Life cycle assessment of greenhouse gas emissions and water-energy optimization for shale gas supply chain planning based on multi-level approach: Case study in Barnett, Marcellus, Fayetteville, and Haynesville shales
•Detailed model developed for the shale gas supply chain system in the US.•Dynamic integration of multi-level programming and life cycle assessment.•Analysis of the objectives with environmental, economic and energy concerns.•Identification of GHG emissions and water-energy consumption at life cycle...
Uložené v:
| Vydané v: | Energy conversion and management Ročník 134; s. 382 - 398 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Oxford
Elsevier Ltd
15.02.2017
Elsevier Science Ltd |
| Predmet: | |
| ISSN: | 0196-8904, 1879-2227 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •Detailed model developed for the shale gas supply chain system in the US.•Dynamic integration of multi-level programming and life cycle assessment.•Analysis of the objectives with environmental, economic and energy concerns.•Identification of GHG emissions and water-energy consumption at life cycle stages.•Comparison of management performances obtained from the MLP, MOP, and BLP methods.
This study develops a multi-level programming model from a life cycle perspective for performing shale-gas supply chain system. A set of leader-follower-interactive objectives with emphases of environmental, economic and energy concerns are incorporated into the synergistic optimization process, named MGU-MEM-MWL model. The upper-level model quantitatively investigates the life-cycle greenhouse gas (GHG) emissions as controlled by the environmental sector. The middle-level one focuses exclusively on system benefits as determined by the energy sector. The lower-level one aims to recycle water to minimize the life-cycle water supply as required by the enterprises. The capabilities and effectiveness of the developed model are illustrated through real-world case studies of the Barnett, Marcellus, Fayetteville, and Haynesville Shales in the US. An improved multi-level interactive solution algorithm based on satisfactory degree is then presented to improve computational efficiency. Results indicate that: (a) the end-use phase (i.e., gas utilization for electricity generation) would not only dominate the life-cycle GHG emissions, but also account for 76.1% of the life-cycle system profits; (b) operations associated with well hydraulic fracturing would be the largest contributor to the life-cycle freshwater consumption when gas use is not considered, and a majority of freshwater withdrawal would be supplied by surface water; (c) nearly 95% of flowback water would be recycled for hydraulic fracturing activities and only about 5% of flowback water would be treated via CWT facilities in the Marcellus, while most of the wastewater generated from the drilling, fracturing and production operations would be treated via underground injection control wells in the other shale plays. Moreover, the performance of the MGU-MEM-MWL model is enhanced by comparing with the three bi-level programs and the multi-objective approach. Results demonstrate that the MGU-MEM-MWL decisions would provide much comprehensive and systematic policies when considering the hierarchical structure within the shale-gas system. |
|---|---|
| AbstractList | This study develops a multi-level programming model from a life cycle perspective for performing shale-gas supply chain system. A set of leader-follower-interactive objectives with emphases of environmental, economic and energy concerns are incorporated into the synergistic optimization process, named MGU-MEM-MWL model. The upper-level model quantitatively investigates the life-cycle greenhouse gas (GHG) emissions as controlled by the environmental sector. The middle-level one focuses exclusively on system benefits as determined by the energy sector. The lower-level one aims to recycle water to minimize the life-cycle water supply as required by the enterprises. The capabilities and effectiveness of the developed model are illustrated through real-world case studies of the Barnett, Marcellus, Fayetteville, and Haynesville Shales in the US. An improved multi-level interactive solution algorithm based on satisfactory degree is then presented to improve computational efficiency. Results indicate that: (a) the end-use phase (i.e., gas utilization for electricity generation) would not only dominate the life-cycle GHG emissions, but also account for 76.1% of the life-cycle system profits; (b) operations associated with well hydraulic fracturing would be the largest contributor to the life-cycle freshwater consumption when gas use is not considered, and a majority of freshwater withdrawal would be supplied by surface water; (c) nearly 95% of flowback water would be recycled for hydraulic fracturing activities and only about 5% of flowback water would be treated via CWT facilities in the Marcellus, while most of the wastewater generated from the drilling, fracturing and production operations would be treated via underground injection control wells in the other shale plays. Moreover, the performance of the MGU-MEM-MWL model is enhanced by comparing with the three bi-level programs and the multi-objective approach. Results demonstrate that the MGU-MEM-MWL decisions would provide much comprehensive and systematic policies when considering the hierarchical structure within the shale-gas system. •Detailed model developed for the shale gas supply chain system in the US.•Dynamic integration of multi-level programming and life cycle assessment.•Analysis of the objectives with environmental, economic and energy concerns.•Identification of GHG emissions and water-energy consumption at life cycle stages.