang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.06.2022
Predmet:
ISSN:0169-8095
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The Southern Hemisphere westerlies (SHWs) play a key role in regulating global climate and ocean circulation, but their future changes under low to high greenhouse gas forcings remain unclear. This study investigates the long-term trends in strength and position of the SHWs and their linkage with human activities, based on the ERA5 reanalysis and model simulations from the Coupled Model Intercomparison Project phase 6 (CMIP6). The results show that the SHWs have intensified and shifted poleward in the recent decades, and are projected to experience divergent trends in strength and position during the 21st century under different Shared Socioeconomic Pathway (SSP) scenarios. Forced by SSP245, 370, and 585, which represent the middle to high greenhouse gas forcings, the SHWs will continue to strengthen and move southward in 2015–2099, with the largest trends induced by SSP585. Nevertheless, forced by SSP126, which implies a low greenhouse gas forcing in the future, the ongoing trends in strength and position of the SHWs will be interrupted and even reversed. Further investigation reveals that the anthropogenic forcing could have affected and will likely influence the SHWs by modulating meridional atmospheric circulation in the Southern Hemisphere. In particular, the Southern Annular Mode and the tropical Pacific convection play crucial roles in the changes of SHWs. This study links human activities to the changes in SHWs, providing important implications for climate change and its mitigation. •The Southern Hemisphere westerlies (SHWs) have strengthened and shifted poleward in the recent decades.•The SHWs are projected to intensify (weaken) during the 21st century under high (low) greenhouse gas forcing.•Human activities may play a key role in the changes of SHWs.
AbstractList The Southern Hemisphere westerlies (SHWs) play a key role in regulating global climate and ocean circulation, but their future changes under low to high greenhouse gas forcings remain unclear. This study investigates the long-term trends in strength and position of the SHWs and their linkage with human activities, based on the ERA5 reanalysis and model simulations from the Coupled Model Intercomparison Project phase 6 (CMIP6). The results show that the SHWs have intensified and shifted poleward in the recent decades, and are projected to experience divergent trends in strength and position during the 21st century under different Shared Socioeconomic Pathway (SSP) scenarios. Forced by SSP245, 370, and 585, which represent the middle to high greenhouse gas forcings, the SHWs will continue to strengthen and move southward in 2015–2099, with the largest trends induced by SSP585. Nevertheless, forced by SSP126, which implies a low greenhouse gas forcing in the future, the ongoing trends in strength and position of the SHWs will be interrupted and even reversed. Further investigation reveals that the anthropogenic forcing could have affected and will likely influence the SHWs by modulating meridional atmospheric circulation in the Southern Hemisphere. In particular, the Southern Annular Mode and the tropical Pacific convection play crucial roles in the changes of SHWs. This study links human activities to the changes in SHWs, providing important implications for climate change and its mitigation. •The Southern Hemisphere westerlies (SHWs) have strengthened and shifted poleward in the recent decades.•The SHWs are projected to intensify (weaken) during the 21st century under high (low) greenhouse gas forcing.•Human activities may play a key role in the changes of SHWs.
The Southern Hemisphere westerlies (SHWs) play a key role in regulating global climate and ocean circulation, but their future changes under low to high greenhouse gas forcings remain unclear. This study investigates the long-term trends in strength and position of the SHWs and their linkage with human activities, based on the ERA5 reanalysis and model simulations from the Coupled Model Intercomparison Project phase 6 (CMIP6). The results show that the SHWs have intensified and shifted poleward in the recent decades, and are projected to experience divergent trends in strength and position during the 21st century under different Shared Socioeconomic Pathway (SSP) scenarios. Forced by SSP245, 370, and 585, which represent the middle to high greenhouse gas forcings, the SHWs will continue to strengthen and move southward in 2015–2099, with the largest trends induced by SSP585. Nevertheless, forced by SSP126, which implies a low greenhouse gas forcing in the future, the ongoing trends in strength and position of the SHWs will be interrupted and even reversed. Further investigation reveals that the anthropogenic forcing could have affected and will likely influence the SHWs by modulating meridional atmospheric circulation in the Southern Hemisphere. In particular, the Southern Annular Mode and the tropical Pacific convection play crucial roles in the changes of SHWs. This study links human activities to the changes in SHWs, providing important implications for climate change and its mitigation.
