Continuous prediction of knee joint angle in lower limbs based on sEMG: a method combining an improved ZOA optimizer and attention-enhanced GRU
Exoskeleton robots have been increasingly applied in mountaineering, rescue, and military scenarios to alleviate physical burden and enhance mobility. This study proposes a novel approach for continuous knee joint angle prediction based on surface electromyography (sEMG), integrating an Improved Zeb...
Saved in:
| Published in: | Journal of King Saud University. Computer and information sciences Vol. 37; no. 6; pp. 149 - 26 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Cham
Springer International Publishing
01.08.2025
Springer Nature B.V Springer |
| Subjects: | |
| ISSN: | 1319-1578, 2213-1248, 1319-1578 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Exoskeleton robots have been increasingly applied in mountaineering, rescue, and military scenarios to alleviate physical burden and enhance mobility. This study proposes a novel approach for continuous knee joint angle prediction based on surface electromyography (sEMG), integrating an Improved Zebra Optimization Algorithm (IZOA) with an attention-enhanced Gated Recurrent Unit (GRU) network. The IZOA leverages Tent and Logistic chaotic mappings for improved population diversity and convergence, along with a memory-based strategy to enhance global search capabilities. Experimental evaluations across three motion tasks—level walking, stair ascent, and stair descent—demonstrated that the proposed method achieved a minimum root mean square error (RMSE) of 1.31°, with over 50% reduction in feature dimensionality, significantly outperforming Genetic Algorithm (GA), Zebra Optimization Algorithm (ZOA), Liver Cancer Algorithm (LCA), and Pied Kingfisher Optimizer (PKO). In addition, normalization based on maximal voluntary contraction (MVC) improved model robustness across subjects. The attention-based GRU further enhanced dynamic feature extraction, leading to an average RMSE reduction of 27.2% compared to baseline GRU and Long Short-Term Memory (LSTM) models. These results confirm the effectiveness of the proposed method in achieving accurate, stable, and continuous sEMG-driven knee joint angle prediction, offering strong potential for intelligent control in wearable exoskeleton systems. |
|---|---|
| AbstractList | Exoskeleton robots have been increasingly applied in mountaineering, rescue, and military scenarios to alleviate physical burden and enhance mobility. This study proposes a novel approach for continuous knee joint angle prediction based on surface electromyography (sEMG), integrating an Improved Zebra Optimization Algorithm (IZOA) with an attention-enhanced Gated Recurrent Unit (GRU) network. The IZOA leverages Tent and Logistic chaotic mappings for improved population diversity and convergence, along with a memory-based strategy to enhance global search capabilities. Experimental evaluations across three motion tasks—level walking, stair ascent, and stair descent—demonstrated that the proposed method achieved a minimum root mean square error (RMSE) of 1.31°, with over 50% reduction in feature dimensionality, significantly outperforming Genetic Algorithm (GA), Zebra Optimization Algorithm (ZOA), Liver Cancer Algorithm (LCA), and Pied Kingfisher Optimizer (PKO). In addition, normalization based on maximal voluntary contraction (MVC) improved model robustness across subjects. The attention-based