Identification of Electrocardiographic Patterns Related to Mortality with COVID-19
COVID-19 is an infectious disease that has greatly affected worldwide healthcare systems, due to the high number of cases and deaths. As COVID-19 patients may develop cardiac comorbidities that can be potentially fatal, electrocardiographic monitoring can be crucial. This work aims to identify elect...
Uloženo v:
| Vydáno v: | Applied sciences Ročník 14; číslo 2; s. 817 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.01.2024
|
| Témata: | |
| ISSN: | 2076-3417, 2076-3417 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | COVID-19 is an infectious disease that has greatly affected worldwide healthcare systems, due to the high number of cases and deaths. As COVID-19 patients may develop cardiac comorbidities that can be potentially fatal, electrocardiographic monitoring can be crucial. This work aims to identify electrocardiographic and vectorcardiographic patterns that may be related to mortality in COVID-19, with the application of the Advanced Repeated Structuring and Learning Procedure (AdvRS&LP). The procedure was applied to data from the “automatic computation of cardiovascular arrhythmic risk from electrocardiographic data of COVID-19 patients” (COVIDSQUARED) project to obtain neural networks (NNs) that, through 254 electrocardiographic and vectorcardiographic features, could discriminate between COVID-19 survivors and deaths. The NNs were validated by a five-fold cross-validation procedure and assessed in terms of the area under the curve (AUC) of the receiver operating characteristic. The features’ contribution to the classification was evaluated through the Local-Interpretable Model-Agnostic Explanations (LIME) algorithm. The obtained NNs properly discriminated between COVID-19 survivors and deaths (AUC = 84.31 ± 2.58% on hold-out testing datasets); the classification was mainly affected by the electrocardiographic-interval-related features, thus suggesting that changes in the duration of cardiac electrical activity might be related to mortality in COVID-19 cases. |
|---|---|
| AbstractList | COVID-19 is an infectious disease that has greatly affected worldwide healthcare systems, due to the high number of cases and deaths. As COVID-19 patients may develop cardiac comorbidities that can be potentially fatal, electrocardiographic monitoring can be crucial. This work aims to identify electrocardiographic and vectorcardiographic patterns that may be related to mortality in COVID-19, with the application of the Advanced Repeated Structuring and Learning Procedure (AdvRS&LP). The procedure was applied to data from the “automatic computation of cardiovascular arrhythmic risk from electrocardiographic data of COVID-19 patients” (COVIDSQUARED) project to obtain neural networks (NNs) that, through 254 electrocardiographic and vectorcardiographic features, could discriminate between COVID-19 survivors and deaths. The NNs were validated by a five-fold cross-validation