•Comparison of management performances obtained from the MLP, MOP, and BLP methods. This study develops a multi-level programming model from a life cycle perspective for performing shale-gas supply chain system. A set of leader-follower-interactive objectives with emphases of environmental, economic and energy concerns are incorporated into the synergistic optimization process, named MGU-MEM-MWL model. The upper-level model quantitatively investigates the life-cycle greenhouse gas (GHG) emissions as controlled by the environmental sector. The middle-level one focuses exclusively on system benefits as determined by the energy sector. The lower-level one aims to recycle water to minimize the life-cycle water supply as required by the enterprises. The capabilities and effectiveness of the developed model are illustrated through real-world case studies of the Barnett, Marcellus, Fayetteville, and Haynesville Shales in the US. An improved multi-level interactive solution algorithm based on satisfactory degree is then presented to improve computational efficiency. Results indicate that: (a) the end-use phase (i.e., gas utilization for electricity generation) would not only dominate the life-cycle GHG emissions, but also account for 76.1% of the life-cycle system profits; (b) operations associated with well hydraulic fracturing would be the largest contributor to the life-cycle freshwater consumption when gas use is not considered, and a majority of freshwater withdrawal would be supplied by surface water; (c) nearly 95% of flowback water would be recycled for hydraulic fracturing activities and only about 5% of flowback water would be treated via CWT facilities in the Marcellus, while most of the wastewater generated from the drilling, fracturing and production operations would be treated via underground injection control wells in the other shale plays. Moreover, the performance of the MGU-MEM-MWL model is enhanced by comparing with the three bi-level programs and the multi-objective approach. Results demonstrate that the MGU-MEM-MWL decisions would provide much comprehensive and systematic policies when considering the hierarchical structure within the shale-gas system. |
| Author | Lu, Hongwei Li, Jing Guan, Yanlong He, Li Chen, Yizhong |
| Author_xml | – sequence: 1 givenname: Yizhong surname: Chen fullname: Chen, Yizhong organization: School of Renewable Energy, North China Electric Power University, Beijing 102206, China – sequence: 2 givenname: Li surname: He fullname: He, Li email: li.he@ncepu.edu.cn organization: State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China – sequence: 3 givenname: Yanlong surname: Guan fullname: Guan, Yanlong organization: School of Renewable Energy, North China Electric Power University, Beijing 102206, China – sequence: 4 givenname: Hongwei surname: Lu fullname: Lu, Hongwei organization: State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China – sequence: 5 givenname: Jing surname: Li fullname: Li, Jing organization: School of Renewable Energy, North China Electric Power University, Beijing 102206, China |
| BookMark | eNqFkc2O0zAUhSM0SHQGXgFZYsNiUvyTNg1iAVQMg1TEBtbWrXPTunLs4OsUhTflbXBb2MxmVpbv_Y59dM51ceWDx6J4KfhccLF8c5ijN8H34Ocy3-dCzrlonhQzsaqbUkpZXxWzPFmWq4ZXz4progPnXC34clb82dgOmZmMQwZESNSjTyx0bBcR_T6MhGwHxLC3RDZ4YuBb9gsSxhI9xt3EwpBsb39DymvWhchoD-6ionEY3MTMHqxngwPvrd-xLRC2LMP96JItHR7RMRiGGMDs37J1XjNKYzuxrPoI0WNKt-wrRIPOjXTL7mDKIzxa5_D2bOgeJo90Hly-p-fF0w4c4Yt_503x4-7T9_V9ufn2-cv6w6Y0lRKprFBUW6wb3Kp2tVipBqHrKtFsW5Ac1ZKLtgGeg-am7rDratXCViyEAlmjqhbqpnh9eTfb_zkiJZ2TOhkFjzk9LU9ZN4rLE_rqAXoIY_TZXaZkVa1qVTWZWl4oEwNRxE4P0fYQJy24PjWuD_p_4_rUuBZS536z8N0DobHp3EqKYN3j8vcXOea0jhajJmMzia2NaJJug33sib-erNO4 |
| CitedBy_id | crossref_primary_10_1016_j_jclepro_2023_136185 crossref_primary_10_1155_2021_5545307 crossref_primary_10_1007_s10668_021_01232_3 crossref_primary_10_1007_s00366_020_01277_4 crossref_primary_10_1016_j_energy_2018_12_045 crossref_primary_10_1016_j_tsep_2024_102492 crossref_primary_10_1016_j_ijepes_2018_08_019 crossref_primary_10_1016_j_jclepro_2021_129802 crossref_primary_10_1007_s11356_018_2544_7 crossref_primary_10_1016_j_fuel_2021_120542 crossref_primary_10_1016_j_scitotenv_2021_146525 crossref_primary_10_1016_j_nexus_2025_100503 crossref_primary_10_3389_fpsyg_2021_663199 crossref_primary_10_1016_j_matcom_2021_04_006 crossref_primary_10_3389_fenrg_2021_730526 crossref_primary_10_1016_j_egyr_2021_03_027 crossref_primary_10_1016_j_jhydrol_2018_02_033 crossref_primary_10_1016_j_rser_2019_06_013 crossref_primary_10_1007_s10973_021_10777_4 crossref_primary_10_1007_s00366_021_01454_z crossref_primary_10_1016_j_ijepes_2021_107066 crossref_primary_10_1016_j_gloei_2023_10_010 crossref_primary_10_1016_j_enpol_2020_111750 crossref_primary_10_1080_15435075_2018_1531872 crossref_primary_10_1016_j_apenergy_2022_120008 crossref_primary_10_1007_s11356_019_05902_8 crossref_primary_10_3390_su10082845 crossref_primary_10_1080_10916466_2024_2387161 crossref_primary_10_1016_j_egyr_2021_06_080 crossref_primary_10_1016_j_eswa_2021_115499 crossref_primary_10_1016_j_seta_2022_102951 crossref_primary_10_1016_j_actaastro_2023_03_029 crossref_primary_10_1016_j_apm_2018_08_030 crossref_primary_10_3389_fenvs_2023_1139565 crossref_primary_10_1029_2023WR035373 crossref_primary_10_32604_cmc_2021_018872 crossref_primary_10_1016_j_energy_2019_06_104 crossref_primary_10_1016_j_knosys_2021_107529 crossref_primary_10_1007_s11269_020_02727_w crossref_primary_10_1016_j_energy_2020_117770 crossref_primary_10_1007_s10098_019_01801_1 crossref_primary_10_1007_s11356_019_05703_z crossref_primary_10_1016_j_jenvman_2017_11_059 crossref_primary_10_1007_s00366_020_01215_4 crossref_primary_10_1007_s42823_022_00338_6 crossref_primary_10_1016_j_catena_2019_104340 crossref_primary_10_1016_j_jclepro_2017_12_174 crossref_primary_10_1016_j_jclepro_2021_126672 crossref_primary_10_1007_s11356_021_16180_8 crossref_primary_10_1016_j_jngse_2018_02_018 crossref_primary_10_1016_j_enconman_2020_112572 crossref_primary_10_1002_rra_4335 crossref_primary_10_1016_j_knosys_2020_106728 crossref_primary_10_1007_s13369_023_08506_0 crossref_primary_10_1109_ACCESS_2021_3052800 crossref_primary_10_3390_ma15062140 crossref_primary_10_1007_s13762_022_03935_0 crossref_primary_10_1016_j_resconrec_2022_106823 crossref_primary_10_3390_w13152131 crossref_primary_10_1061__ASCE_HE_1943_5584_0001823 crossref_primary_10_1016_j_jclepro_2019_119658 crossref_primary_10_1007_s00366_020_01228_z crossref_primary_10_1016_j_scitotenv_2024_174407 crossref_primary_10_1155_2022_5261762 crossref_primary_10_1016_j_measurement_2020_108837 crossref_primary_10_1007_s00366_021_01288_9 crossref_primary_10_1007_s00477_020_01819_8 crossref_primary_10_15406_ijh_2017_01_00027 crossref_primary_10_1007_s11356_021_14688_7 crossref_primary_10_1016_j_cep_2021_108396 crossref_primary_10_1016_j_psep_2021_04_039 crossref_primary_10_1155_2021_5569701 crossref_primary_10_1007_s13762_019_02211_y crossref_primary_10_1016_j_energy_2017_03_092 