Symbolic signatures for deformable shapes

Recognizing classes of objects from their shape is an unsolved problem in machine vision that entails the ability of a computer system to represent and generalize complex geometrical information on the basis of a finite amount of prior data. A practical approach to this problem is particularly diffi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence Jg. 28; H. 1; S. 75 - 90
Hauptverfasser: Ruiz-Correa, S., Shapiro, L.G., Meila, M., Berson, G., Cunningham, M.L., Sze, R.W.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Los Alamitos, CA IEEE 01.01.2006
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0162-8828, 1939-3539
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recognizing classes of objects from their shape is an unsolved problem in machine vision that entails the ability of a computer system to represent and generalize complex geometrical information on the basis of a finite amount of prior data. A practical approach to this problem is particularly difficult to implement, not only because the shape variability of relevant object classes is generally large, but also because standard sensing devices used to capture the real world only provide a partial view of a scene, so there is partial information pertaining to the objects of interest. In this work, we develop an algorithmic framework for recognizing classes of deformable shapes from range data. The basic idea of our component-based approach is to generalize existing surface representations that have proven effective in recognizing specific 3D objects to the problem of object classes using our newly introduced symbolic-signature representation that is robust to deformations, as opposed to a numeric representation that is often tied to a specific shape. Based on this approach, we present a system that is capable of recognizing and classifying a variety of object shape classes from range data. We demonstrate our system in a series of large-scale experiments that were motivated by specific applications in scene analysis and medical diagnosis.
Bibliographie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ObjectType-Undefined-1
ObjectType-Feature-3
ISSN:0162-8828
1939-3539
DOI:10.1109/TPAMI.2006.23