GRU further enhanced dynamic feature extraction, leading to an average RMSE reduction of 27.2% compared to baseline GRU and Long Short-Term Memory (LSTM) models. These results confirm the effectiveness of the proposed method in achieving accurate, stable, and continuous sEMG-driven knee joint angle prediction, offering strong potential for intelligent control in wearable exoskeleton systems. Abstract Exoskeleton robots have been increasingly applied in mountaineering, rescue, and military scenarios to alleviate physical burden and enhance mobility. This study proposes a novel approach for continuous knee joint angle prediction based on surface electromyography (sEMG), integrating an Improved Zebra Optimization Algorithm (IZOA) with an attention-enhanced Gated Recurrent Unit (GRU) network. The IZOA leverages Tent and Logistic chaotic mappings for improved population diversity and convergence, along with a memory-based strategy to enhance global search capabilities. Experimental evaluations across three motion tasks—level walking, stair ascent, and stair descent—demonstrated that the proposed method achieved a minimum root mean square error (RMSE) of 1.31°, with over 50% reduction in feature dimensionality, significantly outperforming Genetic Algorithm (GA), Zebra Optimization Algorithm (ZOA), Liver Cancer Algorithm (LCA), and Pied Kingfisher Optimizer (PKO). In addition, normalization based on maximal voluntary contraction (MVC) improved model robustness across subjects. The attention-based GRU further enhanced dynamic feature extraction, leading to an average RMSE reduction of 27.2% compared to baseline GRU and Long Short-Term Memory (LSTM) models. These results confirm the effectiveness of the proposed method in achieving accurate, stable, and continuous sEMG-driven knee joint angle prediction, offering strong potential for intelligent control in wearable exoskeleton systems. |
| ArticleNumber | 149 |
| Author | Qiang, Ligang Lv, Jian Huang, Binhao |
| Author_xml | – sequence: 1 givenname: Jian surname: Lv fullname: Lv, Jian organization: Key Laboratory of Advanced Manufacturing Technology of the Ministry of Education, Guizhou University – sequence: 2 givenname: Binhao surname: Huang fullname: Huang, Binhao email: gs.bhhuang23@gzu.edu.cn organization: Key Laboratory of Advanced Manufacturing Technology of the Ministry of Education, Guizhou University – sequence: 3 givenname: Ligang surname: Qiang fullname: Qiang, Ligang organization: Guizhou Aerospace Control Technology Co, Ltd |
| BookMark | eNp9kd9qFDEYxYNUcK19Aa8CXo_mf2a8K0tdC5WC2BtvwpdMZpt1JlmTrKIv4Sub7SqCF81NQvidk5PvPEdnMUWP0EtKXlNC9Jsi2uIdYbIjhCrRqSdoxRjlHWWiP0MryunQUan7Z-iilB1plFZScLVCv9Yp1hAP6VDwPvsxuBpSxGnCX6L3eJdCrBjidvY4RDyn7z7jOSy2YAvFj7ix5erD5i0GvPh6n0bs0mJDDHHbZDgs-5y-Ne7z7SVO-xqW8LM5QBwx1Orj8bHOx3uIrkGbj3cv0NMJ5uIv_uzn6O7d1af1--7mdnO9vrzpnOC0dowAHyhTeuwls9ZpLRQVUgEI0E5pENRZ20_COduOagLej1YBt4wyDp6fo-uT75hgZ_Y5LJB_mATBPFykvDWQa3CzN1yqYZLeKeao6AcNStJh4BPpFfeOy-b16uTV_vr14Es1u3TIscU3nEndBs8UaVR_olxOpWQ_GRcqHAdQM4TZUGKObZpTm6a1aR7aNKpJ2X_Sv4EfFfGTqDQ4bn3-l-oR1W-9aLPU |
| CitedBy_id | crossref_primary_10_3390_math13182960 |