crossref_primary_10_1016_j_jclepro_2021_128325 crossref_primary_10_1016_j_fuel_2018_05_012 crossref_primary_10_1016_j_eswa_2021_115079 crossref_primary_10_1007_s13369_021_05679_4 crossref_primary_10_3390_en12193599 crossref_primary_10_1016_j_egyr_2021_05_034 crossref_primary_10_1108_JIMA_04_2020_0092 crossref_primary_10_1007_s10973_021_10748_9 crossref_primary_10_1007_s11468_021_01399_5 crossref_primary_10_1016_j_jenvman_2021_112067 crossref_primary_10_1016_j_energy_2021_120136 crossref_primary_10_1016_j_chemosphere_2021_132124 crossref_primary_10_1016_j_jclepro_2019_119402 crossref_primary_10_3390_su13042336 crossref_primary_10_3390_en11071787 crossref_primary_10_1007_s00366_021_01310_0 crossref_primary_10_1016_j_apenergy_2021_117352 crossref_primary_10_1007_s11831_025_10293_w crossref_primary_10_1016_j_jclepro_2024_140644 crossref_primary_10_1002_ese3_938 crossref_primary_10_3390_en14041067 crossref_primary_10_1007_s11356_018_1306_x crossref_primary_10_1016_j_cherd_2022_08_060 crossref_primary_10_1016_j_envsci_2023_03_007 crossref_primary_10_1016_j_icheatmasstransfer_2021_105448 crossref_primary_10_1080_00397911_2021_1894578 crossref_primary_10_1155_2021_5564269 crossref_primary_10_1016_j_apenergy_2019_01_144 crossref_primary_10_1016_j_compchemeng_2017_11_014 crossref_primary_10_1016_j_enconman_2023_117764 crossref_primary_10_1016_j_resourpol_2018_11_010 crossref_primary_10_1016_j_resconrec_2018_02_015 crossref_primary_10_1016_j_ijepes_2018_10_028 crossref_primary_10_1016_j_jclepro_2025_146102 crossref_primary_10_1016_j_jhydrol_2019_124072 crossref_primary_10_3390_jcm12216926 crossref_primary_10_1007_s12633_021_01081_9 crossref_primary_10_1007_s10973_021_10775_6 crossref_primary_10_1016_j_cep_2020_108289 crossref_primary_10_3390_en14041196 crossref_primary_10_1016_j_jenvman_2020_110716 crossref_primary_10_1016_j_jhydrol_2019_01_018 crossref_primary_10_1016_j_energy_2021_122505 crossref_primary_10_1007_s00366_021_01289_8 crossref_primary_10_1016_j_applthermaleng_2018_07_098 crossref_primary_10_3390_su11072136 crossref_primary_10_1016_j_compchemeng_2020_106761 crossref_primary_10_1016_j_scitotenv_2019_05_069 crossref_primary_10_1016_j_jngse_2019_05_001 crossref_primary_10_1007_s11269_018_1981_x crossref_primary_10_1007_s11356_020_10946_2 crossref_primary_10_1016_j_egyr_2020_12_013 crossref_primary_10_3390_en14061649 crossref_primary_10_3390_su9060979 crossref_primary_10_1080_0305215X_2017_1419347 crossref_primary_10_1109_ACCESS_2021_3052835 crossref_primary_10_1007_s10973_021_10696_4 crossref_primary_10_1016_j_scitotenv_2021_146729 crossref_primary_10_1007_s11356_018_2758_8 crossref_primary_10_1016_j_energy_2019_03_158 crossref_primary_10_1016_j_jenvman_2021_113775 crossref_primary_10_1016_j_scitotenv_2019_135545 crossref_primary_10_5004_dwt_2021_27803 crossref_primary_10_1007_s11356_022_19832_5 crossref_primary_10_1007_s11707_020_0850_0 crossref_primary_10_1002_joc_6093 crossref_primary_10_1080_00036846_2019_1646393 crossref_primary_10_1016_j_jhydrol_2017_10_009 crossref_primary_10_1016_j_resconrec_2019_01_031 crossref_primary_10_1007_s00366_020_01252_z crossref_primary_10_1016_j_jclepro_2020_123209 crossref_primary_10_3390_ijerph18041662 crossref_primary_10_3390_en14102849 crossref_primary_10_3390_su13063198 crossref_primary_10_1016_j_enconman_2017_04_028 crossref_primary_10_1016_j_compchemeng_2019_05_004 crossref_primary_10_1016_j_chemosphere_2018_01_121 crossref_primary_10_1016_j_jconhyd_2017_10_007 crossref_primary_10_1016_j_ecolind_2021_107448 crossref_primary_10_1155_2021_6634972 crossref_primary_10_1007_s11356_021_14301_x crossref_primary_10_1016_j_jclepro_2020_123171 crossref_primary_10_1016_j_scitotenv_2020_140087 crossref_primary_10_1007_s10661_025_13660_z crossref_primary_10_1016_j_compchemeng_2023_108317 crossref_primary_10_1016_j_chemosphere_2021_131364 crossref_primary_10_1007_s12665_018_7545_9 crossref_primary_10_1016_j_fuel_2023_130691 crossref_primary_10_1002_ese3_1908 crossref_primary_10_4018_IJSESD_327791 crossref_primary_10_1177_0958305X211041780 crossref_primary_10_3390_su12093886 crossref_primary_10_1016_j_egyr_2021_04_034 crossref_primary_10_1007_s12517_021_06559_9 crossref_primary_10_1016_j_psep_2021_02_003 crossref_primary_10_1016_j_jclepro_2020_121831 crossref_primary_10_1016_j_chemosphere_2019_03_021 crossref_primary_10_1016_j_eswa_2021_114864 crossref_primary_10_1016_j_eti_2021_101484 crossref_primary_10_1016_j_jhydrol_2017_02_015 crossref_primary_10_1016_j_rser_2018_05_053 crossref_primary_10_1016_j_atmosenv_2018_12_005 crossref_primary_10_1016_j_enconman_2022_115848 crossref_primary_10_1002_app_54281 crossref_primary_10_1016_j_egyr_2021_01_001 crossref_primary_10_1007_s00366_021_01282_1 crossref_primary_10_1016_j_energy_2017_03_172 crossref_primary_10_3390_sym11040544 crossref_primary_10_1016_j_scitotenv_2018_02_004 crossref_primary_10_1007_s00366_021_01377_9 crossref_primary_10_1007_s10973_021_10693_7 crossref_primary_10_1016_j_enconman_2020_113751 crossref_primary_10_1016_j_energy_2021_121783 crossref_primary_10_1016_j_cherd_2019_11_028 crossref_primary_10_1111_1477_8947_12220 crossref_primary_10_1007_s11356_021_15116_6 crossref_primary_10_1016_j_fuel_2019_116778 crossref_primary_10_1155_2022_2478920 |
| Cites_doi | 10.1016/j.rser.2014.07.214 10.1021/es405118y 10.1021/es4013855 10.1021/es405377u 10.1021/es305162w 10.1002/aic.14405 10.1007/s10584-011-0061-5 10.1016/j.fss.2004.09.007 10.1016/j.rser.2016.07.017 10.1016/j.enconman.2014.12.081 10.1016/j.swevo.2016.01.003 10.1016/j.apenergy.2008.08.001 10.1016/B978-0-444-63577-8.50078-4 10.1016/j.energy.2015.06.110 10.1016/j.scitotenv.2016.01.131 10.1016/j.energy.2015.04.034 10.1016/S0895-7177(02)00183-8 10.1016/j.enconman.2015.12.043 10.1016/B978-0-444-63428-3.50162-4 10.1016/j.enconman.2013.08.066 10.1016/j.rser.2015.02.056 10.1146/annurev-environ-031113-144051 10.1016/j.enconman.2016.04.038 10.1016/S0920-4105(01)00140-1 10.1016/j.jhydrol.2016.06.041 10.1016/0305-0548(95)00007-9 10.1016/j.eswa.2016.06.017 10.2113/gselements.7.3.181 10.1021/es201942m 10.1016/j.energy.2015.12.070 10.15244/pjoes/60898 10.1016/j.apenergy.2011.12.012 10.1021/es4047654 10.1016/j.rser.2013.08.065 10.1306/intro910407 10.1016/j.rser.2016.09.026 10.1016/S0165-0114(02)00362-7 10.1016/j.compchemeng.2016.03.025 10.1021/es404050r |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Ltd Copyright Elsevier Science Ltd. Feb 15, 2017 |