The Southern Hemisphere westerlies (SHWs) play a key role in regulating global climate and ocean circulation, but their future changes under low to high greenhouse gas forcings remain unclear. This study investigates the long-term trends in strength and position of the SHWs and their linkage with human activities, based on the ERA5 reanalysis and model simulations from the Coupled Model Intercomparison Project phase 6 (CMIP6). The results show that the SHWs have intensified and shifted poleward in the recent decades, and are projected to experience divergent trends in strength and position during the 21st century under different Shared Socioeconomic Pathway (SSP) scenarios. Forced by SSP245, 370, and 585, which represent the middle to high greenhouse gas forcings, the SHWs will continue to strengthen and move southward in 2015–2099, with the largest trends induced by SSP585. Nevertheless, forced by SSP126, which implies a low greenhouse gas forcing in the future, the ongoing trends in strength and position of the SHWs will be interrupted and even reversed. Further investigation reveals that the anthropogenic forcing could have affected and will likely influence the SHWs by modulating meridional atmospheric circulation in the Southern Hemisphere. In particular, the Southern Annular Mode and the tropical Pacific convection play crucial roles in the changes of SHWs. This study links human activities to the changes in SHWs, providing important implications for climate change and its mitigation. © 2022 The Authors
ArticleNumber 106040
Author Deng, Kaiqiang
Zhang, Gangfeng
Yang, Song
Chen, Deliang
Azorin-Molina, Cesar
Hu, Chundi
Minola, Lorenzo
Author_xml – sequence: 1
  givenname: Kaiqiang
  surname: Deng
  fullname: Deng, Kaiqiang
  organization: School of Atmospheric Sciences, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 519082, China
– sequence: 2
  givenname: Cesar
  surname: Azorin-Molina
  fullname: Azorin-Molina, Cesar
  organization: Regional Climate Group, Department of Earth Sciences, University of Gothenburg, Gothenburg 40530, Sweden
– sequence: 3
  givenname: Song
  surname: Yang
  fullname: Yang, Song
  organization: School of Atmospheric Sciences, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 519082, China
– sequence: 4
  givenname: Chundi
  surname: Hu
  fullname: Hu, Chundi
  organization: School of Atmospheric Sciences, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 519082, China
– sequence: 5
  givenname: Gangfeng
  surname: Zhang
  fullname: Zhang, Gangfeng
  organization: State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
– sequence: 6
  givenname: Lorenzo
  surname: Minola
  fullname: Minola, Lorenzo
  organization: Regional Climate Group, Department of Earth Sciences, University of Gothenburg, Gothenburg 40530, Sweden
– sequence: 7
  givenname: Deliang
  surname: Chen
  fullname: Chen, Deliang
  email: deliang@gvc.gu.se
  organization: Regional Climate Group, Department of Earth Sciences, University of Gothenburg, Gothenburg 40530, Sweden
BackLink https://gup.ub.gu.se/publication/314412$$DView record from Swedish Publication Index (Göteborgs universitet)
BookMark eNqFkE1P3DAQhn0AqXz0L1Q5csnirziNxKHVqoVKSByA88iZTBavsnZqO0X99_Uq5cIF-WBr3ved8Tzn7MQHT4x9EXwjuDDX-43Nh5AipY3kUpai4ZqfsLMidvVX3jWf2HlKe855w3V3xm63L9bvKFVhrB7Dkl8o-uqODi7N5UnVK6VMcXLF4XxV5Gpc8nIUbDw4v6twcgeb6ZKdjnZK9Pn_fcGef_542t7V9w-3v7bf72vUSuTaUN9yPWiNgyVqpZKGxhY7qxveG276ocMBG6URVauxnEahGJTqJDa9lOqC1Wvf9Erz0sMcy_j4F4J1sFtmKKXdAolACa3F0X-1-ucYfi9lGSirIU2T9RSWBNIo0zStFKJYb1YrxpAKwhHQZZtd8DlaN4HgcGQMe3hjDEfGsDIucfMu_va3D4Pf1iAVbn8cRUjoyCMNLhJmGIL7qMU_1VagGw
CitedBy_id crossref_primary_10_1029_2023GL105475
crossref_primary_10_1038_s41467_024_54946_z
crossref_primary_10_1029_2023GL103531
crossref_primary_10_1007_s00704_024_05072_9
crossref_primary_10_1016_j_cnsns_2023_107657
crossref_primary_10_1016_j_scitotenv_2024_178333
crossref_primary_10_1016_j_jmarsys_2023_103920
crossref_primary_10_5194_esd_16_1427_2025
crossref_primary_10_1016_j_scitotenv_2024_174292
crossref_primary_10_1016_j_dynatmoce_2024_101454
crossref_primary_10_1029_2022JC019257
crossref_primary_10_1029_2024EF005166
crossref_primary_10_1016_j_atmosres_2024_107508
crossref_primary_10_1038_s41598_024_78014_0
crossref_primary_10_1134_S0001433825700409
crossref_primary_10_1088_2515_7620_ade121
crossref_primary_10_5194_cp_20_1067_2024
crossref_primary_10_1029_2024GL109385
crossref_primary_10_1029_2024JD043124
crossref_primary_10_1016_j_palaeo_2024_112192
crossref_primary_10_3390_w16020351
crossref_primary_10_1029_2024JD042019
crossref_primary_10_1016_j_atmosres_2022_106153
crossref_primary_10_1016_j_pocean_2024_103407
crossref_primary_10_1016_j_accre_2024_07_007
crossref_primary_10_1016_j_catena_2025_109065
crossref_primary_10_1038_s43247_025_02129_z
crossref_primary_10_1111_nyas_14910
crossref_primary_10_1071_ES25030
crossref_primary_10_1073_pnas_2207889119
crossref_primary_10_1038_s41598_025_15521_8
crossref_primary_10_1002_joc_8921
crossref_primary_10_1016_j_atmosres_2024_107568
crossref_primary_10_1038_s43247_023_00750_4
crossref_primary_10_3389_fmars_2023_1239885
crossref_primary_10_3390_jmse11020458
crossref_primary_10_1111_nyas_15063
crossref_primary_10_1038_s41467_024_53557_y
crossref_primary_10_1007_s11600_024_01525_x