| Cites_doi | 10.1109/IJCNN52387.2021.9534323 10.1016/j.engappai.2022.105702 10.1109/ACCESS.2022.3172789 10.1016/j.eswa.2024.125930 10.1016/j.eswa.2023.121224 10.1109/4235.585893 10.1007/s00521-024-09879-5 10.3390/s21113622 10.1109/UR52253.2021.9494639 10.1038/s41586-024-07382-4 10.1016/j.bspc.2024.107229 10.1038/s41597-023-02263-3 10.1007/s00521-021-06775-0 10.1007/s42235-022-00289-8 10.1007/s12555-020-0934-3 10.1109/MWSCAS.2017.8053243 10.1007/978-3-031-71318-7_36 10.1145/3465055 10.1109/TMRB.2023.3292451 10.1016/j.asoc.2020.106092 10.1080/10255842.2024.2400318 10.1109/JTEHM.2020.3023898 10.1109/TNSRE.2022.3200485 10.1002/acs.3186 10.1016/j.bspc.2024.106245 10.1109/ICMIE55541.2022.10048665 10.1016/j.bspc.2024.106681 10.1016/j.bspc.2023.105447 10.1109/TBCAS.2021.3064841 10.1109/ACCESS.2021.3060096 10.1109/TNSRE.2023.3287867 10.1109/ACCESS.2019.2923747 10.1109/RASSE53195.2021.9686816 10.1016/j.compbiomed.2024.108803 10.1007/s42235-021-00083-y 10.1007/s12204-022-2489-3 10.1109/TASE.2022.3185706 10.1109/JSEN.2024.3446868 10.1016/j.jbiomech.2023.111738 10.1162/neco_a_01199 10.1109/JBHI.2023.3304639 10.1016/j.bspc.2022.103487 10.1016/j.bspc.2022.104096 10.1016/j.compbiomed.2023.107389 10.1109/AIM46487.2021.9517544 10.1038/s41586-024-08157-7 10.1109/JSEN.2021.3079428 10.1007/s00521-022-07755-8 10.1109/RAPID54472.2022.9911540 10.1016/j.apergo.2023.104100 10.1016/j.ergon.2024.103569 10.1109/TRO.2023.3236958 10.1016/j.cie.2017.10.025 10.3390/s21020578 10.1109/TBME.2024.3363212 10.1016/j.bspc.2020.101872 10.1016/j.knosys.2022.108789 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2025 – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO GNUQQ HCIFZ JQ2 K7- P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
| DOI | 10.1007/s44443-025-00164-6 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Coronavirus Research Database ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2213-1248 1319-1578 |
| EndPage | 26 |
| ExternalDocumentID | oai_doaj_org_article_3569f5ec62c14897a651993f0863ec35 10_1007_s44443_025_00164_6 |
| GrantInformation_xml | – fundername: the Scientific Support Plan of Guizhou Provincial Department of Science and Technology grantid: Guizhou Science; Technology Support [2022] General 197 |
| GroupedDBID | --K 0R~ 4.4 457 5VS AAEDT AAEDW AAIKJ AAJSJ AALRI AASML AAXUO AAYWO ABEEZ ABMAC ACGFS ACULB ADBBV ADEZE ADVLN AEXQZ AFGXO AFJKZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BCNDV C6C EBS FDB GROUPED_DOAJ IXB KQ8 O-L O9- OK1 ROL SES SOJ SSZ XH2 AAQXK AAYXX ABWVN AFFHD AFKRA AGQPQ ARAPS ASPBG AVWKF AZFZN BENPR BGLVJ CCPQU CITATION EJD FEDTE FGOYB HCIFZ HVGLF HZ~ IPNFZ K7- M41 PHGZM PHGZT PIMPY PQGLB R2- RIG 8FE 8FG ABUWG AZQEC COVID DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c431t-20a391267d852bbc77461456aa4a7c67a41cbb8f4ccb41c6fa38db6a3b2123ae3 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001542196200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1319-1578 |
| IngestDate | Mon Nov 03 21:48:13 EST 2025 Tue Oct 07 07:23:27 EDT 2025 Tue Nov 18 22:14:46 EST 2025 Sat Nov 29 07:34:40 EST 2025 Fri Aug 29 01:11:00 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Surface Electromyography Swarm intelligence algorithm Knee joint angle prediction Enhanced GRU Exoskeleton robot |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c431t-20a391267d852bbc77461456aa4a7c67a41cbb8f4ccb41c6fa38db6a3b2123ae3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/3257157260?pq-origsite=%requestingapplication% |
| PQID | 3257157260 |
| PQPubID | 7424686 |
| PageCount | 26 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3569f5ec62c14897a651993f0863ec35 proquest_journals_3257157260 crossref_citationtrail_10_1007_s44443_025_00164_6 crossref_primary_10_1007_s44443_025_00164_6 springer_journals_10_1007_s44443_025_00164_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-01 |