| Copyright_xml | – notice: 2016 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. Feb 15, 2017 |
| DBID | AAYXX CITATION 7ST 7TB 8FD C1K FR3 H8D KR7 L7M SOI 7S9 L.6 |
| DOI | 10.1016/j.enconman.2016.12.019 |
| DatabaseName | CrossRef Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Aerospace Database AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-2227 |
| EndPage | 398 |
| ExternalDocumentID | 10_1016_j_enconman_2016_12_019 S0196890416311013 |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABFRF ABJNI ABMAC ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSR SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 8WZ 9DU A6W AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- SAC SEW WUQ ~HD 7ST 7TB 8FD AGCQF C1K FR3 H8D KR7 L7M SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c431t-4e14be79eb3d85839eaff419bda20e3601d9a01010c7feff73dab1513a27e3453 |
| ISICitedReferencesCount | 213 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000393002100032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-8904 |
| IngestDate | Sun Sep 28 06:36:13 EDT 2025 Wed Aug 13 04:21:54 EDT 2025 Sat Nov 29 02:32:08 EST 2025 Tue Nov 18 22:22:49 EST 2025 Fri Feb 23 02:33:02 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multi-level programming Life cycle Energy Greenhouse gas Water supply Shale gas |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c431t-4e14be79eb3d85839eaff419bda20e3601d9a01010c7feff73dab1513a27e3453 |
| Notes | ObjectType-Case Study-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-4 ObjectType-Report-1 ObjectType-Article-3 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2024487349 |
| PQPubID | 2047472 |
| PageCount | 17 |
| ParticipantIDs | proquest_miscellaneous_2000393025 proquest_journals_2024487349 crossref_primary_10_1016_j_enconman_2016_12_019 crossref_citationtrail_10_1016_j_enconman_2016_12_019 elsevier_sciencedirect_doi_10_1016_j_enconman_2016_12_019 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-02-15 |
| PublicationDateYYYYMMDD | 2017-02-15 |
| PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Energy conversion and management |
| PublicationYear | 2017 |
| Publisher | Elsevier Ltd Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
| References | Vengosh, Jackson, Warner, Darrah, Kondash (b0185) 2014; 48 Salkuyeh, Adams (b0065) 2015; 92 Petriczek (b0200) 1991; 8 Yasar, Rasheed, Tabinda, Tahir, Sarwar (b0135) 2017; 67 Candler W, Norton RD. Multilevel programming. World Bank Development Research Center, Discussion Paper 20, Washington, DC; 1977. EPA. Plan to study the potential impacts of hydraulic fracturing on drinking water resources. Washington, DC: Office of Research and Development U.S. Environmental Protection Agency; 2011. Lin, Contreras, Dai, Zhang (b0210) 2016; 28 Chen, Lu, Li, Huang, He (b0015) 2016; 65 Ridout, Carrier, Collard, Görgens (b0020) 2016; 111 Nicot, Scanlon, Reedy, Costley (b0060) 2014; 48 Wang, Chen, Jha, Rogers (b0040) 2014; 30 Candler W, Norton RD. Multilevel programming and development policy. World Bank Staff, Working Paper 258, Washington, DC; 1977. Konschnik (b0030) 2014; 48 Zeng, Wen, Shi, Zhang, Zhang (b0120) 2016; 96 Georgopoulou, Giannakoglou (b0105) 2009; 86 U.S. Energy Information Administration (EIA). Review of emerging resources: US Shale gas and shale oil plays. Washington, DC: U.S. Department of Energy; 2011, 135. Clark, Horner, Harto (b0130) 2013; 47 Jackson, Vengosh, Carey, Davies, Darrah, O’sullivan (b0180) 2014; 39 Chen, He, Lu, Li (b0250) 2016; 25 Hosseini, Wahid (b0025) 2014; 40 Cafaro, Grossmann (b0085) 2014; 60 Annevelink, Meesters, Hendriks (b0175) 2016; 550 Feijoo, Das (b0115) 2015; 90 He, You (b0070) 2015; 37 Kasperski (b0235) 2005; 150 Gregory, Vidic, Dzombak (b0045) 2011; 7 Lira-Barragán, Martinez-Gomez, Ponce-Ortega, Serna-González, El-Halwagi (b0095) 2016; 38 Cheng, He, Lu, Chen, Ren (b0100) 2016; 540 Burnham, Han, Clark, Wang, Dunn, Palou-Rivera (b0125) 2012; 46 Collette, Siarry (b0245) 2004 Jiang, Hendrickson, Vanbriesen (b0240) 2014; 48 Lee (b0225) 2001; 120 Kousksou, Allouhi, Belattar, Jamil, El Rhafiki, Arid (b0010) 2015; 47 Shih (b0230) 2002; 36 Benammar, Khellaf, Mohammedi (b0005) 2014; 78 Howarth, Santoro, Ingraffea (b0050) 2011; 106 Clark, Bumham, Dunn, Wand (b0155) 2011 Daniel Arthur, Bohm, Layne (b0160) 2008 Nanduri, Kazemzadeh (b0110) 2012; 96 Rahman, Rahman, Rahman (b0090) 2001; 31 Chang, Huang, Ries, Masanet (b0165) 2015; 86 Guerra, Calderón, Papageorgiou, Siirola, Reklaitis (b0080) 2016; 92 Laurenzi, Jersey (b0035) 2013; 47 Arthur, Langhus, Alleman (b0170) 2008; 3 U.S. Energy Information Administration (EIA). Natural Gas Weekly Update Martineau (b0145) 2007; 91 Arredondo-Ramírez, Ponce-Ortega, El-Halwagi (b0075) 2016; 119 Carayannis, Grigoroudis, Goletsis (b0205) 2016; 62 Shih, Lai, Lee (b0215) 1996; 23 Sinha (b0220) 2003; 136 2016. Carayannis (10.1016/j.enconman.2016.12.019_b0205) 2016; 62 Clark (10.1016/j.enconman.2016.12.019_b0155) 2011 Arredondo-Ramírez (10.1016/j.enconman.2016.12.019_b0075) 2016; 119 Guerra (10.1016/j.enconman.2016.12.019_b0080) 2016; 92 Jiang (10.1016/j.enconman.2016.12.019_b0240) 2014; 48 10.1016/j.enconman.2016.12.019_b0055 Collette (10.1016/j.enconman.2016.12.019_b0245) 2004 Vengosh (10.1016/j.enconman.2016.12.019_b0185) 2014; 48 Laurenzi (10.1016/j.enconman.2016.12.019_b0035) 2013; 47 Nanduri (10.1016/j.enconman.2016.12.019_b0110) 2012; 96 Annevelink (10.1016/j.enconman.2016.12.019_b0175) 2016; 550 Yasar (10.1016/j.enconman.2016.12.019_b0135) 2017; 67 Lira-Barragán (10.1016/j.enconman.2016.12.019_b0095) 2016; 38 Konschnik (10.1016/j.enconman.2016.12.019_b0030) 2014; 48 Petriczek (10.1016/j.enconman.2016.12.019_b0200) 1991; 8 Martineau (10.1016/j.enconman.2016.12.019_b0145) 2007; 91 Nicot (10.1016/j.enconman.2016.12.019_b0060) 2014; 48 Howarth (10.1016/j.enconman.2016.12.019_b0050) 2011; 106 Arthur (10.1016/j.enconman.2016.12.019_b0170) 2008; 3 Benammar (10.1016/j.enconman.2016.12.019_b0005) 2014; 78 Lin (10.1016/j.enconman.2016.12.019_b0210) 2016; 28 Rahman (10.1016/j.enconman.2016.12.019_b0090) 2001; 31 Shih (10.1016/j.enconman.2016.12.019_b0215) 1996; 23 Feijoo (10.1016/j.enconman.2016.12.019_b0115) 2015; 90 Gregory (10.1016/j.enconman.2016.12.019_b0045) 2011; 7 He (10.1016/j.enconman.2016.12.019_b0070) 2015; 37 Shih (10.1016/j.enconman.2016.12.019_b0230) 2002; 36 Kousksou (10.1016/j.enconman.2016.12.019_b0010) 2015; 