crossref_primary_10_1038_s41467_023_40951_1
crossref_primary_10_1038_s41586_024_08544_0
crossref_primary_10_53391_mmnsa_1529457
crossref_primary_10_1029_2021EF002448
crossref_primary_10_1029_2024JD041558
crossref_primary_10_1007_s12190_024_02320_z
crossref_primary_10_1029_2023JD040309
Cites_doi 10.1126/science.1167441
10.1175/JCLI4028.1
10.1126/science.1169823
10.1016/j.jfa.2013.05.001
10.1175/1520-0469(1991)048<2159:STITSH>2.0.CO;2
10.1038/s41467-017-00197-0
10.1175/JCLI-D-15-0334.1
10.1029/2020GL090238
10.5194/gmd-9-3461-2016
10.1126/science.1225411
10.1029/2005PA001154
10.1175/JCLI-D-12-00823.1
10.1038/nature24672
10.1029/2020GL088890
10.1038/s41561-018-0186-5
10.1126/science.1155939
10.1175/BAMS-83-11-1631
10.1038/513179a
10.3390/atmos12010112
10.1029/2019EA001065
10.1038/s41586-020-2120-4
10.1002/qj.828
10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2
10.1175/JCLI-D-16-0758.1
10.1175/JCLI-D-19-0604.1
10.1002/wcc.652
10.1038/nature09051
10.1002/jgrd.50153
10.1126/science.1183627
10.1038/nature08519
10.1175/JCLI3984.1
10.1038/nature18307
10.1029/2019GL086605
10.5194/hess-16-967-2012
10.1038/s41598-021-87317-5
10.1130/G31807.1
10.1038/srep02118
10.1175/JCLI-D-19-0648.1
10.1007/s00382-020-05234-1
10.2151/jmsj.2015-001
10.1007/s00382-017-3592-2
10.1002/qj.3803
10.1029/2010GL042873
10.1029/2012GL052810
10.1029/2020GL090849
10.1002/2015GL064521
10.1016/j.scib.2020.06.011
ContentType Journal Article
Copyright 2022 The Authors
Copyright_xml – notice: 2022 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
ADTPV
AOWAS
F1U
DOI 10.1016/j.atmosres.2022.106040
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
SwePub
SwePub Articles
SWEPUB Göteborgs universitet
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
ExternalDocumentID oai_gup_ub_gu_se_314412
10_1016_j_atmosres_2022_106040
S0169809522000266
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFYP
ABLST
ABMAC
ABQEM
ABQYD
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KCYFY
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSJ
SSZ
T5K
ZMT
~02
~G-
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HMA
HVGLF
HZ~
R2-
SEP
SEW
T9H
WUQ
ZY4
~HD
7S9
L.6
ADTPV
AOWAS
F1U
ID FETCH-LOGICAL-c431t-6eb704d44cdaee72326ef7c9a450b606bd9cdc534cc374c4c453c1d3392c5b223
ISICitedReferencesCount 57
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000774191300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0169-8095
IngestDate Tue Nov 04 16:39:06 EST 2025
Sun Sep 28 01:26:33 EDT 2025
Tue Nov 18 22:01:44 EST 2025
Sat Nov 29 02:22:57 EST 2025
Sat Nov 02 15:59:22 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Southern Hemisphere westerlies
Human activities
CMIP6
Future projections
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c431t-6eb704d44cdaee72326ef7c9a450b606bd9cdc534cc374c4c453c1d3392c5b223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.atmosres.2022.106040
PQID 2636557211
PQPubID 24069
ParticipantIDs swepub_primary_oai_gup_ub_gu_se_314412
proquest_miscellaneous_2636557211
crossref_citationtrail_10_1016_j_atmosres_2022_106040
crossref_primary_10_1016_j_atmosres_2022_106040
elsevier_sciencedirect_doi_10_1016_j_atmosres_2022_106040
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Atmospheric research
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Yang, Arblaster, Meehl (bb0250) 2020; 33
Ho, Kiem, Verdon-Kidd (bb0100) 2012; 16
Brown, Caldeira (bb0040) 2017; 552
Waugh, Banerjee, Fyfe (bb0240) 2020; 47
Toggweiler, Russell, Carson (bb0225) 2006; 21
Skinner, Fallon, Waelbroeck (bb0190) 2010; 328
Goyal, Gupta, Jucker (bb0090) 2021; 48
Lucas, Rudeva, Nguyen (bb0125) 2021
Swart, Fyfe (bb0200) 2012; 39
Duran, England, Spence (bb0060) 2020; 47
Shang, Luo, Wang (bb0185) 2021; 12
Cai, Cowan (bb0045) 2007; 20
Banerjee, Fyfe, Polvani (bb0015) 2020; 579
Toggweiler (bb0220) 2009; 323
Kidston, Gerber (bb0115) 2010; 37
Thomas, Waugh, Gnanadesikan (bb0215) 2015; 42
Tamsitt, Drake, Morrison (bb0210) 2017; 8
Hersbach (bb0095) 2020; 146
Bracegirdle, Shuckburgh, Sallee (bb0030) 2013; 118
Bracegirdle, Holmes, Hosking (bb0035) 2020; 7
Saha (bb0170) 2014; 27
Anderson, Ali, Bradtmiller (bb0005) 2009; 323
Nguyen, Hendon, Lim (bb0145) 2018; 50
Mastyło (bb0135) 2013; 265
Saunders, Roberts, Perren (bb0175) 2018; 11
Waugh, Primeau, DeVries (bb0235) 2013; 339
Safaei Pirooz, Flay, Turner (bb0165) 2019; 32
Son, Polvani, Waugh (bb0195) 2008; 320
Fogt, Marshall (bb0080) 2020; 11
Dee (bb0050) 2011; 137
Fletcher, Moreno (bb0075) 2011; 39
Eyring (bb0065) 2016; 8
Kobayashi (bb0120) 2015; 93
Ferrari (bb0070) 2014; 513
Gelaro (bb0085) 2017; 30
Xia, Hu, Liu (bb0245) 2020; 65
Kanamitsu (bb0110) 2002; 83
Boex, Fogwill, Harrison (bb0025) 2013; 3
Swart, Fyfe, Gillett (bb0205) 2015; 28
Russell, Dixon, Gnanadesikan (bb0160) 2016; 19
Screen, Simmonds (bb0180) 2010; 464
Dong, Wang, Hou (bb0055) 2020; 33
O’Neill (bb0150) 2016; 9
Holgate, Van Dijk, Evans (bb0105) 2020; 47
Rogelj, den Elzen, Höhne (bb0155) 2016; 534
Trenberth (bb0230) 1991; 48
Mindlin, Shepherd, Vera (bb0140) 2020; 54
Biastoch, Böning, Schwarzkopf (bb0020) 2009; 462
Bakke, Paasche, Schaefer (bb0010) 2021; 11
Marshall (bb0130) 2003; 16
Tamsitt (10.1016/j.atmosres.2022.106040_bb0210) 2017; 8
Xia (10.1016/j.atmosres.2022.106040_bb0245) 2020; 65