procedure and assessed in terms of the area under the curve (AUC) of the receiver operating characteristic. The features’ contribution to the classification was evaluated through the Local-Interpretable Model-Agnostic Explanations (LIME) algorithm. The obtained NNs properly discriminated between COVID-19 survivors and deaths (AUC = 84.31 ± 2.58% on hold-out testing datasets); the classification was mainly affected by the electrocardiographic-interval-related features, thus suggesting that changes in the duration of cardiac electrical activity might be related to mortality in COVID-19 cases. |
| Audience | Academic |
| Author | Mainardi, Luca Leoni, Chiara Burattini, Laura Sassi, Roberto Rivolta, Massimo W. Swenne, Cees A. Morettini, Micaela Sbrollini, Agnese |
| Author_xml | – sequence: 1 givenname: Agnese orcidid: 0000-0002-9152-7216 surname: Sbrollini fullname: Sbrollini, Agnese – sequence: 2 givenname: Chiara surname: Leoni fullname: Leoni, Chiara – sequence: 3 givenname: Micaela orcidid: 0000-0002-8327-8379 surname: Morettini fullname: Morettini, Micaela – sequence: 4 givenname: Massimo W. orcidid: 0000-0002-8553-2414 surname: Rivolta fullname: Rivolta, Massimo W. – sequence: 5 givenname: Cees A. orcidid: 0000-0001-9801-2760 surname: Swenne fullname: Swenne, Cees A. – sequence: 6 givenname: Luca orcidid: 0000-0002-6276-6314 surname: Mainardi fullname: Mainardi, Luca – sequence: 7 givenname: Laura orcidid: 0000-0002-9474-7046 surname: Burattini fullname: Burattini, Laura – sequence: 8 givenname: Roberto orcidid: 0000-0001-9729-2641 surname: Sassi fullname: Sassi, Roberto |
| BookMark | eNptkVtLHEEQhZtgIGp88g8M-BhG-zZ9eZTVxAWDQdTXpqYvay-z05OeFvHfp-NG1GDXQxfFOR9FnT20M6bRI3RI8DFjGp_ANBGOKVZEfkK7FEvRMk7kzpv-CzqY5zWuTxOmCN5F10vnxxJDtFBiGpsUmvPB25KThexiWmWY7qNtfkEpPo9zc-0HKN41JTU_Uy4wxPLUPMZy3yyu7pZnLdFf0ecAw-wP_v376Pb7-c3ior28-rFcnF62ljNSWmoFDo47qbnDVKkgay-7HvqeBawsZn1dWStLfSeVEE70vfW2d7LX2HPC9tFyy3UJ1mbKcQP5ySSI5nmQ8spALtEO3ojgJMdSg1OBhw4ryXnHBAghmKQdrqyjLWvK6feDn4tZp4c81vUN1UR1giopX1UrqNA4hlQy2E2crTmVqlIJ1V1VHX-gquX8JtqaWYh1_s5Atgab0zxnH4yN5TmOaoyDIdj8Ddi8Cbh6vv3neTnAR-o_xXSlEA |
| CitedBy_id | crossref_primary_10_3390_app14135816 crossref_primary_10_3390_diagnostics14171839 |
| Cites_doi | 10.1055/a-1269-1405 10.1093/oxfordjournals.pan.a004868 10.1016/j.jelectrocard.2015.05.002 10.1111/pace.14247 10.1093/oxfordjournals.eurheartj.a059647 10.1002/jgm.3303 10.1016/j.jelectrocard.2022.10.003 10.1186/s12938-019-0630-9 10.1016/j.hrthm.2020.06.009 10.1177/1179548421992327 10.1016/j.ejim.2020.06.015 10.1080/14787210.2020.1797487 10.1145/2939672.2939778 10.1161/JAHA.120.016812 10.1007/978-0-387-84858-7 10.1093/cid/ciaa1578 10.1016/j.cvdhj.2021.12.003 10.3390/s20123570 10.1016/j.jelectrocard.2021.03.001 10.1109/TBME.1985.325532 10.1016/j.jelectrocard.2008.01.012 10.1109/JBHI.2020.3035191 10.4103/jcecho.jcecho_71_20 10.1016/j.cmpb.2021.106006 10.1007/s11517-023-02773-7 10.3389/fmed.2022.1005920 10.1038/s41598-023-42252-5 10.1016/S0893-6080(05)80056-5 10.1111/anec.12806 10.1016/j.dib.2021.106762 10.1002/clc.23628 10.1016/j.jelectrocard.2021.04.001 10.1186/s12911-021-01521-x 10.1155/2021/8874450 10.5152/akd.2015.5875 10.1054/jelc.2000.20296 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI DOA |