47 Chen (10.1016/j.enconman.2016.12.019_b0250) 2016; 25 Lee (10.1016/j.enconman.2016.12.019_b0225) 2001; 120 Zeng (10.1016/j.enconman.2016.12.019_b0120) 2016; 96 10.1016/j.enconman.2016.12.019_b0195 Kasperski (10.1016/j.enconman.2016.12.019_b0235) 2005; 150 Salkuyeh (10.1016/j.enconman.2016.12.019_b0065) 2015; 92 10.1016/j.enconman.2016.12.019_b0150 10.1016/j.enconman.2016.12.019_b0190 Cheng (10.1016/j.enconman.2016.12.019_b0100) 2016; 540 Chang (10.1016/j.enconman.2016.12.019_b0165) 2015; 86 Hosseini (10.1016/j.enconman.2016.12.019_b0025) 2014; 40 Burnham (10.1016/j.enconman.2016.12.019_b0125) 2012; 46 Wang (10.1016/j.enconman.2016.12.019_b0040) 2014; 30 Georgopoulou (10.1016/j.enconman.2016.12.019_b0105) 2009; 86 Daniel Arthur (10.1016/j.enconman.2016.12.019_b0160) 2008 Ridout (10.1016/j.enconman.2016.12.019_b0020) 2016; 111 Jackson (10.1016/j.enconman.2016.12.019_b0180) 2014; 39 10.1016/j.enconman.2016.12.019_b0140 Sinha (10.1016/j.enconman.2016.12.019_b0220) 2003; 136 Clark (10.1016/j.enconman.2016.12.019_b0130) 2013; 47 Cafaro (10.1016/j.enconman.2016.12.019_b0085) 2014; 60 Chen (10.1016/j.enconman.2016.12.019_b0015) 2016; 65 |
| References_xml | – volume: 48 start-page: 2464 year: 2014 end-page: 2471 ident: b0060 article-title: Source and fate of hydraulic fracturing water in the Barnett shale: a historical perspective publication-title: Environ Sci Technol – volume: 40 start-page: 621 year: 2014 end-page: 632 ident: b0025 article-title: Utilization of palm solid residue as a source of renewable and sustainable energy in Malaysia publication-title: Renew Sustain Energy Rev – reference: U.S. Energy Information Administration (EIA). Review of emerging resources: US Shale gas and shale oil plays. Washington, DC: U.S. Department of Energy; 2011, 135. – volume: 106 start-page: 679 year: 2011 end-page: 690 ident: b0050 article-title: Methane and the greenhouse-gas footprint of natural gas from shale formations publication-title: Clim Change – volume: 48 start-page: 8404 year: 2014 end-page: 8416 ident: b0030 article-title: Shale gas development: a smart regulation framework publication-title: Environ Sci Technol – volume: 96 start-page: 614 year: 2016 end-page: 624 ident: b0120 article-title: A multi-level approach to active distribution system planning for efficient renewable energy harvesting in a deregulated environment publication-title: Energy – volume: 540 start-page: 412 year: 2016 end-page: 422 ident: b0100 article-title: Optimal water resources management and system benefit for the Marcellus shale-gas reservoir in Pennsylvania and West Virginia publication-title: J Hydrol – volume: 23 start-page: 73 year: 1996 end-page: 91 ident: b0215 article-title: Fuzzy approach for multi-level programming problems publication-title: Comput Oper Res – volume: 46 start-page: 619 year: 2012 end-page: 627 ident: b0125 article-title: Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum publication-title: Environ Sci Technol – volume: 36 start-page: 569 year: 2002 end-page: 585 ident: b0230 article-title: An interactive approach for integrated multilevel systems in a fuzzy environment publication-title: Math Comput Model – reference: >; 2016. – year: 2011 ident: b0155 article-title: Life-cycle analysis of shale gas and natural gas – year: 2004 ident: b0245 article-title: Multiobjective optimization – volume: 47 start-page: 11829 year: 2013 end-page: 11836 ident: b0130 article-title: Life cycle water consumption for shale gas and conventional natural gas publication-title: Environ Sci Technol – volume: 39 start-page: 327 year: 2014 end-page: 362 ident: b0180 article-title: The environmental costs and benefits of fracking publication-title: Annu Rev Environ Resour – volume: 7 start-page: 181 year: 2011 end-page: 186 ident: b0045 article-title: Water management challenges associated with the production of shale gas by hydraulic fracturing publication-title: Elements – volume: 86 start-page: 335 year: 2015 end-page: 343 ident: b0165 article-title: Life-cycle comparison of greenhouse gas emissions and water consumption for coal and shale gas fired power generation in China publication-title: Energy – volume: 48 start-page: 1911 year: 2014 end-page: 1920 ident: b0240 article-title: Life cycle water consumption and wastewater generation impacts of a Marcellus shale gas well publication-title: Environ Sci Technol – volume: 47 start-page: 4896 year: 2013 end-page: 4903 ident: b0035 article-title: Life cycle greenhouse gas emissions and freshwater consumption of Marcellus shale gas publication-title: Environ Sci Technol – volume: 92 start-page: 406 year: 2015 end-page: 420 ident: b0065 article-title: A novel polygeneration process to co-produce ethylene and electricity from shale gas with zero CO publication-title: Energy Convers Manage – reference: Candler W, Norton RD. Multilevel programming and development policy. World Bank Staff, Working Paper 258, Washington, DC; 1977. – volume: 48 start-page: 8334 year: 2014 end-page: 8348 ident: b0185 article-title: A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States publication-title: Environ Sci Technol – volume: 91 start-page: 399 year: 2007 end-page: 403 ident: b0145 article-title: History of the Newark East field and the Barnett Shale as a gas reservoir publication-title: AAPG Bull – volume: 25 start-page: 1435 year: 2016 end-page: 1451 ident: b0250 article-title: Bi-level decision-making approach for GHG emissions control and municipal solid waste management under parameter uncertainty: a case study in Beijing, China publication-title: Pol J Environ Stud – volume: 65 start-page: 356 year: 2016 end-page: 372 ident: b0015 article-title: Regional planning of new-energy systems within multi-period and multi-option contexts-A case study of Fengtai, Beijing, China publication-title: Renew Sustain Energy Rev – volume: 67 start-page: 364 year: 2017 end-page: 371 ident: b0135 article-title: Life cycle assessment of a medium commercial scale biogas plant and nutritional assessment of effluent slurry publication-title: Renew Sustain Energy Rev – volume: 86 start-page: 1229 year: 2009 end-page: 1239 ident: b0105 article-title: Two-level, two-objective evolutionary algorithms for solving unit commitment problems publication-title: Appl Energy – start-page: 1 year: 2008 end-page: 19 ident: b0160 article-title: Hydraulic fracturing considerations for