Waugh (10.1016/j.atmosres.2022.106040_bb0235) 2013; 339
Bracegirdle (10.1016/j.atmosres.2022.106040_bb0030) 2013; 118
Yang (10.1016/j.atmosres.2022.106040_bb0250) 2020; 33
Kidston (10.1016/j.atmosres.2022.106040_bb0115) 2010; 37
Russell (10.1016/j.atmosres.2022.106040_bb0160) 2016; 19
Marshall (10.1016/j.atmosres.2022.106040_bb0130) 2003; 16
Lucas (10.1016/j.atmosres.2022.106040_bb0125) 2021
Screen (10.1016/j.atmosres.2022.106040_bb0180) 2010; 464
Rogelj (10.1016/j.atmosres.2022.106040_bb0155) 2016; 534
Son (10.1016/j.atmosres.2022.106040_bb0195) 2008; 320
Dong (10.1016/j.atmosres.2022.106040_bb0055) 2020; 33
Ho (10.1016/j.atmosres.2022.106040_bb0100) 2012; 16
Hersbach (10.1016/j.atmosres.2022.106040_bb0095) 2020; 146
Anderson (10.1016/j.atmosres.2022.106040_bb0005) 2009; 323
Kanamitsu (10.1016/j.atmosres.2022.106040_bb0110) 2002; 83
Ferrari (10.1016/j.atmosres.2022.106040_bb0070) 2014; 513
Shang (10.1016/j.atmosres.2022.106040_bb0185) 2021; 12
Swart (10.1016/j.atmosres.2022.106040_bb0200) 2012; 39
Cai (10.1016/j.atmosres.2022.106040_bb0045) 2007; 20
Safaei Pirooz (10.1016/j.atmosres.2022.106040_bb0165) 2019; 32
Waugh (10.1016/j.atmosres.2022.106040_bb0240) 2020; 47
Brown (10.1016/j.atmosres.2022.106040_bb0040) 2017; 552
Trenberth (10.1016/j.atmosres.2022.106040_bb0230) 1991; 48
Gelaro (10.1016/j.atmosres.2022.106040_bb0085) 2017; 30
Swart (10.1016/j.atmosres.2022.106040_bb0205) 2015; 28
Toggweiler (10.1016/j.atmosres.2022.106040_bb0225) 2006; 21
Mastyło (10.1016/j.atmosres.2022.106040_bb0135) 2013; 265
Biastoch (10.1016/j.atmosres.2022.106040_bb0020) 2009; 462
Eyring (10.1016/j.atmosres.2022.106040_bb0065) 2016; 8
Banerjee (10.1016/j.atmosres.2022.106040_bb0015) 2020; 579
Boex (10.1016/j.atmosres.2022.106040_bb0025) 2013; 3
Mindlin (10.1016/j.atmosres.2022.106040_bb0140) 2020; 54
O’Neill (10.1016/j.atmosres.2022.106040_bb0150) 2016; 9
Holgate (10.1016/j.atmosres.2022.106040_bb0105) 2020; 47
Bakke (10.1016/j.atmosres.2022.106040_bb0010) 2021; 11
Skinner (10.1016/j.atmosres.2022.106040_bb0190) 2010; 328
Fogt (10.1016/j.atmosres.2022.106040_bb0080) 2020; 11
Nguyen (10.1016/j.atmosres.2022.106040_bb0145) 2018; 50
Goyal (10.1016/j.atmosres.2022.106040_bb0090) 2021; 48
Kobayashi (10.1016/j.atmosres.2022.106040_bb0120) 2015; 93
Dee (10.1016/j.atmosres.2022.106040_bb0050) 2011; 137
Thomas (10.1016/j.atmosres.2022.106040_bb0215) 2015; 42
Toggweiler (10.1016/j.atmosres.2022.106040_bb0220) 2009; 323
Saha (10.1016/j.atmosres.2022.106040_bb0170) 2014; 27
Duran (10.1016/j.atmosres.2022.106040_bb0060) 2020; 47
Bracegirdle (10.1016/j.atmosres.2022.106040_bb0035) 2020; 7
Fletcher (10.1016/j.atmosres.2022.106040_bb0075) 2011; 39
Saunders (10.1016/j.atmosres.2022.106040_bb0175) 2018; 11
References_xml – volume: 20
  start-page: 681
  year: 2007
  end-page: 693
  ident: bb0045
  article-title: Trends in Southern Hemisphere circulation in IPCC AR4 models over 1950–99: ozone depletion versus greenhouse forcing
  publication-title: J. Clim.
– volume: 9
  start-page: 3461
  year: 2016
  end-page: 3482
  ident: bb0150
  article-title: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6
  publication-title: Geosci. Model Dev.
– volume: 37
  start-page: L09708
  year: 2010
  ident: bb0115
  article-title: Intermodel variability of the poleward shift of the austral jet stream in the CMIP3 integrations linked to biases in 20th century climatology
  publication-title: Geophys. Res. Lett.
– volume: 265
  start-page: 185
  year: 2013
  end-page: 207
  ident: bb0135
  article-title: Bilinear interpolation theorems and applications
  publication-title: J. Func. Analys.
– volume: 33
  start-page: 4027
  year: 2020
  end-page: 4043
  ident: bb0055
  article-title: Robustness of the recent global atmospheric reanalyses for Antarctic near-surface wind speed climatology
  publication-title: J. Clim.
– volume: 16
  start-page: 967
  year: 2012
  end-page: 982
  ident: bb0100
  article-title: The Southern Annular Mode: a comparison of indices
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 39
  start-page: L16711
  year: 2012
  ident: bb0200
  article-title: Observed and simulated changes in the Southern Hemisphere surface westerly wind-stress
  publication-title: Geophys. Res. Lett.
– volume: 33
  start-page: 5445
  year: 2020
  end-page: 5463
  ident: bb0250
  article-title: Role of Tropical variability in driving decadal shifts in the Southern Hemisphere summertime eddy-driven jet
  publication-title: J. Clim.
– volume: 32
  start-page: 14
  year: 2019
  end-page: 20
  ident: bb0165
  article-title: Effects of climate change on New Zealand design wind speeds
  publication-title: Natl. Emerg. Response
– volume: 16
  start-page: 4134
  year: 2003
  end-page: 4143
  ident: bb0130
  article-title: Trends in the Southern Annular Mode from observations and reanalyses
  publication-title: J. Clim.
– volume: 3
  start-page: 2118
  year: 2013
  ident: bb0025
  article-title: Rapid thinning of the late Pleistocene Patagonian Ice Sheet followed migration of the Southern Westerlies
  publication-title: Sci. Rep.
– volume: 47
  year: 2020
  ident: bb0240
  article-title: Contrasting recent trends in Southern Hemisphere westerlies across different ocean basins
  publication-title: Geophys. Res. Lett.
