Artificial Intelligence Techniques for Sustainable Reconfigurable Manufacturing Systems: An AI-Powered Decision-Making Application Using Large Language Models
Artificial intelligence (AI) offers a promising avenue for developing sustainable reconfigurable manufacturing systems. Although there has been significant progress in these research areas, there seem to be no studies devoted to exploring and evaluating AI techniques for such systems. To address thi...
Gespeichert in:
| Veröffentlicht in: | Big data and cognitive computing Jg. 8; H. 11; S. 152 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.11.2024
|
| Schlagworte: | |
| ISSN: | 2504-2289, 2504-2289 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Artificial intelligence (AI) offers a promising avenue for developing sustainable reconfigurable manufacturing systems. Although there has been significant progress in these research areas, there seem to be no studies devoted to exploring and evaluating AI techniques for such systems. To address this gap, the current study aims to present a deliberation on the subject matter, with a particular focus on assessing AI techniques. For this purpose, an AI-enabled methodological approach is developed in Python, integrating fuzzy logic to effectively navigate the uncertainties inherent in evaluating the performance of techniques. The incorporation of sensitivity analysis further enables a thorough evaluation of how input variations impact decision-making outcomes. To conduct the assessment, this study provides an AI-powered decision-making application using large language models in the field of natural language processing, which has emerged as an influential branch of artificial intelligence. The findings reveal that machine learning and big data analytics as well as fuzzy logic and programming stand out as the most promising AI techniques for sustainable reconfigurable manufacturing systems. The application confirms that using fuzzy logic programming in Python as the computational foundation significantly enhances precision, efficiency, and execution time, offering critical insights that enable more timely and informed decision-making in the field. Thus, this study not only addresses a critical gap in the literature but also offers an AI-driven approach to support complex decision-making processes. |
|---|---|
| AbstractList | Artificial intelligence (AI) offers a promising avenue for developing sustainable reconfigurable manufacturing systems. Although there has been significant progress in these research areas, there seem to be no studies devoted to exploring and evaluating AI techniques for such systems. To address this gap, the current study aims to present a deliberation on the subject matter, with a particular focus on assessing AI techniques. For this purpose, an AI-enabled methodological approach is developed in Python, integrating fuzzy logic to effectively navigate the uncertainties inherent in evaluating the performance of techniques. The incorporation of sensitivity analysis further enables a thorough evaluation of how input variations impact decision-making outcomes. To conduct the assessment, this study provides an AI-powered decision-making application using large language models in the field of natural language processing, which has emerged as an influential branch of artificial intelligence. The findings reveal that machine learning and big data analytics as well as fuzzy logic and programming stand out as the most promising AI techniques for sustainable reconfigurable manufacturing systems. The application confirms that using fuzzy logic programming in Python as the computational foundation significantly enhances precision, efficiency, and execution time, offering critical insights that enable more timely and informed decision-making in the field. Thus, this study not only addresses a critical gap in the literature but also offers an AI-driven approach to support complex decision-making processes. |
| Audience | Academic |
| Author | Gholami, Hamed |
| Author_xml | – sequence: 1 givenname: Hamed orcidid: 0000-0002-1326-7201 surname: Gholami fullname: Gholami, Hamed |
| BookMark | eNptUl1v1DAQjFCRKKVP_IFIPKIUf8VxeItKgZPuBKLts7Vx1sElZx92ItQ_w2_FdweioMrSej2aGVmz-7w48cFjUbyk5ILzlrzpB2MUpYTW7ElxymoiKsZUe_Kgf1acp3RHCGFMCEnpafGzi7OzzjiYypWfcZrciN5geYPmq3ffF0ylDbG8XtIMzkM_YfkFTfDWjUs8PDfgFwtmXqLzY3l9n2bcprdl58tuVX0OPzDiUL5D45ILvtrAtz2t2-0mZ2DOUHmb9sga4oi5-nGB3GzCgFN6UTy1MCU8_32fFbfvr24uP1brTx9Wl926MoLTuZKSSmZFjb0cFCpp-6HhPRoBDKwSjINUjHOiGtIA7bloa6hFz7gc2haI5WfF6ug7BLjTu-i2EO91AKcPQIijhhyUmVArRq0ccno1tsK2bV_nPBshLevboUWZvV4dvXYx7POb9V1Yos_f15xyphRpavKXNUI2dd6GOYLZumR0p6giStaqyayLR1j5DLh1eQpoXcb_EdCjwMSQUkSrjZsPMWehmzQler8s-sGyZM3r_zR_AniM_QspjsGk |
