GENERAL BOUNDARY-ELEMENT METHOD FOR UNSTEADY NONLINEAR HEAT TRANSFER PROBLEMS

The general boundary-element method (BEM) for strongly nonlinear problems proposed in \[1 - 3] is further applied to solve a two-dimensional (2D), unsteady, nonlinear heat transfer problem in the time domain, governed by the parabolic heat conduction equation with temperature-dependent thermal condu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerical heat transfer. Part B, Fundamentals Ročník 35; číslo 2; s. 225 - 242
Hlavní autor: Liao, Shi-Jun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia, PA Informa UK Ltd 01.03.1999
Taylor & Francis
Témata:
ISSN:1040-7790, 1521-0626
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The general boundary-element method (BEM) for strongly nonlinear problems proposed in \[1 - 3] is further applied to solve a two-dimensional (2D), unsteady, nonlinear heat transfer problem in the time domain, governed by the parabolic heat conduction equation with temperature-dependent thermal conductivity coefficients that are different in the x and y directions. This article shows that the general BEM is valid to solve even those nonlinear unsteady heat transfer problems whose governing equations do not contain any linear terms in the spatial derivatives. This demonstrates the validity and the great potential of the general BEM.
ISSN:1040-7790
1521-0626
DOI:10.1080/104077999275965