– volume: 323
  start-page: 1443
  year: 2009
  end-page: 1448
  ident: bb0005
  article-title: Wind-driven upwelling in the southern ocean and the deglacial rise in atmospheric CO
  publication-title: Science
– volume: 54
  start-page: 4399
  year: 2020
  end-page: 4421
  ident: bb0140
  article-title: Storyline description of Southern Hemisphere midlatitude circulation and precipitation response to greenhouse gas forcing
  publication-title: Clim. Dyn.
– volume: 50
  start-page: 129
  year: 2018
  end-page: 142
  ident: bb0145
  article-title: Variability of the extent of the Hadley circulation in the southern hemisphere: a regional perspective
  publication-title: Clim. Dyn.
– volume: 462
  start-page: 495
  year: 2009
  end-page: 498
  ident: bb0020
  article-title: Increase in Agulhas leakage due to poleward shift of Southern Hemisphere westerlies
  publication-title: Nature
– volume: 11
  year: 2020
  ident: bb0080
  article-title: The Southern Annular Mode: Variability, trends, and climate impacts across the Southern Hemisphere
  publication-title: WIREs Clim. Change
– volume: 8
  start-page: 172
  year: 2017
  ident: bb0210
  article-title: Spiraling pathways of global deep waters to the surface of the Southern Ocean
  publication-title: Nat. Commun.
– volume: 11
  start-page: 650
  year: 2018
  end-page: 655
  ident: bb0175
  article-title: Holocene dynamics of the Southern Hemisphere westerly winds and possible links to CO
  publication-title: Nat. Geosci.
– volume: 339
  start-page: 568
  year: 2013
  end-page: 570
  ident: bb0235
  article-title: Recent changes in the ventilation of the southern oceans
  publication-title: Science
– volume: 320
  start-page: 1486
  year: 2008
  end-page: 1489
  ident: bb0195
  article-title: The impact of stratospheric ozone recovery on the Southern Hemisphere westerly jet
  publication-title: Science
– year: 2021
  ident: bb0125
  article-title: Variability and changes to the mean meridional circulation in isentropic coordinates
  publication-title: Clim. Dyn.
– volume: 28
  start-page: 8840
  year: 2015
  end-page: 8859
  ident: bb0205
  article-title: Comparing Trends in the Southern Annular Mode and Surface Westerly Jet
  publication-title: J. Clim.
– volume: 146
  start-page: 1999
  year: 2020
  end-page: 2049
  ident: bb0095
  article-title: The ERA5 global reanalysis
  publication-title: Quart. J. Roy. Meteorol. Soc.
– volume: 579
  start-page: 544
  year: 2020
  end-page: 548
  ident: bb0015
  article-title: A pause in Southern Hemisphere circulation trends due to the Montreal Protocol
  publication-title: Nature
– volume: 12
  start-page: 112
  year: 2021
  ident: bb0185
  article-title: Ozone variation trends under different CMIP6 scenarios
  publication-title: Atmosphere
– volume: 21
  start-page: PA2005
  year: 2006
  ident: bb0225
  article-title: Midlatitude westerlies, atmospheric CO
  publication-title: Paleoceanography
– volume: 27
  start-page: 2185
  year: 2014
  end-page: 2208
  ident: bb0170
  article-title: The NCEP climate Forecast System version 2
  publication-title: J. Clim.
– volume: 47
  year: 2020
  ident: bb0105
  article-title: Local and remote drivers of Southeast Australian drought
  publication-title: Geophys. Res. Lett.
– volume: 7
  year: 2020
  ident: bb0035
  article-title: Improvements in circumpolar Southern Hemisphere extratropical atmospheric circulation in CMIP6 compared to CMIP5
  publication-title: Earth Space Sci.
– volume: 118
  start-page: 547
  year: 2013
  end-page: 562
  ident: bb0030
  article-title: Assessment of surface winds over the Atlantic, Indian, and Pacific Ocean sectors of the Southern Ocean in CMIP5 models: Historical bias, forcing response, and state dependence
  publication-title: J. Geophys. Res. Atmos.
– volume: 39
  start-page: 419
  year: 2011
  end-page: 422
  ident: bb0075
  article-title: Zonally symmetric changes in the strength and position of the Southern Westerlies drove atmospheric CO
  publication-title: Geology
– volume: 11
  start-page: 8361
  year: 2021
  ident: bb0010
  article-title: Long-term demise of sub-Antarctic glaciers modulated by the Southern Hemisphere Westerlies
  publication-title: Sci. Rep.
– volume: 552
  start-page: 45
  year: 2017
  end-page: 50
  ident: bb0040
  article-title: Greater future global warming inferred from Earth’s recent energy budget
  publication-title: Nature
– volume: 48
  year: 2021
  ident: bb0090
  article-title: Historical and projected changes in the Southern Hemisphere surface westerlies
  publication-title: Geophys. Res. Lett.
– volume: 42
  start-page: 5508
  year: 2015
  end-page: 5515
  ident: bb0215
  article-title: Southern Hemisphere extratropical circulation: recent trends and natural variability
  publication-title: Geophys. Res. Lett.
– volume: 65
  start-page: 1667
  year: 2020
  end-page: 1674
  ident: bb0245
  article-title: Comparison of trends in the Hadley circulation between CMIP6 and CMIP5
  publication-title: Sci. Bull.
– volume: 48
  start-page: 2159
  year: 1991
  end-page: 2178
  ident: bb0230
  article-title: Storm tracks in the Southern Hemisphere
  publication-title: J. Atmos. Sci.
– volume: 8
  start-page: 10539
  year: 2016
  end-page: 10583
  ident: bb0065
  article-title: Overview of the coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization
  publication-title: Geosci. Model Dev. Discuss.
– volume: 83
  start-page: 1631
  year: 2002
  end-page: 1644
  ident: bb0110
  article-title: NCEP-DOE AMIP-II Reanalysis (R-2)
  publication-title: Bull. Amer. Meteor. Soc.
– volume: 137
  start-page: 553
  year: 2011
  end-page: 597
  ident: bb0050
  article-title: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system
  publication-title: Quart. J. Roy. Meteorol. Soc.