| CitedBy_id | crossref_primary_10_1016_j_jik_2025_100751 crossref_primary_10_3390_info16080629 |
| Cites_doi | 10.1016/j.envsoft.2020.104954 10.1080/00207543.2019.1671627 10.1016/j.techfore.2020.120482 10.1080/00207543.2011.652746 10.1016/j.ijpe.2023.108873 10.1016/j.ejor.2016.01.048 10.1108/JMTM-05-2022-0206 10.1109/JAS.2023.123618 10.1080/00207543.2020.1733125 10.1016/j.procir.2016.01.067 10.1016/j.ijinfomgt.2019.05.020 10.1007/978-3-031-25928-9 10.1109/MCSE.2011.36 10.1007/978-3-030-29516-5 10.1016/j.ijpe.2010.07.018 10.1080/13675560902736537 10.1016/j.promfg.2018.10.024 10.1080/00207543.2018.1522006 10.3390/app12052338 10.1007/s00170-021-07337-3 10.1111/poms.12838 10.3390/info14080462 10.1016/j.cie.2020.106565 10.1016/j.cirpj.2015.05.008 10.1108/JEIM-06-2015-0050 10.1080/00207543.2018.1552369 10.1093/oso/9780195131581.001.0001 10.1016/j.cie.2020.106653 10.1007/s10845-023-02253-7 10.1016/j.jmsy.2011.01.001 10.3390/su11051477 10.1016/j.cirpj.2012.12.002 10.1080/00207543.2020.1766719 10.1007/978-3-030-06234-7_27 10.1016/j.ijinfomgt.2020.102133 10.3390/su132313323 10.1111/exsy.12339 10.1287/mnsc.17.4.B141 10.3390/su14105890 10.1007/s10479-020-03683-9 10.1080/00207543.2023.2233625 10.1109/JSYST.2017.2771139 10.1038/s41586-020-2649-2 10.1016/j.eswa.2019.112841 10.3390/su151712758 10.1007/978-1-4842-6901-5 10.1016/j.procir.2015.02.181 10.3390/su14169819 10.1007/978-3-642-48318-9 10.1016/j.ijpe.2019.07.012 10.1080/00207543.2018.1467059 10.1007/s11042-022-13428-4 10.1080/00207543.2018.1521022 10.1016/j.bushor.2018.03.007 10.1016/j.envsoft.2021.105226 10.1007/978-81-322-3972-7 10.1080/00207543.2020.1715503 10.1108/BIJ-06-2022-0344 10.3390/app12105172 10.1016/j.cie.2019.01.047 10.1016/j.ijpe.2019.107599 10.1080/00207543.2020.1720925 10.1007/s00170-019-04236-6 10.3390/su13179533 10.1080/00207543.2021.1950935 10.1109/MCSE.2007.55 10.1016/j.jclepro.2023.139458 10.53759/7669/jmc202101002 10.1007/s00170-020-05366-y 10.1108/TQM-10-2019-0243 10.3390/su3091323 10.3390/app13074561 10.1016/S0007-8506(07)63232-6 10.1016/j.jclepro.2022.134327 10.1016/j.omega.2019.01.004 10.1108/JMTM-06-2011-0064 10.1080/00207543.2018.1530476 10.1016/j.mechmachtheory.2008.03.006 10.1007/s40815-021-01208-5 10.1007/s00170-022-09118-y 10.1080/00207543.2019.1566674 10.22381/jsme9320215 10.1016/j.jclepro.2018.04.248 10.1016/j.eswa.2016.08.022 10.1016/j.jmsy.2018.09.005 10.1007/978-981-19-7218-8 10.1007/978-3-030-28782-5_9 10.1108/JM2-12-2022-0286 10.1016/j.promfg.2017.07.226 10.1016/j.cie.2019.106191 10.1016/j.ijinfomgt.2019.03.004 10.1016/j.promfg.2018.02.091 10.1016/j.jclepro.2012.04.014 10.1080/19397038.2019.1634157 10.1016/j.knosys.2019.05.024 10.1016/j.eswa.2020.113649 10.1142/S0219686720500031 10.1007/s00170-021-08409-0 10.1108/IMDS-04-2018-0164 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/bdcc8110152 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Health Research Premium Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College Coronavirus Research Database ProQuest Central SciTech Premium Collection ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2504-2289 |
| ExternalDocumentID | oai_doaj_org_article_821f6d4615e94f99b5000746f2b9d9e6 A818086587 10_3390_bdcc8110152 |
| GroupedDBID | 8FE 8FG AADQD AAFWJ AAYXX ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ICD ITC MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC ABUWG AZQEC COVID DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c431t-66162f45eb6d8e86fbd73bec4a2af8423a6823308707a1b3495a54b236d99a0f3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001363973500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2504-2289 |
| IngestDate | Fri Oct 03 12:34:22 EDT 2025 Fri Jul 25 23:34:02 EDT 2025 Tue Nov 11 10:50:23 EST 2025 Tue Nov 04 18:27:32 EST 2025 Tue Nov 18 22:15:35 EST 2025 Sat Nov 29 07:14:59 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c431t-66162f45eb6d8e86fbd73bec4a2af8423a6823308707a1b3495a54b236d99a0f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1326-7201 |
| OpenAccessLink | https://doaj.org/article/821f6d4615e94f99b5000746f2b9d9e6 |
| PQID | 3132880750 |
| PQPubID | 2061777 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_821f6d4615e94f99b5000746f2b9d9e6 proquest_journals_3132880750 gale_infotracmisc_A818086587 gale_infotracacademiconefile_A818086587 crossref_citationtrail_10_3390_bdcc8110152 crossref_primary_10_3390_bdcc8110152 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-11-01 |