natural gas wells of the Fayetteville shale publication-title: ALL Consult – volume: 8 start-page: 457 year: 1991 end-page: 467 ident: b0200 article-title: On the use of multilevel optimization in water quality problems publication-title: Syst Anal Modell Simul – volume: 62 start-page: 63 year: 2016 end-page: 80 ident: b0205 article-title: A multilevel and multistage efficiency evaluation of innovation systems: a multiobjective DEA approach publication-title: Expert Syst Appl – volume: 120 start-page: 79 year: 2001 end-page: 90 ident: b0225 article-title: Fuzzy multi level programming publication-title: Appl Math Comput – volume: 38 start-page: 943 year: 2016 end-page: 948 ident: b0095 article-title: Optimal reuse of flowback wastewater in shale gas fracking operations considering economic and safety aspects publication-title: Comput Aided Chem Eng – reference: Candler W, Norton RD. Multilevel programming. World Bank Development Research Center, Discussion Paper 20, Washington, DC; 1977. – volume: 136 start-page: 189 year: 2003 end-page: 202 ident: b0220 article-title: Fuzzy programming approach to multi-level programming problems publication-title: Fuzzy Set Syst – volume: 28 start-page: 78 year: 2016 end-page: 87 ident: b0210 article-title: A multilevel ACO approach for solving forest transportation planning problems with environmental constraints publication-title: Swarm Evol Comput – volume: 78 start-page: 923 year: 2014 end-page: 930 ident: b0005 article-title: Contribution to the modeling and simulation of solar power tower plants using energy analysis publication-title: Energy Convers Manage – volume: 60 start-page: 2122 year: 2014 end-page: 2142 ident: b0085 article-title: Strategic planning, design, and development of the shale gas supply chain network publication-title: AIChE J – volume: 30 start-page: 1 year: 2014 end-page: 28 ident: b0040 article-title: Natural gas from shale formation − the evolution, evidences and challenges of shale gas revolution in United States publication-title: Renew Sustain Energy Rev – volume: 31 start-page: 41 year: 2001 end-page: 61 ident: b0090 article-title: An integrated model for multiobjective design optimization of hydraulic fracturing publication-title: J Petrol Sci Eng – volume: 111 start-page: 103 year: 2016 end-page: 114 ident: b0020 article-title: Energy conversion assessment of vacuum, slow and fast pyrolysis processes for low and high ash paper waste sludge publication-title: Energy Convers Manage – volume: 37 start-page: 1397 year: 2015 end-page: 1402 ident: b0070 article-title: Process design and optimization of an integrated shale gas process for green chemicals production publication-title: Comput Aided Chem Eng – volume: 150 start-page: 77 year: 2005 end-page: 86 ident: b0235 article-title: A possibilistic approach to sequencing problems with fuzzy parameters publication-title: Fuzzy Set Syst – reference: EPA. Plan to study the potential impacts of hydraulic fracturing on drinking water resources. Washington, DC: Office of Research and Development U.S. Environmental Protection Agency; 2011. – volume: 3 start-page: 14 year: 2008 end-page: 17 ident: b0170 article-title: An overview of modern shale gas development in the United States publication-title: All Consult – volume: 96 start-page: 212 year: 2012 end-page: 221 ident: b0110 article-title: Economic impact assessment and operational decision making in emission and transmission constrained electricity markets publication-title: Appl Energy – volume: 119 start-page: 91 year: 2016 end-page: 100 ident: b0075 article-title: Optimal planning and infrastructure development for shale gas production publication-title: Energy Convers Manage – reference: U.S. Energy Information Administration (EIA). Natural Gas Weekly Update < – volume: 550 start-page: 431 year: 2016 end-page: 438 ident: b0175 article-title: Environmental contamination due to shale gas development publication-title: Sci Total Environ – volume: 92 start-page: 230 year: 2016 end-page: 255 ident: b0080 article-title: An optimization framework for the integration of water management and shale gas supply chain design publication-title: Comput Chem Eng – volume: 47 start-page: 46 year: 2015 end-page: 57 ident: b0010 article-title: Renewable energy potential and national policy directions for sustainable development in Morocco publication-title: Renew Sustain Energy Rev – volume: 90 start-page: 1545 year: 2015 end-page: 1555 ident: b0115 article-title: Emissions control via carbon policies and microgrid generation: a bilevel model and Pareto analysis publication-title: Energy – volume: 40 start-page: 621 year: 2014 ident: 10.1016/j.enconman.2016.12.019_b0025 article-title: Utilization of palm solid residue as a source of renewable and sustainable energy in Malaysia publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.07.214 – volume: 48 start-page: 8334 year: 2014 ident: 10.1016/j.enconman.2016.12.019_b0185 article-title: A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States publication-title: Environ Sci Technol doi: 10.1021/es405118y – volume: 47 start-page: 11829 issue: 20 year: 2013 ident: 10.1016/j.enconman.2016.12.019_b0130 article-title: Life cycle water consumption for shale gas and conventional natural gas publication-title: Environ Sci Technol doi: 10.1021/es4013855 – volume: 3 start-page: 14 year: 2008 ident: 10.1016/j.enconman.2016.12.019_b0170 article-title: An overview of modern shale gas development in the United States publication-title: All Consult – volume: 48 start-page: 8404 year: 2014 ident: 10.1016/j.enconman.2016.12.019_b0030 article-title: Shale gas development: a smart regulation framework publication-title: Environ Sci Technol doi: 10.1021/es405377u – volume: 47 start-page: 4896 issue: 9 year: 2013 ident: 10.1016/j.enconman.2016.12.019_b0035 article-title: Life cycle greenhouse gas emissions and freshwater consumption of Marcellus shale gas publication-title: Environ Sci Technol doi: 10.1021/es305162w – volume: 120 start-page: 79 year: 2001 ident: 10.1016/j.enconman.2016.12.019_b0225 article-title: Fuzzy multi level programming publication-title: Appl Math Comput – volume: 60 start-page: 2122 year: 2014 ident: 10.1016/j.enconman.2016.12.019_b0085 article-title: Strategic planning, design, and development of the shale gas supply chain network publication-title: AIChE J doi: 10.1002/aic.14405 – volume: 106 start-page: 679 year: 2011 ident: 10.1016/j.enconman.2016.12.019_b0050 article-title: Methane and the greenhouse-gas footprint of natural gas from shale formations publication-title: Clim Change doi: 10.1007/s10584-011-0061-5 – volume: 150 start-page: 77 issue: 1 year: 2005 ident: 10.1016/j.enconman.2016.12.019_b0235 article-title: A possibilistic approach to sequencing problems with fuzzy parameters publication-title: Fuzzy Set Syst doi: 10.1016/j.fss.2004.09.007 – volume: 65 start-page: 356 year: 2016 ident: 10.1016/j.enconman.2016.12.019_b0015 article-title: Regional planning of new-energy systems within multi-period and multi-option contexts-A case study of Fengtai, Beijing, China publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2016.07.017 – volume: 8 start-page: 457 issue: 6 year: 1991 ident: 10.1016/j.enconman.2016.12.019_b0200 article-title: On the use of multilevel optimization in water quality problems publication-title: Syst Anal Modell Simul – volume: 92 start-page: 406 year: 2015 ident: 10.1016/j.enconman.2016.12.019_b0065 article-title: A novel polygeneration process to co-produce ethylene and electricity from shale gas with zero CO2 emissions via methane oxidative coupling publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2014.12.081 – ident: 10.1016/j.enconman.2016.12.019_b0190 – volume: 28 start-page: 78 year: 2016 ident: 10.1016/j.enconman.2016.12.019_b0210 article-title: A multilevel ACO approach for solving forest transportation planning problems with environmental constraints publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2016.01.003 – volume: 86 start-page: 1229 year: 2009 ident: 10.1016/j.enconman.2016.12.019_b0105 article-title: Two-level, two-objective evolutionary algorithms for solving unit commitment problems publication-title: Appl Energy doi: 10.1016/j.apenergy.2008.08.001 – volume: 37 start-page: 1397 year: 2015 ident: 10.1016/j.enconman.2016.12.019_b0070 article-title: Process design and optimization of an integrated shale gas process for green chemicals production publication-title: Comput Aided Chem Eng doi: 10.1016/B978-0-444-63577-8.50078-4 – volume: 90 start-page: 1545 year: 2015 ident: 10.1016/j.enconman.2016.12.019_b0115 article-title: Emissions control via carbon policies and microgrid generation: a bilevel model and Pareto analysis publication-title: Energy doi: 10.1016/j.energy.2015.06.110 – volume: 550 start-page: 431 year: 2016 ident: 10.1016/j.enconman.2016.12.019_b0175 article-title: Environmental contamination due to shale gas development publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2016.01.131 – volume: 86 start-page: 335 year: 2015 ident: 10.1016/j.enconman.2016.12.019_b0165 article-title: Life-cycle comparison of greenhouse gas emissions and water consumption for coal and shale gas fired power generation in China publication-title: Energy doi: 10.1016/j.energy.2015.04.034 – volume: 36 start-page: 569 year: 2002 ident: 10.1016/j.enconman.2016.12.019_b0230 article-title: An interactive approach for integrated multilevel systems in a fuzzy environment publication-title: Math Comput Model doi: 10.1016/S0895-7177(02)00183-8 – volume: 111 start-page: 103 year: 2016 ident: 10.1016/j.enconman.2016.12.019_b0020 article-title: Energy conversion assessment of vacuum, slow and fast pyrolysis processes for low and high ash paper waste sludge publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2015.12.043 – volume: 38 start-page: 943 year: 2016 ident: 10.1016/j.enconman.2016.12.019_b0095 article-title: Optimal reuse of flowback wastewater in shale gas fracking operations considering economic and safety aspects publication-title: Comput Aided Chem Eng doi: 10.1016/B978-0-444-63428-3.50162-4 – volume: 78 start-page: 923 year: 2014 ident: 10.1016/j.enconman.2016.12.019_b0005 article-title: Contribution to the modeling and simulation of solar power tower plants using energy analysis publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2013.08.066 – volume: 47 start-page: 46 year: 2015 ident: 10.1016/j.enconman.2016.12.019_b0010 article-title: Renewable energy potential and national policy directions for sustainable development in Morocco publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.02.056 – volume: 39 start-page: 327 issue: 1 year: 2014 ident: 10.1016/j.enconman.2016.12.019_b0180 article-title: The environmental costs and benefits of fracking publication-title: Annu Rev Environ Resour doi: 10.1146/annurev-environ-031113-144051 – volume: 119 start-page: 91 year: 2016 ident: 10.1016/j.enconman.2016.12.019_b0075 article-title: Optimal planning and infrastructure development for shale gas production publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2016.04.038 – volume: 31 start-page: 41 year: 2001 ident: 10.1016/j.enconman.2016.12.019_b0090 article-title: An integrated model for multiobjective design optimization of hydraulic fracturing publication-title: J Petrol Sci Eng doi: 10.1016/S0920-4105(01)00140-1 – ident: 10.1016/j.enconman.2016.12.019_b0140 – volume: 540 start-page: 412 year: 2016 ident: 10.1016/j.enconman.2016.12.019_b0100 article-title: Optimal water resources management and system benefit for the Marcellus shale-gas reservoir in Pennsylvania and West Virginia publication-title: J Hydrol doi: 10.1016/j.jhydrol.2016.06.041 – volume: 23 start-page: 73 issue: 1 year: 1996 ident: 10.1016/j.enconman.2016.12.019_b0215 article-title: Fuzzy approach for multi-level programming problems publication-title: Comput Oper Res doi: 10.1016/0305-0548(95)00007-9 – volume: 62 start-page: 63 year: 2016 ident: 10.1016/j.enconman.2016.12.019_b0205 article-title: A multilevel and multistage efficiency evaluation of innovation systems: a multiobjective DEA approach publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.06.017 – volume: 7 start-page: 181 year: 2011 ident: 10.1016/j.enconman.2016.12.019_b0045 article-title: Water management challenges associated with the production of shale gas by hydraulic fracturing publication-title: Elements doi: 10.2113/gselements.7.3.181 – volume: 46 start-page: 619 year: 2012 ident: 10.1016/j.enconman.2016.12.019_b0125 article-title: Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum publication-title: Environ Sci Technol doi: 10.1021/es201942m – volume: 96 start-page: 614 year: 2016 ident: 10.1016/j.enconman.2016.12.019_b0120 