| PublicationDateYYYYMMDD | 2025-08-01 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Amsterdam |
| PublicationTitle | Journal of King Saud University. Computer and information sciences |
| PublicationTitleAbbrev | J. King Saud Univ. Comput. Inf. Sci |
| PublicationYear | 2025 |
| Publisher | Springer International Publishing Springer Nature B.V Springer |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: Springer |
| References | J Yin (164_CR51) 2021; 15 DD Molinaro (164_CR34) 2024; 635 X Yong (164_CR52) 2023; 35 A Pradhan (164_CR36) 2021; 21 Y Yu (164_CR53) 2019; 31 164_CR55 164_CR12 164_CR56 164_CR13 RK Agrawal (164_CR2) 2020; 89 R Al-Wajih (164_CR3) 2021; 9 164_CR17 C Wei (164_CR47) 2022; 74 C Wang (164_CR44) 2022; 20 NAS Putro (164_CR37) 2024; 87 Y Chen (164_CR7) 2021; 21 Z Lu (164_CR31) 2024; 264 D Zouache (164_CR57) 2018; 115 J Fan (164_CR14) 2024; 237 S Luo (164_CR32) 2024; 630 M Jayasanthi (164_CR20) 2021; 35 G Khodabandelou (164_CR25) 2023; 118 C-F Chen (164_CR6) 2021; 18 B Wu (164_CR50) 2025; 101 AM Khalid (164_CR24) 2022; 248 164_CR22 T Tuncer (164_CR43) 2020; 58 EH Houssein (164_CR19) 2023; 165 164_CR23 W Chen (164_CR9) 2023; 79 164_CR28 W Wei (164_CR48) 2023; 10 164_CR29 S Kyeong (164_CR26) 2022; 20 A Gautam (164_CR15) 2020; 8 N Sun (164_CR40) 2022; 30 S Chaudhari (164_CR5) 2021; 12 Y Li (164_CR27) 2019; 7 164_CR4 SP Sitole (164_CR39) 2023; 5 164_CR30 M Abdel-Salam (164_CR1) 2024; 179 T Ma (164_CR33) 2023; 113 J Han (164_CR16) 2024; 97 G He (164_CR18) 2024; 29 N Jiang (164_CR21) 2024; 71 E Pashaei (164_CR35) 2022; 34 S Qiu (164_CR38) 2023; 20 Q Zhang (164_CR54) 2023; 39 B Choi (164_CR10) 2024; 101 YN Chen (164_CR8) 2023; 158 Z Wang (164_CR45) 2023; 31 X Wang (164_CR46) 2024; 94 J Coker (164_CR11) 2021; 21 DH Wolpert (164_CR49) 1997; 1 164_CR42 E Trojovská (164_CR41) 2022; 10 |
| References_xml | – ident: 164_CR22 doi: 10.1109/IJCNN52387.2021.9534323 – volume: 118 start-page: 105702 year: 2023 ident: 164_CR25 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2022.105702 – volume: 10 start-page: 49445 year: 2022 ident: 164_CR41 publication-title: Ieee Access doi: 10.1109/ACCESS.2022.3172789 – volume: 264 start-page: 125930 year: 2024 ident: 164_CR31 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2024.125930 – volume: 237 start-page: 121224 year: 2024 ident: 164_CR14 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2023.121224 – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 164_CR49 publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.585893 – ident: 164_CR4 doi: 10.1007/s00521-024-09879-5 – volume: 21 start-page: 3622 issue: 11 year: 2021 ident: 164_CR11 publication-title: Sensors doi: 10.3390/s21113622 – ident: 164_CR30 doi: 10.1109/UR52253.2021.9494639 – volume: 630 start-page: 353 issue: 8016 year: 2024 ident: 164_CR32 publication-title: Nature doi: 10.1038/s41586-024-07382-4 – volume: 101 start-page: 107229 year: 2025 ident: 164_CR50 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2024.107229 – volume: 10 start-page: 358 issue: 1 year: 2023 ident: 164_CR48 publication-title: Scientific Data doi: 10.1038/s41597-023-02263-3 – volume: 34 start-page: 6427 issue: 8 year: 2022 ident: 164_CR35 publication-title: Neural Comput Appl doi: 10.1007/s00521-021-06775-0 – volume: 20 start-page: 436 issue: 2 year: 2023 ident: 164_CR38 publication-title: J Bionic Eng