Finding all nondominated points of multi-objective integer programs

We develop exact algorithms for multi-objective integer programming (MIP) problems. The algorithms iteratively generate nondominated points and exclude the regions that are dominated by the previously-generated nondominated points. One algorithm generates new points by solving models with additional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of global optimization Jg. 57; H. 2; S. 347 - 365
Hauptverfasser: Lokman, Banu, Köksalan, Murat
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Boston Springer US 01.10.2013
Springer
Springer Nature B.V
Schlagworte:
ISSN:0925-5001, 1573-2916
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop exact algorithms for multi-objective integer programming (MIP) problems. The algorithms iteratively generate nondominated points and exclude the regions that are dominated by the previously-generated nondominated points. One algorithm generates new points by solving models with additional binary variables and constraints. The other algorithm employs a search procedure and solves a number of models to find the next point avoiding any additional binary variables. Both algorithms guarantee to find all nondominated points for any MIP problem. We test the performance of the algorithms on randomly-generated instances of the multi-objective knapsack, multi-objective shortest path and multi-objective spanning tree problems. The computational results show that the algorithms work well.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0925-5001
1573-2916
DOI:10.1007/s10898-012-9955-7