| PublicationDateYYYYMMDD | 2024-11-01 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Big data and cognitive computing |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Delorme (ref_3) 2023; 261 ref_94 Ghanei (ref_40) 2020; 19 Hashemi (ref_80) 2022; 24 Jawahir (ref_4) 2016; 40 Pansare (ref_54) 2023; 34 Koren (ref_10) 2018; 21 Carpinetti (ref_83) 2020; 139 ref_11 Gordon (ref_42) 2021; 9 ref_98 Harris (ref_100) 2020; 585 ref_97 ref_15 Govindan (ref_102) 2013; 47 Dubey (ref_14) 2020; 226 Wang (ref_60) 2020; 58 Leung (ref_84) 2019; 57 Gholami (ref_6) 2022; 377 (ref_81) 2020; 139 ref_25 Hamani (ref_49) 2022; 120 ref_24 Mesa (ref_39) 2020; 13 Wu (ref_18) 2023; 10 Hashemi (ref_71) 2022; 21 Ojha (ref_61) 2018; 56 Mehdizadeh (ref_66) 2020; 139 Li (ref_56) 2024; 62 Grover (ref_22) 2020; 308 Li (ref_67) 2018; 192 Koren (ref_8) 2010; 29 Hariyani (ref_53) 2023; 31 ref_72 ref_70 Saltelli (ref_95) 2021; 146 Bortolini (ref_2) 2018; 49 Bi (ref_27) 2011; 3 Lee (ref_33) 2017; 11 Pedro (ref_47) 2021; 1 Razavi (ref_96) 2021; 137 Hunter (ref_101) 2007; 9 Choi (ref_23) 2018; 27 Massimi (ref_38) 2020; 108 Garbie (ref_30) 2014; 25 Thomassey (ref_65) 2010; 128 Pansare (ref_57) 2024; 19 Millman (ref_99) 2011; 13 Shokouhyar (ref_82) 2019; 36 Peukert (ref_32) 2015; 29 Shidpour (ref_68) 2016; 64 ref_89 ref_86 Gholizadeh (ref_79) 2020; 147 Min (ref_75) 2019; 49 Copani (ref_31) 2015; 11 Zanjani (ref_64) 2016; 252 Lee (ref_7) 2023; 430 Zhang (ref_91) 2019; 57 ref_50 Khettabi (ref_46) 2021; 115 Schniederjans (ref_92) 2020; 220 Mekid (ref_26) 2009; 44 ref_55 Wichmann (ref_77) 2020; 58 ref_51 Priore (ref_73) 2019; 57 Nawaz (ref_90) 2019; 180 Sabet (ref_85) 2020; 93 Koren (ref_1) 1999; 48 Muravev (ref_88) 2020; 57 ref_69 Belhadi (ref_12) 2022; 60 Huang (ref_36) 2019; 105 Chien (ref_76) 2020; 58 ref_63 Giannakis (ref_87) 2016; 29 Dhamija (ref_16) 2020; 32 Ribeiro (ref_34) 2018; 12 Huang (ref_9) 2018; 17 Min (ref_17) 2009; 13 Bottani (ref_59) 2019; 119 Azab (ref_28) 2013; 6 Wamba (ref_20) 2020; 164 Baryannis (ref_21) 2019; 57 Rostami (ref_78) 2020; 145 Garbie (ref_29) 2013; 51 Touzout (ref_35) 2019; 57 Khurana (ref_19) 2023; 82 Yazdani (ref_52) 2022; 119 ref_37 Jarrahi (ref_13) 2018; 61 Hosseini (ref_62) 2020; 161 Bellman (ref_93) 1970; 17 ref_45 ref_43 ref_41 Elhoone (ref_58) 2020; 58 ref_48 Khezri (ref_44) 2021; 59 ref_5 Cavalcante (ref_74) 2019; 49 |
| References_xml | – volume: 137 start-page: 104954 year: 2021 ident: ref_96 article-title: The future of sensitivity analysis: An essential discipline for systems modeling and policy support publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2020.104954 – volume: 58 start-page: 2841 year: 2020 ident: ref_58 article-title: Cyber-based Design for Additive Manufacturing Using Artificial Neural Networks for Industry 4.0 publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2019.1671627 – volume: 164 start-page: 120482 year: 2020 ident: ref_20 article-title: Are we Preparing for a Good AI Society? A Bibliometric Review and Research Agenda publication-title: Technol. Forecast. Soc. Change doi: 10.1016/j.techfore.2020.120482 – volume: 51 start-page: 479 year: 2013 ident: ref_29 article-title: DFSME: Design for sustainable manufacturing enterprises (An economic viewpoint) publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2011.652746 – volume: 261 start-page: 108873 year: 2023 ident: ref_3 article-title: RMS balancing and planning under uncertain demand and energy cost considerations publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2023.108873 – volume: 252 start-page: 466 year: 2016 ident: ref_64 article-title: A Hybrid Scenario Cluster Decomposition Algorithm for Supply Chain Tactical Planning Under Uncertainty publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2016.01.048 – volume: 34 start-page: 383 year: 2023 ident: ref_54 article-title: Assessment of Sustainable Development Goals through Industry 4.0 and reconfigurable manufacturing system practices publication-title: J. Manuf. Technol. Manag. doi: 10.1108/JMTM-05-2022-0206 – volume: 10 start-page: 1122 year: 2023 ident: ref_18 article-title: A brief overview of ChatGPT: The history, status quo and potential future development publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2023.123618 – volume: 58 start-page: 2784 year: 2020 ident: ref_76 article-title: Deep Reinforcement Learning for Selecting Demand Forecast Models to Empower Industry 3.5 and an Empirical Study for a Semiconductor Component Distributor publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2020.1733125 – volume: 40 start-page: 103 year: 2016 ident: ref_4 article-title: Technological elements of circular economy and the principles of 6R-based closed-loop material flow in sustainable manufacturing publication-title: Procedia CIRP doi: 10.1016/j.procir.2016.01.067 – volume: 49 start-page: 502 year: 2019 ident: ref_75 article-title: Machine learning based digital twin framework for production optimization in petrochemical industry publication-title: Int. J. Inf. Manag. doi: 10.1016/j.ijinfomgt.2019.05.020 – ident: ref_15 doi: 10.1007/978-3-031-25928-9 – volume: 13 start-page: 9 year: 2011 ident: ref_99 article-title: Python for scientists and engineers publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2011.36 – ident: ref_70 doi: 10.1007/978-3-030-29516-5 – volume: 128 start-page: 470 year: 2010 ident: ref_65 article-title: Sales Forecasts in Clothing Industry: The Key Success Factor of the Supply Chain Management publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2010.07.018 – volume: 13 start-page: 13 year: 2009 ident: ref_17 article-title: Artificial Intelligence in Supply Chain Management: Theory and Applications publication-title: Int. J. Logist. Res. Appl. doi: 10.1080/13675560902736537 – volume: 17 start-page: 1136 year: 2018 ident: ref_9 article-title: Towards developing sustainable reconfigurable manufacturing systems publication-title: Procedia Manuf. doi: 10.1016/j.promfg.2018.10.024 – ident: ref_97 – volume: 57 start-page: 2531 year: 2019 ident: ref_35 article-title: Multi-objective sustainable process plan generation in a reconfigurable manufacturing environment: Exact and adapted evolutionary approaches publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2018.1522006 – ident: ref_50 doi: 10.3390/app12052338 – volume: 115 start-page: 3741 year: 2021 ident: ref_46 article-title: Sustainable multi-objective process planning in reconfigurable manufacturing systems publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-021-07337-3 – volume: 27 start-page: 1868 year: 2018 ident: ref_23 article-title: Big Data Analytics in Operations Management publication-title: Prod. Oper. Manag. doi: 10.1111/poms.12838 – ident: ref_25 doi: 10.3390/info14080462 – volume: 145 start-page: 106565 year: 2020 ident: ref_78 article-title: A Hybrid Genetic Algorithm for Integrating Virtual Cellular Manufacturing with Supply Chain Management Considering New Product Development publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2020.106565 – volume: 11 start-page: 10 year: 2015 ident: ref_31 article-title: Innovative flexibility-oriented business models and system configuration approaches: An industrial application publication-title: CIRP J. Manuf. Sci. Technol. doi: 10.1016/j.cirpj.2015.05.008 – volume: 29 start-page: 706 year: 2016 ident: ref_87 article-title: A Multi-Agent Based System with Big Data Processing for Enhanced Supply Chain Agility publication-title: J. Enterp. Inf. Manag. doi: 10.1108/JEIM-06-2015-0050 – ident: ref_11 – volume: 57 start-page: 3663 year: 2019 ident: ref_73 article-title: Applying Machine Learning to the Dynamic Selection of Replenishment Policies in Fast-Changing Supply Chain Environments publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2018.1552369 – ident: ref_69 doi: 10.1093/oso/9780195131581.001.0001 – volume: 147 start-page: 106653 year: 2020 ident: ref_79 article-title: Robust Optimization and Modified Genetic Algorithm for a Closed Loop Green Supply Chain Under Uncertainty: Case Study in Melting Industry publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2020.106653 – ident: ref_89 doi: 10.1007/s10845-023-02253-7 – volume: 29 start-page: 130 year: 2010 ident: ref_8 article-title: Design of reconfigurable manufacturing systems publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2011.01.001 – ident: ref_37 doi: 10.3390/su11051477 – volume: 6 start-page: 110 year: 2013 ident: ref_28 article-title: Mechanics of change: A framework to reconfigure manufacturing systems publication-title: CIRP J. Manuf. Sci. Technol. doi: 10.1016/j.cirpj.2012.12.002 – volume: 59 start-page: 4533 year: 2021 ident: ref_44 article-title: Towards a sustainable reconfigurable manufacturing system (SRMS): Multi-objective based approaches for process plan generation problem publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2020.1766719 – ident: ref_63 doi: 10.1007/978-3-030-06234-7_27 – volume: 57 start-page: 102133 year: 2020 ident: ref_88 article-title: Multi-agent Optimization of the Intermodal Terminal Main Parameters by Using AnyLogic Simulation Platform: Case Study on the Ningbo-Zhoushan Port publication-title: Int. J. Inf. Manag. doi: 10.1016/j.ijinfomgt.2020.102133 – ident: ref_43 doi: 10.3390/su132313323 – volume: 36 start-page: e12339 year: 2019 ident: ref_82 article-title: Implementing a Fuzzy Expert System for Ensuring Information Technology Supply Chain publication-title: Expert Syst. doi: 10.1111/exsy.12339 – volume: 17 start-page: 141 year: 1970 ident: ref_93 article-title: Decision-making in a fuzzy environment publication-title: Manag. Sci. doi: 10.1287/mnsc.17.4.B141 – ident: ref_51 doi: 10.3390/su14105890 – volume: 308 start-page: 177 year: 2020 ident: ref_22 article-title: Understanding Artificial Intelligence Adoption in Operations Management: Insights from the Review of Academic Literature and Social Media Discussions publication-title: Ann. Oper. Res. doi: 10.1007/s10479-020-03683-9 – volume: 62 start-page: 2725 year: 2024 ident: ref_56 article-title: Realisation of responsive and sustainable reconfigurable manufacturing systems publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2023.2233625 – volume: 12 start-page: 3816 year: 2018 ident: ref_34 article-title: Transitioning from standard automation solutions to cyber-physical production systems: An assessment of critical conceptual and technical challenges publication-title: IEEE Syst. J. doi: 10.1109/JSYST.2017.2771139 – volume: 585 start-page: 357 year: 2020 ident: ref_100 article-title: Array programming with NumPy publication-title: Nature doi: 10.1038/s41586-020-2649-2 – volume: 139 start-page: 112841 year: 2020 ident: ref_81 article-title: Optimal Integration of the Facility Location Problem Into the Multi-Project Multi-Supplier Multi-Resource Construction Supply Chain Network Design Under the Vendor Managed Inventory Strategy publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.112841 – ident: ref_72 doi: 10.3390/su151712758 – ident: ref_98 doi: 10.1007/978-1-4842-6901-5 – volume: 29 start-page: 514 year: 2015 ident: ref_32 article-title: Addressing sustainability and flexibility in manufacturing via smart modular machine tool frames to support sustainable value creation publication-title: Procedia CIRP doi: 10.1016/j.procir.2015.02.181 – ident: ref_86 doi: 10.3390/su14169819 – ident: ref_94 doi: 10.1007/978-3-642-48318-9 – volume: 220 start-page: 107439 year: 2020 ident: ref_92 article-title: Supply Chain Digitisation Trends: An Integration of Knowledge Management publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2019.07.012 – volume: 56 start-page: 5795 year: 2018 ident: ref_61 article-title: Bayesian Network Modelling for Supply Chain Risk Propagation publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2018.1467059 – volume: 82 start-page: 3713 year: 2023 ident: ref_19 article-title: Natural language processing: State of the art, current trends and challenges publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-022-13428-4 – volume: 57 start-page: 2498 year: 2019 ident: ref_91 article-title: Combining MPC and Integer Operators for Capacity Adjustment in job-Shop Systems with RMTs publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2018.1521022 – volume: 61 start-page: 577 year: 2018 ident: ref_13 article-title: Artificial Intelligence and the Future of Work: Human-AI Symbiosis in Organizational Decision Making publication-title: Bus. Horiz. doi: 10.1016/j.bushor.2018.03.007 – volume: 146 start-page: 105226 year: 2021 ident: ref_95 article-title: Sensitivity analysis: A discipline coming of age publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2021.105226 – ident: ref_24 doi: 10.1007/978-81-322-3972-7 – volume: 58 start-page: 2885 year: 2020 ident: ref_60 article-title: Fuzzy Belief Propagation in Constrained Bayesian Networks with Application to Maintenance Decisions publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2020.1715503 – volume: 31 start-page: 824 year: 2023 ident: ref_53 article-title: A descriptive statistical analysis of enablers for integrated sustainable-green-lean-six sigma-agile manufacturing system (ISGLSAMS) in Indian manufacturing industries publication-title: Benchmarking Int. J. doi: 10.1108/BIJ-06-2022-0344 – ident: ref_48 doi: 10.3390/app12105172 – volume: 139 start-page: 105673 year: 2020 ident: ref_66 article-title: Integrating ABC Analysis and Rough Set Theory to Control the Inventories of Distributor in the Supply Chain of Auto Spare Parts publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2019.01.047 – volume: 226 start-page: 107599 year: 2020 ident: ref_14 article-title: Big Data Analytics and Artificial Intelligence Pathway to Operational Performance Under the Effects of Entrepreneurial Orientation and Environmental Dynamism: A Study of Manufacturing Organisations publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2019.107599 – volume: 58 start-page: 5320 year: 2020 ident: ref_77 article-title: Extracting Supply Chain Maps from News Articles Using Deep Neural Networks publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2020.1720925 – volume: 105 start-page: 813 year: 2019 ident: ref_36 article-title: Reconfigurable machine tools design for multi-part families publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-019-04236-6 – ident: ref_45 doi: 10.3390/su13179533 – volume: 60 start-page: 4487 year: 2022 ident: ref_12 article-title: Building supply-chain resilience: An artificial intelligence-based technique and decision-making framework publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2021.1950935 – volume: 9 start-page: 90 year: 2007 ident: ref_101 article-title: Matplotlib: A 2D graphics environment publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2007.55 – volume: 430 start-page: 139458 year: 2023 ident: ref_7 article-title: Sustainable Manufacturing in Industry 4.0: Pathways and Practices: A book review publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2023.139458 – volume: 1 start-page: 11 year: 2021 ident: ref_47 article-title: Design for Sustainability and Reconfigurable Manufacturing Systems-An Critical Analysis publication-title: J. Mach. Comput. doi: 10.53759/7669/jmc202101002 – volume: 108 start-page: 1997 year: 2020 ident: ref_38 article-title: A heuristic-based non-linear mixed integer approach for optimizing modularity and integrability in a sustainable reconfigurable manufacturing environment publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-020-05366-y – volume: 32 start-page: 869 year: 2020 ident: ref_16 article-title: Role of Artificial Intelligence in Operations Environment: A Review and Bibliometric Analysis publication-title: TQM J. doi: 10.1108/TQM-10-2019-0243 – volume: 3 start-page: 1323 year: 2011 ident: ref_27 article-title: Revisiting system paradigms from the viewpoint of manufacturing sustainability publication-title: Sustainability doi: 10.3390/su3091323 – ident: ref_55 doi: 10.3390/app13074561 – volume: 48 start-page: 527 year: 1999 ident: ref_1 article-title: Reconfigurable manufacturing systems publication-title: CIRP Ann. doi: 10.1016/S0007-8506(07)63232-6 – volume: 377 start-page: 134327 year: 2022 ident: ref_6 article-title: Scrutinizing state-of-the-art I4.0 technologies toward sustainable products development under fuzzy environment publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.134327 – volume: 93 start-page: 102026 year: 2020 ident: ref_85 article-title: A Strategic and Global Manufacturing Capacity Management Optimisation Model: A Scenario-Based Multi-Stage Stochastic Programming Approach publication-title: Omega doi: 10.1016/j.omega.2019.01.004 – volume: 25 start-page: 891 year: 2014 ident: ref_30 article-title: A methodology for the reconfiguration process in manufacturing systems publication-title: J. Manuf. Technol. Manag. doi: 10.1108/JMTM-06-2011-0064 – volume: 57 start-page: 2179 year: 2019 ident: ref_21 article-title: Supply Chain Risk Management and Artificial Intelligence: State of the Art and Future Research Directions publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2018.1530476 – volume: 44 start-page: 466 year: 2009 ident: ref_26 article-title: Beyond intelligent manufacturing: A new generation of flexible intelligent NC machines publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2008.03.006 – volume: 24 start-page: 1131 year: 2022 ident: ref_80 article-title: A New Direct Coefficient-Based Heuristic Algorithm for Set Covering Problems publication-title: Int. J. Fuzzy Syst. doi: 10.1007/s40815-021-01208-5 – volume: 120 start-page: 5431 year: 2022 ident: ref_49 article-title: Digital twin framework for reconfigurable manufacturing systems (RMSs): Design and simulation publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-022-09118-y – volume: 21 start-page: 313 year: 2022 ident: ref_71 article-title: A Novel Approach to Solve Cell Formation Problems with Alternative Routing Using Particle Swarm Optimisation publication-title: Transform. Bus. Econ. – volume: 57 start-page: 6528 year: 2019 ident: ref_84 article-title: A B2B Flexible Pricing Decision Support System for Managing the Request for Quotation Process Under e-Commerce Business Environment publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2019.1566674 – volume: 9 start-page: 61 year: 2021 ident: ref_42 article-title: Internet of things-based real-time production logistics, big data-driven decision-making processes, and industrial artificial intelligence in sustainable cyber-physical manufacturing systems publication-title: J. Self-Gov. Manag. Econ. doi: 10.22381/jsme9320215 – volume: 192 start-page: 751 year: 2018 ident: ref_67 article-title: Sustainability Evaluation via Variable Precision Rough Set Approach: A Photovoltaic Module Supplier Case Study publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.04.248 – volume: 64 start-page: 633 year: 2016 ident: ref_68 article-title: Group Multi-Criteria Design Concept Evaluation Using Combined Rough Set Theory and Fuzzy Set Theory publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.08.022 – volume: 49 start-page: 93 year: 2018 ident: ref_2 article-title: Reconfigurable manufacturing systems: Literature review and research trend publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2018.09.005 – ident: ref_5 doi: 10.1007/978-981-19-7218-8 – ident: ref_41 doi: 10.1007/978-3-030-28782-5_9 – volume: 19 start-page: 630 year: 2024 ident: ref_57 article-title: Exploring the significant factors of reconfigurable manufacturing system adoption in manufacturing industries publication-title: J. Model. Manag. doi: 10.1108/JM2-12-2022-0286 – volume: 11 start-page: 1085 year: 2017 ident: ref_33 article-title: The development of simulation model for self-reconfigurable manufacturing system considering sustainability factors publication-title: Procedia Manuf. doi: 10.1016/j.promfg.2017.07.226 – volume: 139 start-page: 106191 year: 2020 ident: ref_83 article-title: An Adaptive Network-Based Fuzzy Inference System to Supply Chain Performance Evaluation Based on SCOR® Metrics publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2019.106191 – volume: 49 start-page: 86 year: 2019 ident: ref_74 article-title: A Supervised Machine Learning Approach to Data-Driven Simulation of Resilient Supplier Selection in Digital Manufacturing publication-title: Int. J. Inf. Manag. doi: 10.1016/j.ijinfomgt.2019.03.004 – volume: 21 start-page: 26 year: 2018 ident: ref_10 article-title: Sustainable living factories for next generation manufacturing publication-title: Procedia Manuf. doi: 10.1016/j.promfg.2018.02.091 – volume: 47 start-page: 345 year: 2013 ident: ref_102 article-title: A fuzzy multi criteria approach for measuring sustainability performance of a supplier based on triple bottom line approach publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2012.04.014 – volume: 13 start-page: 108 year: 2020 ident: ref_39 article-title: Modular architecture principles–MAPs: A key factor in the development of sustainable open architecture products publication-title: Int. J. Sustain. Eng. doi: 10.1080/19397038.2019.1634157 – volume: 180 start-page: 133 year: 2019 ident: ref_90 article-title: PERCEPTUS: Predictive Complex Event Processing and Reasoning for IoT-Enabled Supply Chain publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.05.024 – volume: 161 start-page: 113649 year: 2020 ident: ref_62 article-title: Bayesian Networks for Supply Chain Risk, Resilience and Ripple Effect Analysis: A Literature Review publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113649 – volume: 19 start-page: 31 year: 2020 ident: ref_40 article-title: An integrated multi-period layout planning and scheduling model for sustainable reconfigurable manufacturing systems publication-title: J. Adv. Manuf. Syst. doi: 10.1142/S0219686720500031 – volume: 119 start-page: 4519 year: 2022 ident: ref_52 article-title: Process and production planning for sustainable reconfigurable manufacturing systems (SRMSs): Multi-objective exact and heuristic-based approaches publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-021-08409-0 – volume: 119 start-page: 698 year: 2019 ident: ref_59 article-title: Modelling Wholesale Distribution Operations: An Artificial Intelligence Framework publication-title: Ind. Manag. Data Syst. doi: 10.1108/IMDS-04-2018-0164 |
| SSID | ssj0002244611 |
| Score | 2.2998447 |
| Snippet | Artificial intelligence (AI) offers a promising avenue for developing sustainable reconfigurable manufacturing systems. Although there has been significant... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 152 |
| SubjectTerms | Adaptability AI-enabled decision-making Algorithms Artificial intelligence Big data Decision making Flexibility Fuzzy logic Fuzzy systems Impact analysis intelligent fuzzy systems Large language models Logic programming Machine learning Manufacturing Methods Modularity Natural language processing Natural resources Performance evaluation Python reconfigurable manufacturing systems Reconfiguration Sensitivity analysis Supply chains Sustainable development sustainable manufacturing 4.0 Uncertainty analysis |
| SummonAdditionalLinks | – databaseName: Publicly Available Content Database dbid: PIMPY link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELagy4ELDwGisCAfVkJCsprYiWNzQeGxotJ2VYkFLafIj3i10irdbVp-Dr-VGcdttxJw4hIp8RwceTwPe-b7CDmqKucR5YVl3JasgISZ6SAEs7rIvAvOukgG8_2kOj1V5-d6ntqj-1RWubGJ0VAPaM9Ytw1GeOIXDk_MJwg4qBBHN3t_fcOQQwrvWhOhxl1ygMBb2YgczKez-Y_tmQu4q0Lm-dCmJyDbn1jvnAIPmJd8zzFF_P6_Wenoeo4f_t9JPyIPUghK60FnHpM7bfeE_MLXAU2CTm_BdNKzDchrTyG-pV93DVcUU9cuXF6sl_F1Zro19knExkeaoNDf0bqj9ZTNkY2t9fRT4vRhs0iDRevdBTqN5Qv0BGvT4Tmco1Ika7vqn5Jvx5_PPn5hibuBOQhJVgzcvuShKFsrvWqVDNZXAvSlMNwEBTGckYoLhCPMKpNbAXmaKQvLhfRamyyIZ2TULbr2OaGh1BxMDQdLaAqvW2OldUKG3JRGi1COydvNwjUuAZsjv8ZVAwkOrnJza5XH5GgrfD3gefxZ7ANqwFYEQbjjh8Xyokl7ulE8D9KDRpWtLoLWtowRmQzcapinHJM3qD8NmgqYkDOp4wF-C0G3mhr77BWEgNWYHO5JwhZ3-8Mb9WqSiembnTa9-PfwS3KfQyQ2NFAektFquW5fkXvu5-qyX75Oe-Q3mNcj3A priority: 102 providerName: ProQuest |
| Title | Artificial Intelligence Techniques for Sustainable Reconfigurable Manufacturing Systems: An AI-Powered Decision-Making Application Using Large Language Models |
| URI | https://www.proquest.com/docview/3132880750 https://doaj.org/article/821f6d4615e94f99b5000746f2b9d9e6 |
| Volume | 8 |
| WOSCitedRecordID | wos001363973500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2504-2289 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002244611 issn: 2504-2289 databaseCode: DOA dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2504-2289 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002244611 issn: 2504-2289 databaseCode: M~E dateStart: 20170101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 2504-2289 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002244611 issn: 2504-2289 databaseCode: P5Z dateStart: 20171201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2504-2289 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002244611 issn: 2504-2289 databaseCode: BENPR dateStart: 20171201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2504-2289 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002244611 issn: 2504-2289 databaseCode: PIMPY dateStart: 20171201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA9SPXgRRcWnteRQEITQ3WSTTbxttcUHfY9Fq1QvIR-bUimrvA__HP9WZ7L72vdA8eIlkGwO2cxMZmY38_sRcljXISLKCyu4l6yChJmZJATzpipiSMGHTAbz-ayez_XFhWm3qL7wTtgADzxs3JHmZVKxAsfbmSoZ42V2eypxb6LpMth2UZutZOpbBnWBNKcsh4I8AXn9kY8haPB1peQ7Ligj9f_tPM5O5vQheTBGh7QZVvWI3On6x-QXdgegBzrdQtCk5xv81SWF0JN-vK2FophV9unqcr3I3Znr11jCkGsS6YhS_oY2PW2mrEWitC7SdyPdDptlhira3P7bpvlmAT3Da-PQDp84KfKoXS-fkE-nJ-dv37ORVoEFiBZWDDyy4qmSnVdRd1olH2sBoqwcd0lDeOWU5gKRAovalV5ACuVk5blQ0RhXJPGU7PXf--4ZoUkaDqcAh0PKVSAN55UPQqXSSWdEkhPyerPTNoyY40h9cW0h90Cx2C2xTMjhzeQfA9TGn6cdo8hupiA-dh4ArbGj1th_ac2EvEKBW7RiWFBwYzECvBbiYdkGS-A1RGf1hOzvzATrC7uPNypjR-tfWoTD1IjyXDz_H4t9Qe5zCKWGCsh9srdarLuX5F74ubpaLg7I3eOTefvhIBsAtK38CmPtdNZ--Q0XCAxf |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ba9RAFB7qVtAXL6i4tuo8VAQhNJlJJhlBJFpLl-4uC65Sn8a5ZEqhZNvNruKf8Sf4Gz0nl90uqG998CWQzBAyky_nMpnzfYTspal1yPIShMwkQQwJcyA954GRceist8bWYjCfh-l4nJ2cyMkW-dXVwuC2ys4m1obazSyuke8jxWCGzLnh24vLAFWj8O9qJ6HRwOK4-PEdUrbqzeAA3u8Lxg4_TN8fBa2qQGDBWS4CcEiC-TgpjHBZkQlvXMphJLFm2mcQXWiRMY5EeWGqI8Mhg9BJbBgXTkodeg73vUG2YwB72CPbk8Fo8mW1qgMOMRZR1BQCci7DfeOszcDHRgnbcH21QsDf_EDt3A7v_m_Tco_cacNomje4v0-2ivIB-YmnDSMGHVyhGqXTjqi2ohCj04_rojGK6Xfpz06X8_p0pMsl1nrUxZu0pXN_TfOS5oNggopyhaMHrS5RMKqlvGi-3gRA6y0YdIj76-HYrAVTFJw7rx6ST9cyJY9Ir5yVxWNCfSIZmEsG1lzHThbaCGO58JFOtOQ-6ZNXHTSUbcnZUSPkXEGShjhSV3DUJ3urzhcNJ8mfu71DjK26IJF4fWE2P1WtXVIZi7xwgNmkkLGX0iR1VCk8MxKeU_TJS0SoQnMHD2R1W7UBw0LiMJUjV0AGYWzaJ7sbPcFM2c3mDsCqNZOVWqP3yb-bn5NbR9PRUA0H4-MdcptBZNkUhO6S3mK-LJ6Sm_bb4qyaP2u_SEq-XjfafwM1MnPn |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ba9RAFB7qVsSXqqi4tuo8VAQhbDKTTDKCSOp2cel2WbRK36ZzyZRCyda9KP4Zf4i_znNy2e2C-tYHXwJJhpBJvpzL5JzvI2Q_Ta1DlpcgZCYJYkiYA-k5D4yMQ2e9NbYSg_kySsfj7PRUTrbIr7YXBssqW5tYGWo3tbhG3kOKwQyZc8Oeb8oiJv3Bu6uvASpI4Z_WVk6jhshR8eM7pG_zt8M-vOuXjA0OT95_CBqFgcCC41wE4JwE83FSGOGyIhPeuJTDrGLNtM8g0tAiYxxJ88JUR4ZDNqGT2DAunJQ69Byue4tspxySng7ZPjgcTz6uVnjAOcYiiuqmQM5l2DPO2gz8bZSwDTdYqQX8zSdUjm5w739-RPfJThNe07z-Hh6QraJ8SH7ibs2UQYfXKEjpSUtgO6cQu9NP62Yyiml56S_Ol7Nq91iXS-wBqZo6aUPz_obmJc2HwQSV5gpH-41eUXBcSXzRfF0cQKvSDDrCunvY1mvEFIXoLuePyOcbeSSPSaeclsUTQn0iGZhRBlZex04W2ghjufCRTrTkPumS1y1MlG1I21E75FJB8oaYUtcw1SX7q8FXNVfJn4cdIN5WQ5BgvDownZ2rxl6pjEVeOMBvUsjYS2mSKtoUnhkJ9ym65BWiVaEZhBuyuunmgGkhoZjKkUMgg_A27ZK9jZFgvuzm6RbMqjGfc7VG8tN_n35B7gDE1Wg4PtoldxkEnHWf6B7pLGbL4hm5bb8tLuaz583HScnZTYP9N1XafIE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence+Techniques+for+Sustainable+Reconfigurable+Manufacturing+Systems%3A+An+AI-Powered+Decision-Making+Application+Using+Large+Language+Models&rft.jtitle=Big+data+and+cognitive+computing&rft.au=Gholami%2C+Hamed&rft.date=2024-11-01&rft.issn=2504-2289&rft.eissn=2504-2289&rft.volume=8&rft.issue=11&rft.spage=152&rft_id=info:doi/10.3390%2Fbdcc8110152&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_bdcc8110152 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-2289&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-2289&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-2289&client=summon |