| DOI | 10.3390/app14020817 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic Middle East (New) ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_6fd74079ad8f4f508744536a66637250 A780871295 10_3390_app14020817 |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c431t-2c60fd4d794d0288f74d775babb3f08c03b34198c2e57866d6bbcecbd7b90e413 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001148924100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2076-3417 |
| IngestDate | Tue Oct 14 19:09:13 EDT 2025 Mon Jun 30 14:36:02 EDT 2025 Tue Nov 11 11:11:37 EST 2025 Tue Nov 04 18:29:43 EST 2025 Tue Nov 18 21:59:34 EST 2025 Sat Nov 29 07:14:52 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c431t-2c60fd4d794d0288f74d775babb3f08c03b34198c2e57866d6bbcecbd7b90e413 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8553-2414 0000-0002-6276-6314 0000-0001-9729-2641 0000-0002-8327-8379 0000-0002-9152-7216 0000-0001-9801-2760 0000-0002-9474-7046 |
| OpenAccessLink | https://www.proquest.com/docview/2918562877?pq-origsite=%requestingapplication% |
| PQID | 2918562877 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6fd74079ad8f4f508744536a66637250 proquest_journals_2918562877 gale_infotracmisc_A780871295 gale_infotracacademiconefile_A780871295 crossref_citationtrail_10_3390_app14020817 crossref_primary_10_3390_app14020817 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Gomes (ref_18) 2023; 61 Pan (ref_26) 1985; 32 ref_36 ref_35 (ref_31) 1993; 6 ref_34 King (ref_33) 2001; 9 Kors (ref_29) 1990; 11 ref_30 Lee (ref_12) 2021; 44 ref_17 Han (ref_8) 2021; 2021 ref_16 Kassis (ref_41) 2022; 75 ref_37 Pavri (ref_42) 2020; 17 Vedovati (ref_11) 2020; 30 Sridhar (ref_20) 2022; 3 Angeli (ref_40) 2020; 78 Marx (ref_5) 2022; 130 ref_24 ref_23 ref_44 Habas (ref_2) 2020; 18 Yang (ref_13) 2021; 44 Kung (ref_15) 2020; 25 ref_21 Baek (ref_22) 2023; 13 Yildirim (ref_10) 2021; 66 Santoro (ref_38) 2020; 73 ref_1 Khan (ref_45) 2021; 34 Nawaz (ref_19) 2022; 9 Liu (ref_4) 2020; 9 Moga (ref_43) 2015; 15 Parwani (ref_7) 2021; 66 Sit (ref_9) 2021; 25 Man (ref_27) 2015; 48 Mohamadian (ref_3) 2021; 23 Nelwan (ref_28) 2000; 33 Schijvenaars (ref_14) 2008; 41 Wang (ref_39) 2020; 25 Prechelt (ref_32) 2012; Volume 7700 Koeppen (ref_6) 2021; 15 Sbrollini (ref_25) 2023; 24 |
| References_xml | – ident: ref_30 – volume: Volume 7700 start-page: 53 year: 2012 ident: ref_32 article-title: Early stopping—But when publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) – volume: 130 start-page: 178 year: 2022 ident: ref_5 article-title: COVID-19 and Cardiovascular Comorbidities publication-title: Exp. Clin. Endocrinol. Diabetes doi: 10.1055/a-1269-1405 – volume: 9 start-page: 137 year: 2001 ident: ref_33 article-title: Logistic Regression in Rare Events