– volume: 534
  start-page: 631
  year: 2016
  end-page: 639
  ident: bb0155
  article-title: Paris Agreement climate proposals need a boost to keep warming well below 2
  publication-title: Nature
– volume: 328
  start-page: 1147
  year: 2010
  end-page: 1151
  ident: bb0190
  article-title: Ventilation of the deep southern ocean and deglacial CO
  publication-title: Science
– volume: 323
  start-page: 1434
  year: 2009
  end-page: 1435
  ident: bb0220
  article-title: Shifting westerlies
  publication-title: Science
– volume: 93
  start-page: 5
  year: 2015
  end-page: 48
  ident: bb0120
  article-title: The JRA-55 reanalysis: General specifications and basic characteristics
  publication-title: J. Meteorol. Soc. Japan Ser.
– volume: 30
  start-page: 5419
  year: 2017
  end-page: 5454
  ident: bb0085
  article-title: The modern-era retrospective analysis for research and applications, version-2 (MERRA-2)
  publication-title: J. Clim.
– volume: 47
  year: 2020
  ident: bb0060
  article-title: Surface Ocean warming around Australia driven by interannual variability and long-term trends in Southern Hemisphere westerlies
  publication-title: Geophys. Res. Lett.
– volume: 464
  start-page: 1334
  year: 2010
  end-page: 1337
  ident: bb0180
  article-title: The central role of diminishing sea ice in recent Arctic temperature amplification
  publication-title: Nature
– volume: 513
  start-page: 179
  year: 2014
  end-page: 180
  ident: bb0070
  article-title: What goes down must come up
  publication-title: Nature
– volume: 19
  start-page: 6382
  year: 2016
  end-page: 6390
  ident: bb0160
  article-title: The Southern Hemisphere westerlies in a warming world: Propping open the door to the deep ocean
  publication-title: J. Clim.
– volume: 323
  start-page: 1443
  year: 2009
  ident: 10.1016/j.atmosres.2022.106040_bb0005
  article-title: Wind-driven upwelling in the southern ocean and the deglacial rise in atmospheric CO2
  publication-title: Science
  doi: 10.1126/science.1167441
– volume: 20
  start-page: 681
  year: 2007
  ident: 10.1016/j.atmosres.2022.106040_bb0045
  article-title: Trends in Southern Hemisphere circulation in IPCC AR4 models over 1950–99: ozone depletion versus greenhouse forcing
  publication-title: J. Clim.
  doi: 10.1175/JCLI4028.1
– volume: 323
  start-page: 1434
  year: 2009
  ident: 10.1016/j.atmosres.2022.106040_bb0220
  article-title: Shifting westerlies
  publication-title: Science
  doi: 10.1126/science.1169823
– volume: 265
  start-page: 185
  year: 2013
  ident: 10.1016/j.atmosres.2022.106040_bb0135
  article-title: Bilinear interpolation theorems and applications
  publication-title: J. Func. Analys.
  doi: 10.1016/j.jfa.2013.05.001
– volume: 48
  start-page: 2159
  year: 1991
  ident: 10.1016/j.atmosres.2022.106040_bb0230
  article-title: Storm tracks in the Southern Hemisphere
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1991)048<2159:STITSH>2.0.CO;2
– volume: 8
  start-page: 172
  year: 2017
  ident: 10.1016/j.atmosres.2022.106040_bb0210
  article-title: Spiraling pathways of global deep waters to the surface of the Southern Ocean
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00197-0
– volume: 28
  start-page: 8840
  year: 2015
  ident: 10.1016/j.atmosres.2022.106040_bb0205
  article-title: Comparing Trends in the Southern Annular Mode and Surface Westerly Jet
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-15-0334.1
– volume: 47
  year: 2020
  ident: 10.1016/j.atmosres.2022.106040_bb0105
  article-title: Local and remote drivers of Southeast Australian drought
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2020GL090238
– volume: 9
  start-page: 3461
  year: 2016
  ident: 10.1016/j.atmosres.2022.106040_bb0150
  article-title: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-9-3461-2016
– volume: 339
  start-page: 568
  year: 2013
  ident: 10.1016/j.atmosres.2022.106040_bb0235
  article-title: Recent changes in the ventilation of the southern oceans
  publication-title: Science
  doi: 10.1126/science.1225411
– volume: 21
  start-page: PA2005
  year: 2006
  ident: 10.1016/j.atmosres.2022.106040_bb0225
  article-title: Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages
  publication-title: Paleoceanography
  doi: 10.1029/2005PA001154
– volume: 32
  start-page: 14
  year: 2019
  ident: 10.1016/j.atmosres.2022.106040_bb0165
  article-title: Effects of climate change on New Zealand design wind speeds
  publication-title: Natl. Emerg. Response
– volume: 27
  start-page: 2185
  year: 2014
  ident: 10.1016/j.atmosres.2022.106040_bb0170
  article-title: The NCEP climate Forecast System version 2
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-12-00823.1
– volume: 552
  start-page: 45
  year: 2017
  ident: 10.1016/j.atmosres.2022.106040_bb0040
  article-title: Greater future global warming inferred from Earth’s recent energy budget
  publication-title: Nature
  doi: 10.1038/nature24672
– volume: 47
  year: 2020
  ident: 10.1016/j.atmosres.2022.106040_bb0240
  article-title: Contrasting recent trends in Southern Hemisphere westerlies across different ocean basins
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2020GL088890
– volume: 11
  start-page: 650
  year: 2018
  ident: 10.1016/j.atmosres.2022.106040_bb0175
  article-title: Holocene dynamics of the Southern Hemisphere westerly winds and possible links to CO2 outgassing
  publication-title: Nat. Geosci.
  doi: 10.1038/s41561-018-0186-5
– volume: 320
  start-page: 1486
  year: 2008
  ident: 10.1016/j.atmosres.2022.106040_bb0195
  article-title: The impact of stratospheric ozone recovery on the Southern Hemisphere westerly jet
  publication-title: Science
  doi: 10.1126/science.1155939
– volume: 83
  start-page: 1631
  year: 2002
  ident: 10.1016/j.atmosres.2022.106040_bb0110
  article-title: NCEP-DOE AMIP-II Reanalysis (R-2)
  publication-title: Bull. Amer. Meteor. Soc.
  doi: 10.1175/BAMS-83-11-1631
– volume: 513
  start-page: 179
  year: 2014
  ident: 10.1016/j.atmosres.2022.106040_bb0070
  article-title: What goes down must come up
  publication-title: Nature
  doi: 10.1038/513179a
– volume: 12
  start-page: 112
  year: 2021
  ident: 10.1016/j.atmosres.2022.106040_bb0185
  article-title: Ozone variation trends under different CMIP6 scenarios
  publication-title: Atmosphere
  doi: 10.3390/atmos12010112
– volume: 8
  start-page: 10539
  year: 2016
  ident: 10.1016/j.atmosres.2022.106040_bb0065
  article-title: Overview of the coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization
  publication-title: Geosci. Model Dev. Discuss.
– year: 2021
  ident: 10.1016/j.atmosres.2022.106040_bb0125
  article-title: Variability and changes to the mean meridional circulation in isentropic coordinates
  publication-title: Clim. Dyn.
– volume: 7
  year: 2020
  ident: 10.1016/j.atmosres.2022.106040_bb0035
  article-title: Improvements in circumpolar Southern Hemisphere extratropical atmospheric circulation in CMIP6 compared to CMIP5
  publication-title: Earth Space Sci.
  doi: 10.1029/2019EA001065
– volume: 579
  start-page: 544
  year: 2020
  ident: 10.1016/j.atmosres.2022.106040_bb0015
  article-title: A pause in Southern Hemisphere circulation trends due to the Montreal Protocol
  publication-title: Nature
  doi: 10.1038/s41586-020-2120-4
– volume: 137
  start-page: 553
  year: 2011
  ident: 10.1016/j.atmosres.2022.106040_bb0050
  article-title: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system
  publication-title: Quart. J. Roy. Meteorol. Soc.
  doi: 10.1002/qj.828
– volume: 16
  start-page: 4134
  year: 2003
  ident: 10.1016/j.atmosres.2022.106040_bb0130
  article-title: Trends in the Southern Annular Mode from observations and reanalyses
  publication-title: J. Clim.
  doi: 10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2
– volume: 30
  start-page: 5419
  year: 2017
  ident: 10.1016/j.atmosres.2022.106040_bb0085
  article-title: The modern-era retrospective analysis for research and applications, version-2 (MERRA-2)
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-16-0758.1
– volume: 33
  start-page: 5445
  year: 2020
  ident: 10.1016/j.atmosres.2022.106040_bb0250
  article-title: Role of Tropical variability in driving decadal shifts in the Southern Hemisphere summertime eddy-driven jet
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-19-0604.1
– volume: 11
  year: 2020
  ident: 10.1016/j.atmosres.2022.106040_bb0080
  article-title: The Southern Annular Mode: Variability, trends, and climate impacts across the Southern Hemisphere
  publication-title: WIREs Clim. Change
  doi: 10.1002/wcc.652
– volume: 464
  start-page: 1334
  year: 2010
  ident: 10.1016/j.atmosres.2022.106040_bb0180
  article-title: The central role of diminishing sea ice in recent Arctic temperature amplification
  publication-title: Nature
  doi: 10.1038/nature09051
– volume: 118
  start-page: 547
  year: 2013
  ident: 10.1016/j.atmosres.2022.106040_bb0030
  article-title: Assessment of surface winds over the Atlantic, Indian, and Pacific Ocean sectors of the Southern Ocean in CMIP5 models: Historical bias, forcing response, and state dependence
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/jgrd.50153
– volume: 328
  start-page: 1147
  year: 2010
  ident: 10.1016/j.atmosres.2022.106040_bb0190
  article-title: Ventilation of the deep southern ocean and deglacial CO2 rise
  publication-title: Science
  doi: 10.1126/science.1183627
– volume: 462
  start-page: 495
  year: 2009
  ident: 10.1016/j.atmosres.2022.106040_bb0020
  article-title: Increase in Agulhas leakage due to poleward shift of Southern Hemisphere westerlies
  publication-title: Nature
  doi: 10.1038/nature08519
– volume: 19
  start-page: 6382
  year: 2016
  ident: 10.1016/j.atmosres.2022.106040_bb0160
  article-title: The Southern Hemisphere westerlies in a warming world: Propping open the door to the deep ocean
  publication-title: J. Clim.
  doi: 10.1175/JCLI3984.1
– volume: 534
  start-page: 631
  year: 2016
  ident: 10.1016/j.atmosres.2022.106040_bb0155
  article-title: Paris Agreement climate proposals need a boost to keep warming well below 2°C
  publication-title: Nature
  doi: 10.1038/nature18307
– volume: 47
  year: 2020
  ident: 10.1016/j.atmosres.2022.106040_bb0060
  article-title: Surface Ocean warming around Australia driven by interannual variability and long-term trends in Southern Hemisphere westerlies
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2019GL086605
– volume: 16
  start-page: 967
  year: 2012
  ident: 10.1016/j.atmosres.2022.106040_bb0100
  article-title: The Southern Annular Mode: a comparison of indices
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-16-967-2012
– volume: 11
  start-page: 8361
  year: 2021
  ident: 10.1016/j.atmosres.2022.106040_bb0010
  article-title: Long-term demise of sub-Antarctic glaciers modulated by the Southern Hemisphere Westerlies
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-87317-5
– volume: 39
  start-page: 419
  year: 2011
  ident: 10.1016/j.atmosres.2022.106040_bb0075
  article-title: Zonally symmetric changes in the strength and position of the Southern Westerlies drove atmospheric CO2 variations over the past 14 k.y
  publication-title: Geology
  doi: 10.1130/G31807.1
– volume: 3
  start-page: 2118
  year: 2013
  ident: 10.1016/j.atmosres.2022.106040_bb0025
  article-title: Rapid thinning of the late Pleistocene Patagonian Ice Sheet followed migration of the Southern Westerlies
  publication-title: Sci. Rep.
