GENERAL BOUNDARY-ELEMENT METHOD FOR UNSTEADY NONLINEAR HEAT TRANSFER PROBLEMS
The general boundary-element method (BEM) for strongly nonlinear problems proposed in \[1 - 3] is further applied to solve a two-dimensional (2D), unsteady, nonlinear heat transfer problem in the time domain, governed by the parabolic heat conduction equation with temperature-dependent thermal condu...
Uloženo v:
| Vydáno v: | Numerical heat transfer. Part B, Fundamentals Ročník 35; číslo 2; s. 225 - 242 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Philadelphia, PA
Informa UK Ltd
01.03.1999
Taylor & Francis |
| Témata: | |
| ISSN: | 1040-7790, 1521-0626 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The general boundary-element method (BEM) for strongly nonlinear problems proposed in \[1 - 3] is further applied to solve a two-dimensional (2D), unsteady, nonlinear heat transfer problem in the time domain, governed by the parabolic heat conduction equation with temperature-dependent thermal conductivity coefficients that are different in the x and y directions. This article shows that the general BEM is valid to solve even those nonlinear unsteady heat transfer problems whose governing equations do not contain any linear terms in the spatial derivatives. This demonstrates the validity and the great potential of the general BEM. |
|---|---|
| ISSN: | 1040-7790 1521-0626 |
| DOI: | 10.1080/104077999275965 |