Data publication-title: Polit. Anal. doi: 10.1093/oxfordjournals.pan.a004868 – volume: 48 start-page: 463 year: 2015 ident: ref_27 article-title: Vectorcardiographic diagnostic & prognostic information derived from the 12-lead electrocardiogram: Historical review and clinical perspective publication-title: J. Electrocardiol. doi: 10.1016/j.jelectrocard.2015.05.002 – volume: 44 start-page: 1062 year: 2021 ident: ref_12 article-title: Arrhythmias and electrocardiographic findings in Coronavirus disease 2019: A systematic review and meta-analysis publication-title: Pacing Clin. Electrophysiol. doi: 10.1111/pace.14247 – volume: 11 start-page: 1083 year: 1990 ident: ref_29 article-title: Reconstruction of the Frank vectorcardiogram from standard electrocardiographic leads: Diagnostic comparison of different methods publication-title: Eur. Heart J. doi: 10.1093/oxfordjournals.eurheartj.a059647 – volume: 23 start-page: e3303 year: 2021 ident: ref_3 article-title: COVID-19: Virology, biology and novel laboratory diagnosis publication-title: J. Gene Med. doi: 10.1002/jgm.3303 – volume: 75 start-page: 1 year: 2022 ident: ref_41 article-title: Prognostic value of initial electrocardiography in predicting long-term all-cause mortality in COVID-19 publication-title: J. Electrocardiol. doi: 10.1016/j.jelectrocard.2022.10.003 – ident: ref_23 doi: 10.1186/s12938-019-0630-9 – volume: 17 start-page: 1434 year: 2020 ident: ref_42 article-title: Behavior of the pr interval with increasing heart rate in patients with COVID-19 publication-title: Heart Rhythm doi: 10.1016/j.hrthm.2020.06.009 – volume: 25 start-page: 3272 year: 2021 ident: ref_9 article-title: Prognostic significance of Tp-e interval and Tp-e/QTc ratio in patients with COVID-19 publication-title: Eur. Rev. Med. Pharmacol. Sci. – ident: ref_37 – volume: 15 start-page: 1 year: 2021 ident: ref_6 article-title: COVID-19 Related Cardiovascular Comorbidities and Complications in Critically Ill Patients: A Systematic Review and Meta-analysis publication-title: Clin. Med. Insights Circ. Respir. Pulm. Med. doi: 10.1177/1179548421992327 – volume: 78 start-page: 101 year: 2020 ident: ref_40 article-title: Electrocardiographic features of patients with COVID-19 pneumonia publication-title: Eur. J. Intern. Med. doi: 10.1016/j.ejim.2020.06.015 – ident: ref_1 – ident: ref_44 – volume: 18 start-page: 1201 year: 2020 ident: ref_2 article-title: Resolution of coronavirus disease 2019 (COVID-19) publication-title: Expert Rev. Anti Infect. Ther. doi: 10.1080/14787210.2020.1797487 – ident: ref_35 doi: 10.1145/2939672.2939778 – volume: 9 start-page: e016812 year: 2020 ident: ref_4 article-title: Prevalence of Cardiovascular Comorbidities in Coronavirus Disease 2019, Severe Acute Respiratory Syndrome, and Middle East Respiratory Syndrome: Pooled Analysis of Published Data publication-title: J. Am. Heart Assoc. doi: 10.1161/JAHA.120.016812 – ident: ref_21 – ident: ref_34 doi: 10.1007/978-0-387-84858-7 – volume: 73 start-page: e4031 year: 