doi: 10.1007/s42235-022-00289-8 – volume: 20 start-page: 1018 issue: 3 year: 2022 ident: 164_CR26 publication-title: Int J Control, Automation Syst doi: 10.1007/s12555-020-0934-3 – ident: 164_CR12 doi: 10.1109/MWSCAS.2017.8053243 – ident: 164_CR17 doi: 10.1007/978-3-031-71318-7_36 – volume: 12 start-page: 1 issue: 5 year: 2021 ident: 164_CR5 publication-title: ACM Trans Intell Syst Technol (TIST) doi: 10.1145/3465055 – volume: 5 start-page: 528 issue: 3 year: 2023 ident: 164_CR39 publication-title: IEEE Trans Med Robotics Bionics doi: 10.1109/TMRB.2023.3292451 – volume: 89 start-page: 106092 year: 2020 ident: 164_CR2 publication-title: Appl Soft Computing doi: 10.1016/j.asoc.2020.106092 – ident: 164_CR23 doi: 10.1080/10255842.2024.2400318 – volume: 8 start-page: 1 year: 2020 ident: 164_CR15 publication-title: IEEE J Transl Eng Health Med doi: 10.1109/JTEHM.2020.3023898 – volume: 30 start-page: 2446 year: 2022 ident: 164_CR40 publication-title: IEEE Trans Neural Syst Rehabilitation Eng doi: 10.1109/TNSRE.2022.3200485 – volume: 35 start-page: 38 issue: 1 year: 2021 ident: 164_CR20 publication-title: Int J Adapt Control Signal Process doi: 10.1002/acs.3186 – volume: 94 start-page: 106245 year: 2024 ident: 164_CR46 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2024.106245 – ident: 164_CR56 doi: 10.1109/ICMIE55541.2022.10048665 – volume: 97 start-page: 106681 year: 2024 ident: 164_CR16 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2024.106681 – volume: 87 start-page: 105447 year: 2024 ident: 164_CR37 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2023.105447 – volume: 15 start-page: 259 issue: 2 year: 2021 ident: 164_CR51 publication-title: IEEE Trans Biomed Circuits Syst doi: 10.1109/TBCAS.2021.3064841 – volume: 9 start-page: 31662 year: 2021 ident: 164_CR3 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3060096 – volume: 31 start-page: 2800 year: 2023 ident: 164_CR45 publication-title: IEEE Transac Neural Syst Rehabilitation Eng doi: 10.1109/TNSRE.2023.3287867 – volume: 7 start-page: 82320 year: 2019 ident: 164_CR27 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2923747 – ident: 164_CR28 doi: 10.1109/RASSE53195.2021.9686816 – volume: 179 start-page: 108803 year: 2024 ident: 164_CR1 publication-title: Computers Biol Med doi: 10.1016/j.compbiomed.2024.108803 – volume: 18 start-page: 1059 year: 2021 ident: 164_CR6 publication-title: J Bionic Eng doi: 10.1007/s42235-021-00083-y – volume: 29 start-page: 1 issue: 1 year: 2024 ident: 164_CR18 publication-title: J Shanghai Jiaotong Univ (Science) doi: 10.1007/s12204-022-2489-3 – volume: 20 start-page: 901 issue: 2 year: 2022 ident: 164_CR44 publication-title: IEEE Trans Automation Sci Eng doi: 10.1109/TASE.2022.3185706 – ident: 164_CR42 doi: 10.1109/JSEN.2024.3446868 – volume: 158 start-page: 111738 year: 2023 ident: 164_CR8 publication-title: J Biomech doi: 10.1016/j.jbiomech.2023.111738 – volume: 31 start-page: 1235 issue: 7 year: 2019 ident: 164_CR53 publication-title: Neural Computation doi: 10.1162/neco_a_01199 – ident: 164_CR29 doi: 10.1109/JBHI.2023.3304639 – volume: 74 start-page: 103487 year: 2022 ident: 164_CR47 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2022.103487 – volume: 79 start-page: 104096 year: 2023 ident: 164_CR9 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2022.104096 – volume: 165 start-page: 107389 year: 2023 ident: 164_CR19 publication-title: Computers Biol Med doi: 10.1016/j.compbiomed.2023.107389 – ident: 164_CR55 doi: 10.1109/AIM46487.2021.9517544 – volume: 635 start-page: 337 issue: 8038 year: 2024 ident: 164_CR34 publication-title: Nature doi: 10.1038/s41586-024-08157-7 – volume: 21 start-page: 21718 issue: 19 year: 2021 ident: 164_CR36 publication-title: IEEE Sens J doi: 10.1109/JSEN.2021.3079428 – volume: 35 start-page: 275 issue: 1 year: 2023 ident: 164_CR52 publication-title: Neural Comput Appl doi: 10.1007/s00521-022-07755-8 – ident: 164_CR13 doi: 10.1109/RAPID54472.2022.9911540 – volume: 113 start-page: 104100 year: 2023 ident: 164_CR33 publication-title: Applied Ergonomics doi: 10.1016/j.apergo.2023.104100 – volume: 101 start-page: 103569 year: 2024 ident: 164_CR10 publication-title: Int J Industrial Ergonomics doi: 10.1016/j.ergon.2024.103569 – volume: 39 start-page: 2183 issue: 3 year: 2023 ident: 164_CR54 publication-title: IEEE Trans Robotics doi: 10.1109/TRO.2023.3236958 – volume: 115 start-page: 26 year: 2018 ident: 164_CR57 publication-title: Computers & Industrial Eng doi: 10.1016/j.cie.2017.10.025 – volume: 21 start-page: 578 issue: 2 year: 2021 ident: 164_CR7 publication-title: Sensors doi: 10.3390/s21020578 – volume: 71 start-page: 2154 issue: 7 year: 2024 ident: 164_CR21 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2024.3363212 – volume: 58 start-page: 101872 year: 2020 ident: 164_CR43 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2020.101872 – volume: 248 start-page: 108789 year: 2022 ident: 164_CR24 publication-title: Knowledge-based Syst doi: 10.1016/j.knosys.2022.108789 |
| SSID | ssj0001765436 |
| Score | 2.3261473 |
| Snippet | Exoskeleton robots have been increasingly applied in mountaineering, rescue, and military scenarios to alleviate physical burden and enhance mobility. This... Abstract Exoskeleton robots have been increasingly applied in mountaineering, rescue, and military scenarios to alleviate physical burden and enhance mobility.... |
| SourceID | doaj proquest crossref springer |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 149 |
| SubjectTerms | Accuracy Attention Collaboration Computer Imaging Computer Science Database Management Datasets Efficiency Electromyography Energy consumption Enhanced GRU Exoskeleton robot Exoskeletons Feature extraction Feature selection Genetic algorithms Knee Knee joint angle prediction Machine Learning Mountaineering Neural networks Optimization Optimization algorithms Original Paper Pattern Recognition and Graphics Pattern recognition systems Real time Robots Root-mean-square errors Signal processing Software Engineering/Programming and Operating Systems Surface Electromyography Swarm intelligence algorithm Systems and Data Security Theory of Computation Vision |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQ6qGXlr7UbQHNoTcalcSvhBsgoJcCqoqEerFsx27TLl60u3DgT_CXmXGyW6jU9tKcomQcWePPnnE88w1j7xxXMsTtUASLOx0hHK2DMhbSVo1H_1mUlc_FJvTxcX1-3pzeK_VFMWE9PXCvuA9cqibK4FXl0XNvtFWSYs4iuuI8eJ7ZS9HrubeZyn9XNOVM5tQiytIpEZdDxkzOmxN40fGlLDLFVKEeWKVM3v_A4_ztkDTbnsM19mRwGmG37-wzthLSc_Z0UZABhvn5gt0S11SXrnA3D5dTOoIhtcMkws8UAvyYdGkONn0bB-gSjKlAGoy7CzcDMmYtoOzs4NPRDljoK0sD4tHlEhLYDLr8AwLlvp7swgTXmovuBr9gUwvE0pnjJouQvuegAjj6fPaSnR0efNn_WAwVFwqPjsQcp4zlTVkp3daycs6jb4jmWyprhdVeaStK71wdhfcOb1W0vG6dstyRBbSBv2KraZLCawZairaK9XblPOWuiiZqiwrnTa3r2LZuxMqFxo0f6MipKsbYLImU8ygZbGTyKBk1YlvLNpc9GcdfpfdoIJeSRKSdHyC8zAAv8y94jdj6AgZmmN0zw3GdQ0ghlEfs_QIav17_uUtv_keX3rLHVYYuRSGus9X59CpssEf-et7Nppt5HtwB9VAFYQ priority: 102 providerName: Directory of Open Access Journals |
| Title | Continuous prediction of knee joint angle in lower limbs based on sEMG: a method combining an improved ZOA optimizer and attention-enhanced GRU |
| URI | https://link.springer.com/article/10.1007/s44443-025-00164-6 https://www.proquest.com/docview/3257157260 https://doaj.org/article/3569f5ec62c14897a651993f0863ec35 |
| Volume | 37 |
| WOSCitedRecordID | wos001542196200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2213-1248 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001765436 issn: 1319-1578 databaseCode: DOA dateStart: 20250101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2213-1248 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001765436 issn: 1319-1578 databaseCode: K7- dateStart: 20250301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2213-1248 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001765436 issn: 1319-1578 databaseCode: BENPR dateStart: 20250301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2213-1248 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001765436 issn: 1319-1578 databaseCode: PIMPY dateStart: 20250301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLdg48Bl41N0jOoduEHEEsd2wgVtqBsIrVQTkwaXyHbsEeic0rQc-Cf4l3l2nVZDYhdyipJny9L79PPz-xHyXFHOjD0wiZG408lz5e0gswmTWakxfs7TTAewCTEeFxcX5SQm3LpYVtnbxGCo61b7HPkrirKVMoHD38x-JB41yp-uRgiN22Q7zbLUy_kHkWxyLMLfnOTxrky4MZfj4w8uWRKaSyX8mj8KbfuvxZp_HY8Gr3O8-7_rvUd2YrwJhysBuU9uGfeA7PZYDhBV-yH57dtUNW7ZLjuYzf3pjecYtBa-O2PgW9u4BUh3OTXQOJh6bDWYNleqA-8Ha0DabnR68hokrECpAZepAvoEDoMm5C6Q7svHQ2jRTF01v3AG6WrwDT5DyWVi3NdQjwAnZ-ePyPnx6NPbd0kEa0g0xiAL1DZJyzTjoi5YppTGsBI9P-NS5lJoLmSeaqUKm2ut8JVbSYtacUmVd57S0Mdky7XOPCEgWF5ntjjIlPbXXvPSCokco2UhClvXakDSnmWVjp3MPaDGtFr3YA5srnBQFdhc8QF5sR4zW_XxuJH6yEvCmtL34A4f2vllFVW6ooyXlhnNM417ylJIznw1pMVNIjWasgHZ7yWjioahqzZiMSAve9na_P73kvZunu0puZsFqfaliftkazFfmmfkjv65aLr5kGwfjcaTs2HIOAyDkuC3yfvTyec_nvMWuQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKi0QvlKdYKDAHOEFEN34lSAi1sH2o7VJVrVRxMbbjtIFtsmx2QfAn-Cf8RsbeZFdForceyClKxlbkfDPjx8x8hDwzVHCXr7nIaVzpMGa8HeR5xHWcWpw_s25sA9mE7PeTk5P0YIH8bnNhfFhlaxODoc4q6_fIX1HEVpdLbP52-DXyrFH-dLWl0JjCYtf9-I5LtvrNznv8v8_jeLN39G47algFIovOcoyw0DTtxkJmCY-NsTj_QRfFhdZMSyukZl1rTJIzaw3eilzTJDNCU-OtvHYU-71GlhhlEvVqaaPXPzic7-pIn6spmuyckKPH8PJHpTwK5awiccEDBqKAC7Pbvw5kg5_bXPnfRugWudnMqGF9qgK3yYIr75CVlq0CGuN1l_zyhbiKclJNahiO_PmUxyRUOXwpnYPPVVGOQZenAwdFCQPPHgeD4tzU4D19Bihb9_a3XoOGKe024LCYwK-BzaAIuzMo9_HDOlRoiM-Ln9iDLjPwJUxDUGnkyrMQcQFbh8f3yPGVDMt9slhWpXtAQHKWxXmyFhvrE3tZmkuNCKFpIpM8y0yHdFuIKNvUaveUIQM1qzIdYKWwkQqwUqJDXszaDKeVSi6V3vDIm0n6KuPhQTU6VY3RUpSLNOfOitjiqjmVWnAf75njMpg6S3mHrLZIVI3pq9Uchh3yssXy_PW_P-nh5b09JTe2j_b31N5Of_cRWY6DRvlAzFWyOB5N3GNy3X4bF_XoSaOUQD5dNcr_ALw1cWg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Continuous+prediction+of+knee+joint+angle+in+lower+limbs+based+on+sEMG%3A+a+method+combining+an+improved+ZOA+optimizer+and+attention-enhanced+GRU&rft.jtitle=Journal+of+King+Saud+University.+Computer+and+information+sciences&rft.au=Lv%2C+Jian&rft.au=Huang%2C+Binhao&rft.au=Qiang%2C+Ligang&rft.date=2025-08-01&rft.issn=1319-1578&rft.eissn=2213-1248&rft.volume=37&rft.issue=6&rft_id=info:doi/10.1007%2Fs44443-025-00164-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s44443_025_00164_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1319-1578&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1319-1578&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1319-1578&client=summon |