  doi: 10.1038/srep02118
– volume: 33
  start-page: 4027
  year: 2020
  ident: 10.1016/j.atmosres.2022.106040_bb0055
  article-title: Robustness of the recent global atmospheric reanalyses for Antarctic near-surface wind speed climatology
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-19-0648.1
– volume: 54
  start-page: 4399
  year: 2020
  ident: 10.1016/j.atmosres.2022.106040_bb0140
  article-title: Storyline description of Southern Hemisphere midlatitude circulation and precipitation response to greenhouse gas forcing
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-020-05234-1
– volume: 93
  start-page: 5
  year: 2015
  ident: 10.1016/j.atmosres.2022.106040_bb0120
  article-title: The JRA-55 reanalysis: General specifications and basic characteristics
  publication-title: J. Meteorol. Soc. Japan Ser.
  doi: 10.2151/jmsj.2015-001
– volume: 50
  start-page: 129
  year: 2018
  ident: 10.1016/j.atmosres.2022.106040_bb0145
  article-title: Variability of the extent of the Hadley circulation in the southern hemisphere: a regional perspective
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-017-3592-2
– volume: 146
  start-page: 1999
  year: 2020
  ident: 10.1016/j.atmosres.2022.106040_bb0095
  article-title: The ERA5 global reanalysis
  publication-title: Quart. J. Roy. Meteorol. Soc.
  doi: 10.1002/qj.3803
– volume: 37
  start-page: L09708
  year: 2010
  ident: 10.1016/j.atmosres.2022.106040_bb0115
  article-title: Intermodel variability of the poleward shift of the austral jet stream in the CMIP3 integrations linked to biases in 20th century climatology
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2010GL042873
– volume: 39
  start-page: L16711
  year: 2012
  ident: 10.1016/j.atmosres.2022.106040_bb0200
  article-title: Observed and simulated changes in the Southern Hemisphere surface westerly wind-stress
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2012GL052810
– volume: 48
  year: 2021
  ident: 10.1016/j.atmosres.2022.106040_bb0090
  article-title: Historical and projected changes in the Southern Hemisphere surface westerlies
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2020GL090849
– volume: 42
  start-page: 5508
  year: 2015
  ident: 10.1016/j.atmosres.2022.106040_bb0215
  article-title: Southern Hemisphere extratropical circulation: recent trends and natural variability
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2015GL064521
– volume: 65
  start-page: 1667
  issue: 19
  year: 2020
  ident: 10.1016/j.atmosres.2022.106040_bb0245
  article-title: Comparison of trends in the Hadley circulation between CMIP6 and CMIP5
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2020.06.011
SSID ssj0005049
Score 2.560823
Snippet The Southern Hemisphere westerlies (SHWs) play a key role in regulating global climate and ocean circulation, but their future changes under low to high...
SourceID swepub
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106040
SubjectTerms atmospheric circulation
climate
Climate change
Climate models
CMIP6
convection
Coupled Model Intercomparison Project
Coupled model intercomparison project phase 6
Earth and Related Environmental Sciences
Future projections
Geovetenskap och relaterad miljövetenskap
Global climates
Greenhouse gases
Greenhouse-gas forcing
Human activities
humans
Project phasis
Southern Hemisphere
Southern Hemisphere westerlies
Southern hemisphere westerly
Warming climate
Title Changes of Southern Hemisphere westerlies in the future warming climate
URI https://dx.doi.org/10.1016/j.atmosres.2022.106040
https://www.proquest.com/docview/2636557211
https://gup.ub.gu.se/publication/314412
Volume 270
WOSCitedRecordID wos000774191300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0169-8095
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005049
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBaj3cNeRndj2Q0NRl-KM9uSrOgxlO7GWvbQQfYkZFkJKZ2dxUlX9ut3dLM91tLuYQScRJEccc4n6Zzjc0HoTUm1yVSeJdmckISWKk1KxngiDJxFFSHMVC5Q-DM_OZnMZuJLqGbfunICvK4nl5di9V9ZDW3AbBs6-w_s7m4KDfAZmA5XYDtcb8V4Hy_Q-mgU579us1kBO20CAXPgUyOA5NlGF0efVuTgp7JuMQsbKwlS7B8eQtPN98YNd_meB_YvKwGbsFuo5Q-A2qJD0C_r2pccu6JAzhxrWtV5An-LZupxjyvXaTw0Q4AG27lLRctkIeC48xUz49aa-6Igf23T3mJwBoSB6cO8x_aO0FykPnfTFSmwF9uV3JbwJlsjiVUD4eDdzTkTsJftTj8ezT71rj1B7YlTGkSGX_2f1wklQ6VjmEjWCR-ne-h-0Brw1HP7Abpj6ododAwKT7N2z0XwPj50fHPfHqH3AQW4meOIAtyjAPcowMsaw8_YowAHFOCAgsfo67uj08MPSaiZkWgQBTdJYUqe0opSXSljOMjLhZlzLRRlaQnKalkJXWlGqNaEUw0vRnQGi1LkmpWwPp-gnbqpzVOEbeEyrqgRqkzpXNu6ALkhoqqyKp8oJkaIRaJJHRLK27om5zJ6Dp7JSGxpiS09sUfobTdu5VOq3DhCRJ7IIBh6gU8CoG4c-zoyUQKR7eMwVZtmC50KUsC2lGfZCO177nbzuQZxz27b8Tm61y-SF2hns96al-iuvtgs2_WrgNff2S-jpw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Changes+of+Southern+Hemisphere+westerlies+in+the+future+warming+climate&rft.jtitle=Atmospheric+research&rft.au=Deng%2C+Kaiqiang&rft.au=Azorin-Molina%2C+Cesar&rft.au=Yang%2C+S.&rft.au=Hu%2C+C.&rft.date=2022-06-01&rft.issn=0169-8095&rft.volume=270&rft_id=info:doi/10.1016%2Fj.atmosres.2022.106040&rft.externalDocID=oai_gup_ub_gu_se_314412
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-8095&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-8095&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-8095&client=summon