2020 ident: ref_38 article-title: Qtc interval prolongation and life-threatening arrhythmias during hospitalization in patients with COVID-19. Results from a multi-center prospective registry publication-title: Clin. Infect. Dis. doi: 10.1093/cid/ciaa1578 – volume: 3 start-page: 62 year: 2022 ident: ref_20 article-title: Identifying risk of adverse outcomes in COVID-19 patients via artificial intelligence-powered analysis of 12-lead intake electrocardiogram publication-title: Cardiovasc. Digit. Health J. doi: 10.1016/j.cvdhj.2021.12.003 – ident: ref_24 doi: 10.3390/s20123570 – volume: 66 start-page: 108 year: 2021 ident: ref_10 article-title: Fragmented QRS on surface electrocardiography as a predictor of cardiac mortality in patients with SARS-CoV-2 infection publication-title: J. Electrocardiol. doi: 10.1016/j.jelectrocard.2021.03.001 – volume: 32 start-page: 230 year: 1985 ident: ref_26 article-title: A real-time QRS detection algorithm publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.1985.325532 – volume: 41 start-page: 190 year: 2008 ident: ref_14 article-title: Intraindividual variability in electrocardiograms publication-title: J. Electrocardiol. doi: 10.1016/j.jelectrocard.2008.01.012 – volume: 25 start-page: 1904 year: 2020 ident: ref_15 article-title: An Efficient ECG Classification System using Resource-Saving Architecture and Random Forest publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2020.3035191 – volume: 30 start-page: 223 year: 2020 ident: ref_11 article-title: Shock and Diffuse ST-elevation in a Patient with Coronavirus Disease-2019 Disease publication-title: J. Cardiovasc. Echogr. doi: 10.4103/jcecho.jcecho_71_20 – ident: ref_16 doi: 10.1016/j.cmpb.2021.106006 – volume: 61 start-page: 1057 year: 2023 ident: ref_18 article-title: COVID-19’s influence on cardiac function: A machine learning perspective on ECG analysis publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-023-02773-7 – volume: 9 start-page: 1005920 year: 2022 ident: ref_19 article-title: Efficient-ECGNet framework for COVID-19 classification and correlation prediction with the cardio disease through electrocardiogram medical imaging publication-title: Front. Med. doi: 10.3389/fmed.2022.1005920 – volume: 13 start-page: 15187 year: 2023 ident: ref_22 article-title: Artificial intelligence-enhanced electrocardiography for early assessment of coronavirus disease 2019 severity publication-title: Sci. Rep. doi: 10.1038/s41598-023-42252-5 – volume: 6 start-page: 525 year: 1993 ident: ref_31 article-title: A scaled conjugate gradient algorithm for fast supervised learning publication-title: Neural Netw. doi: 10.1016/S0893-6080(05)80056-5 – volume: 25 start-page: 12806 year: 2020 ident: ref_39 article-title: Electrocardiogram analysis of patients with different types of COVID-19 publication-title: Ann. Noninvasive Electrocardiol. doi: 10.1111/anec.12806 – volume: 34 start-page: 106762 year: 2021 ident: ref_45 article-title: ECG Images dataset of Cardiac and