article-title: A multi-level approach to active distribution system planning for efficient renewable energy harvesting in a deregulated environment publication-title: Energy doi: 10.1016/j.energy.2015.12.070 – volume: 25 start-page: 1435 issue: 4 year: 2016 ident: 10.1016/j.enconman.2016.12.019_b0250 article-title: Bi-level decision-making approach for GHG emissions control and municipal solid waste management under parameter uncertainty: a case study in Beijing, China publication-title: Pol J Environ Stud doi: 10.15244/pjoes/60898 – ident: 10.1016/j.enconman.2016.12.019_b0150 – volume: 96 start-page: 212 year: 2012 ident: 10.1016/j.enconman.2016.12.019_b0110 article-title: Economic impact assessment and operational decision making in emission and transmission constrained electricity markets publication-title: Appl Energy doi: 10.1016/j.apenergy.2011.12.012 – volume: 48 start-page: 1911 year: 2014 ident: 10.1016/j.enconman.2016.12.019_b0240 article-title: Life cycle water consumption and wastewater generation impacts of a Marcellus shale gas well publication-title: Environ Sci Technol doi: 10.1021/es4047654 – volume: 30 start-page: 1 year: 2014 ident: 10.1016/j.enconman.2016.12.019_b0040 article-title: Natural gas from shale formation − the evolution, evidences and challenges of shale gas revolution in United States publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2013.08.065 – year: 2004 ident: 10.1016/j.enconman.2016.12.019_b0245 – ident: 10.1016/j.enconman.2016.12.019_b0055 – volume: 91 start-page: 399 year: 2007 ident: 10.1016/j.enconman.2016.12.019_b0145 article-title: History of the Newark East field and the Barnett Shale as a gas reservoir publication-title: AAPG Bull doi: 10.1306/intro910407 – year: 2011 ident: 10.1016/j.enconman.2016.12.019_b0155 – volume: 67 start-page: 364 year: 2017 ident: 10.1016/j.enconman.2016.12.019_b0135 article-title: Life cycle assessment of a medium commercial scale biogas plant and nutritional assessment of effluent slurry publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2016.09.026 – ident: 10.1016/j.enconman.2016.12.019_b0195 – volume: 136 start-page: 189 year: 2003 ident: 10.1016/j.enconman.2016.12.019_b0220 article-title: Fuzzy programming approach to multi-level programming problems publication-title: Fuzzy Set Syst doi: 10.1016/S0165-0114(02)00362-7 – volume: 92 start-page: 230 year: 2016 ident: 10.1016/j.enconman.2016.12.019_b0080 article-title: An optimization framework for the integration of water management and shale gas supply chain design publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2016.03.025 – start-page: 1 year: 2008 ident: 10.1016/j.enconman.2016.12.019_b0160 article-title: Hydraulic fracturing considerations for natural gas wells of the Fayetteville shale publication-title: ALL Consult – volume: 48 start-page: 2464 year: 2014 ident: 10.1016/j.enconman.2016.12.019_b0060 article-title: Source and fate of hydraulic fracturing water in the Barnett shale: a historical perspective publication-title: Environ Sci Technol doi: 10.1021/es404050r |
| SSID | ssj0003506 |
| Score | 2.6023557 |
| Snippet | •Detailed model developed for the shale gas supply chain system in the US.•Dynamic integration of multi-level programming and life cycle assessment.•Analysis... This study develops a multi-level programming model from a life cycle perspective for performing shale-gas supply chain system. A set of... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 382 |
| SubjectTerms | algorithms business enterprises Case studies Computer applications Computing time Drilling electricity Emissions Energy Energy conservation freshwater Greenhouse effect Greenhouse gas greenhouse gas emissions Greenhouse gases Hydraulic fracturing Interactive systems issues and policy Life cycle Life cycle analysis Life cycle assessment Life cycle engineering Life cycles Multi-level programming Optimization planning profits and margins Shale Shale gas Shales Structural hierarchy supply chain Supply chains Surface water United States Wastewater Water consumption Water reuse Water supply wells |
| Title | Life cycle assessment of greenhouse gas emissions and water-energy optimization for shale gas supply chain planning based on multi-level approach: Case study in Barnett, Marcellus, Fayetteville, and Haynesville shales |
| URI | https://dx.doi.org/10.1016/j.enconman.2016.12.019 https://www.proquest.com/docview/2024487349 https://www.proquest.com/docview/2000393025 |
| Volume | 134 |
| WOSCitedRecordID | wos000393002100032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2227 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003506 issn: 0196-8904 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3db9MwEMCt0fEADwgYiMFARuKtzWjqfJm3UW0aaExIDKl7ihzHXjt16dS03cp_yn_Dne2kKQMNhHipKiduXN0vufPlPgh5E6kslCLgsC3Jci_QUeYlTAhPJTJkUaxzGUjTbCI-Pk4GA_55485WlQuzGMdFkVxf88v_KmoYA2Fj6uxfiLv-URiA7yB0-ASxw-cfCf5opFVbLmG0Leqym2gTnmGIzRB2-qp9Jso2NnorTRgc-s6vwOacespmAk7gOXLhEjRNHGI5BD1iZpXYBXSJ-cIYfu46HrVRF-b43sHEJ3pjjESqy5Wj06EPJ9hStuhgeS-mhYsP_iTMu4O5welALDHyaIH5iVVY6aFYwtPYDNlllGsvE-yCTey8cfyZORc3Ynr6LgnldPRtOHHK2niArV-ijkKaW3_wqSjGjdOO5kZDw8iVGjX9JKB7sWtLuHLeVQk8q2gp40_lkZdw2wF5V1kdkMTcwxThNSXhXK72Mc9swyRnMTDbR_uGMrJ-kfNdrEhawD_HQMLIOJ-dllgv9P0FF4NrARMZjDJsxbzZi0OetMjm3of9wcfawmCh6RlbL76R-f7rq_3O6PrJ_DA21clD8sBthuiehfgR2VDFY3K_USJzi3xHnKnBma5wphNNVzhTAJPWOFMggDZxpk2cKeBMDUdmlsWZGpxphTM1OFM4uYEzrXB-RxFmamCmMMvB3KE1yh3aBLljFtTA2F6-fEK-Huyf9A89147Ek2Blz7xA-UGmYq4ylichbCyU0DrweZaLXlexqOvnXGDJxq6MtdI6ZrnIwKBmohcrFoTsKWkVk0I9I7QrVTfQ3SDOeB5IpTkLmZSJABUote-LbRJW8kqlq9WPLWPGaRWUeZ5Wck5RzqnfS0HO2-RtPe_SVqu5dQavcEidzW1t6RQovnXuTsVP6h6AJRyHDUMSswAOv64PAwIoAVEowAJb32JJANhuPf-Hy78g91b3-Q5pzaZz9ZLclYvZqJy-cvfMD9kPIgQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Life+cycle+assessment+of+greenhouse+gas+emissions+and+water-energy+optimization+for+shale+gas+supply+chain+planning+based+on+multi-level+approach%3A+Case+study+in+Barnett%2C+Marcellus%2C+Fayetteville%2C+and+Haynesville+shales&rft.jtitle=Energy+conversion+and+management&rft.au=Chen%2C+Yizhong&rft.au=He%2C+Li&rft.au=Guan%2C+Yanlong&rft.au=Lu%2C+Hongwei&rft.date=2017-02-15&rft.pub=Elsevier+Ltd&rft.issn=0196-8904&rft.eissn=1879-2227&rft.volume=134&rft.spage=382&rft.epage=398&rft_id=info:doi/10.1016%2Fj.enconman.2016.12.019&rft.externalDocID=S0196890416311013 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon |