GENERAL BOUNDARY-ELEMENT METHOD FOR UNSTEADY NONLINEAR HEAT TRANSFER PROBLEMS

The general boundary-element method (BEM) for strongly nonlinear problems proposed in \[1 - 3] is further applied to solve a two-dimensional (2D), unsteady, nonlinear heat transfer problem in the time domain, governed by the parabolic heat conduction equation with temperature-dependent thermal condu...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Numerical heat transfer. Part B, Fundamentals Ročník 35; číslo 2; s. 225 - 242
Hlavný autor: Liao, Shi-Jun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Philadelphia, PA Informa UK Ltd 01.03.1999
Taylor & Francis
Predmet:
ISSN:1040-7790, 1521-0626
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The general boundary-element method (BEM) for strongly nonlinear problems proposed in \[1 - 3] is further applied to solve a two-dimensional (2D), unsteady, nonlinear heat transfer problem in the time domain, governed by the parabolic heat conduction equation with temperature-dependent thermal conductivity coefficients that are different in the x and y directions. This article shows that the general BEM is valid to solve even those nonlinear unsteady heat transfer problems whose governing equations do not contain any linear terms in the spatial derivatives. This demonstrates the validity and the great potential of the general BEM.
ISSN:1040-7790
1521-0626
DOI:10.1080/104077999275965