COVID-19 Patients publication-title: Data Brief doi: 10.1016/j.dib.2021.106762 – volume: 44 start-page: 963 year: 2021 ident: ref_13 article-title: The prognostic significance of electrocardiography findings in patients with coronavirus disease 2019: A retrospective study publication-title: Clin. Cardiol. doi: 10.1002/clc.23628 – ident: ref_36 – volume: 66 start-page: 102 year: 2021 ident: ref_7 article-title: Cardiac arrhythmias in patients with COVID-19: Lessons from 2300 telemetric monitoring days on the intensive care unit publication-title: J. Electrocardiol. doi: 10.1016/j.jelectrocard.2021.04.001 – ident: ref_17 doi: 10.1186/s12911-021-01521-x – volume: 2021 start-page: 8874450 year: 2021 ident: ref_8 article-title: Atrial Arrhythmias in Patients with Severe COVID-19 publication-title: Cardiol. Res. Pract. doi: 10.1155/2021/8874450 – volume: 24 start-page: 44 year: 2023 ident: ref_25 article-title: Advanced repeated structuring and learning procedure to detect acute myocardial ischemia in serial 12-lead ECGs publication-title: Physiol. Meas. – volume: 15 start-page: 255 year: 2015 ident: ref_43 article-title: QT interval variations and mortality risk: Is. there any relationship? publication-title: Anatol. J. Cardiol. doi: 10.5152/akd.2015.5875 – volume: 33 start-page: 163 year: 2000 ident: ref_28 article-title: Minimal lead sets for reconstruction of 12-lead electrocardiograms publication-title: J. Electrocardiol. doi: 10.1054/jelc.2000.20296 |
| SSID | ssj0000913810 |
| Score | 2.284919 |
| Snippet | COVID-19 is an infectious disease that has greatly affected worldwide healthcare systems, due to the high number of cases and deaths. As COVID-19 patients may... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 817 |
| SubjectTerms | Advanced Repeated Structuring and Learning Procedure Algorithms Cardiac patients Cardiology Clinical medicine COVID-19 Deep learning Disease transmission Electric properties Electrocardiography Health aspects Heart failure Hospitalization Infections Ischemia local-interpretable model-agnostic explanations Machine learning Morphology Mortality neural network Neural networks Neurons Pandemics Respiratory system |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB5EPOhBXB-4vshhwQcU2zTbNMf1sejBB6Kyt5AnCLIr7urvd5LUdQXFi7fSTmGazCTflybfAHR8rnFkZD5ztnIZc6bIlKvLrPBF1wscKwVVsdgEv76uBwNxO1PqK-wJS_LAqeGOK285kg6hbO2ZRzjBGeuWlULYXXKa2DqinhkyFcdgUQTpqnQgr0ReH_4HF4Er1bE02dcUFJX6fxuP4yTTX4HlBh2SXvKqBXNuuApLM5qBq9BqsnFMDhrJ6MM1uEvnbX2zAEdGnpyn-jYm7jeNstRPhtxGNc3hmMQ9cM6SyYhcRQCOYJyENVlyevN4eZYVYh0e-uf3pxdZUy0hMwgCJhk1Ve4ts5hgFkFD7Tle865WWpc-r01e6qDdVhvqMEurylZaG2e05VrkDueyDZgfjoZuE4jz1KuCKZcrywwzygTiZalCLkJNIdpw9NmA0jRS4qGixbNEShFaW860dhs6U-OXpKDxs9lJ6ImpSZC9jjcwGGQTDPKvYGjDfuhHGZITHULH0xkD_KwgcyV7vMZ3MAC7bdj5ZolJZb4__owE2ST1WFKB4KZCism3_sPZbVikiJDSes4OzE9e39wuLJj3ydP4dS_G8wc22vaK priority: 102 providerName: Directory of Open Access Journals |
| Title | Identification of Electrocardiographic Patterns Related to Mortality with COVID-19 |
