Covariance matrix adaptation for multi-objective optimization

The covariance matrix adaptation evolution strategy (CMA-ES) is one of the most powerful evolutionary algorithms for real-valued single-objective optimization. In this paper, we develop a variant of the CMA-ES for multi-objective optimization (MOO). We first introduce a single-objective, elitist CMA...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Evolutionary computation Ročník 15; číslo 1; s. 1
Hlavní autoři: Igel, Christian, Hansen, Nikolaus, Roth, Stefan
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 01.03.2007
Témata:
ISSN:1063-6560
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The covariance matrix adaptation evolution strategy (CMA-ES) is one of the most powerful evolutionary algorithms for real-valued single-objective optimization. In this paper, we develop a variant of the CMA-ES for multi-objective optimization (MOO). We first introduce a single-objective, elitist CMA-ES using plus-selection and step size control based on a success rule. This algorithm is compared to the standard CMA-ES. The elitist CMA-ES turns out to be slightly faster on unimodal functions, but is more prone to getting stuck in sub-optimal local minima. In the new multi-objective CMAES (MO-CMA-ES) a population of individuals that adapt their search strategy as in the elitist CMA-ES is maintained. These are subject to multi-objective selection. The selection is based on non-dominated sorting using either the crowding-distance or the contributing hypervolume as second sorting criterion. Both the elitist single-objective CMA-ES and the MO-CMA-ES inherit important invariance properties, in particular invariance against rotation of the search space, from the original CMA-ES. The benefits of the new MO-CMA-ES in comparison to the well-known NSGA-II and to NSDE, a multi-objective differential evolution algorithm, are experimentally shown.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1063-6560
DOI:10.1162/evco.2007.15.1.1