| URI | https://www.proquest.com/docview/2918562877 https://doaj.org/article/6fd74079ad8f4f508744536a66637250 |
| Volume | 14 |
| WOSCitedRecordID | wos001148924100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Proquest Central Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTxQxFH_BhYMeRFDDKpAeSESTxvnoTjsnArgEDqwTAgZPTT8NCdnBndW_39dOd4EEvXibjzdJJ--jv_fa_h7Ans80RkbmqbOVo8yZnConSpr7fORrjJV1oWKzCT6ZiOvrukkFty5tq1zExBiobWtCjfxzUePMUiG-5wd3P2noGhVWV1MLjWewGpjK2ABWj8aT5mJZZQmslyLP-oN5Jeb3YV04DzmTiC3K7qeiyNj_t7gcJ5uT9f8d5it4mWAmOeztYgNW3HQTXjwgH9yEjeTWHdlP3NMfX8NFf3DXp0oeaT0Z941yTNy4GvmtbwxpIi3ntCNxM52zZN6S84jkEdWTUNwlx1-_nX2hef0Grk7Gl8enNLVdoAbRxJwWpsq8ZRY91SL6EJ7jNR9ppXXpM2GyUgcSOGEKh-5eVbbS2jijLdd15nBSfAuDaTt1W0CcL7zKmXKZsswwo0zI4GyhMKkpTF4P4dNCA9IkTvLQGuNWYm4S1CUfqGsIe0vhu56K42mxo6DKpUjgz44P2tkPmdxRVt5yTGVrZYVnHkEqZ2xUVgqTuZIjKhzCh2AIMng5DggH3h9WwN8KfFnykAv8Bi15NITtR5Lonebx64WdyBQdOnlvJO_-_fo9PC8QRPUln20YzGe_3A6smd_zm262m4x9N9YR8K45O2--_wHrhwpv |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aGxLsAdgYojDAD0NcpIjEcWPnAaFdOq3aVqppoL15ji9oEmq2poD4U_xGjh2n2yTgbQ-8VY1b5fL5O-c7sb8DsOHSCpmRucSawibM6ixRVuRJ5rK-K5ErS6pCswk-GomTk3K8AL-6vTB-WWXHiYGoTa19jfwdLTGyFJjf8w_nF4nvGuXfrnYtNFpY7NufP1CyNe-HO_h8X1K6Ozje3ktiV4FEY7CcJVQXqTPMIBANBlfhOH7m_UpVVe5SodO88h5nQlOLaC4KU1SVtroyvCpTi5yP_3sLlljOOM6rpa3BaHw0r-p4l02Rpe1GwDwvU_8eOvMaTYSWaJehL3QI-FscCMFt9_7_dlsewL2YRpPNFvcrsGAnq7B8xVxxFVYibTXkdfTWfvMQjtqNyS5WKkntyKBtBKTDwtzg332myTjYjk4aEhYLWkNmNTkMSgVVC_HFa7L98fNwJ8nKNfh0I1f6CBYn9cQ-BmIddSpjyqbKMM200l6hGqpQtFGdlT142z1xqaPnum_98VWi9vLwkFfg0YON-eDz1mrkz8O2PHTmQ7w_ePiinn6RkW5k4QxHqV4qIxxzmIRzxvp5oVCs5hyz3h688sCTnsXwhPDE280YeFneD0xucoG_wZna78H6tZHIPvr64Q6XMrJfIy9B-eTfh1_Anb3jwwN5MBztP4W7FBPGtry1Douz6Tf7DG7r77OzZvo8TjQCpzcN4t-_XGWR |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFiE4AC0gAgX2UMSHZNVeb-z1AaHSNCIqDRaCqpyW_USVUFziAOKv8euYXa_TVgJuPXCL4k3kj7dv5o133wBsuVQhMzKXWFPYhFmdJdLyPMlcNnQVcmVFZWg2UU6n_OioqlfgV78Xxi-r7DkxELVptK-Rb9MKI0uB-X257eKyiHo0fnnyNfEdpPyb1r6dRgeRffvzB8q39sVkhM_6MaXjvfe7r5PYYSDRGDgXCdVF6gwzCEqDgZa7Ej-XQyWVyl3KdZor73fGNbWI7KIwhVLaamVKVaUW-R__9xKsYUrOcI6t1ZOD-uOywuMdN3mWdpsC87xK_TvpzOs1HtqjnYbB0C3gbzEhBLrxjf_5Ft2E6zG9JjvdfFiHFTvbgGtnTBc3YD3SWUueRs_tZ7fgXbdh2cUKJmkc2esaBOmwYDf4eh9rUgc70llLwiJCa8iiIQdBwaCaIb6oTXbfHk5GSVbdhg8XcqV3YHXWzOxdINZRJzMmbSoN00xL7ZWroRLFHNVZNYDn_dMXOnqx-5YgXwRqMg8VcQYqA9haDj7pLEj-POyVh9FyiPcND180888i0pAonClRwlfScMccJuclY8O8kChi8xKz4QE88SAUnt3whPDEu00aeFneJ0zslBx_gzN4OIDNcyORlfT5wz1GRWTFVpwC9N6_Dz-CK4hc8WYy3b8PVynmkV3VaxNWF_Nv9gFc1t8Xx-38YZxzBD5dNIZ_AzxeboM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+Electrocardiographic+Patterns+Related+to+Mortality+with+COVID-19&rft.jtitle=Applied+sciences&rft.au=Sbrollini%2C+Agnese&rft.au=Leoni%2C+Chiara&rft.au=Morettini%2C+Micaela&rft.au=Rivolta%2C+Massimo+W&rft.date=2024-01-01&rft.pub=MDPI+AG&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=14&rft.issue=2&rft_id=info:doi/10.3390%2Fapp14020817&rft.externalDocID=A780871295 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |