Continuous prediction of knee joint angle in lower limbs based on sEMG: a method combining an improved ZOA optimizer and attention-enhanced GRU

Exoskeleton robots have been increasingly applied in mountaineering, rescue, and military scenarios to alleviate physical burden and enhance mobility. This study proposes a novel approach for continuous knee joint angle prediction based on surface electromyography (sEMG), integrating an Improved Zeb...

Full description

Saved in:
Bibliographic Details
Published in:Journal of King Saud University. Computer and information sciences Vol. 37; no. 6; pp. 149 - 26
Main Authors: Lv, Jian, Huang, Binhao, Qiang, Ligang
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 01.08.2025
Springer Nature B.V
Springer
Subjects:
ISSN:1319-1578, 2213-1248, 1319-1578
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Exoskeleton robots have been increasingly applied in mountaineering, rescue, and military scenarios to alleviate physical burden and enhance mobility. This study proposes a novel approach for continuous knee joint angle prediction based on surface electromyography (sEMG), integrating an Improved Zebra Optimization Algorithm (IZOA) with an attention-enhanced Gated Recurrent Unit (GRU) network. The IZOA leverages Tent and Logistic chaotic mappings for improved population diversity and convergence, along with a memory-based strategy to enhance global search capabilities. Experimental evaluations across three motion tasks—level walking, stair ascent, and stair descent—demonstrated that the proposed method achieved a minimum root mean square error (RMSE) of 1.31°, with over 50% reduction in feature dimensionality, significantly outperforming Genetic Algorithm (GA), Zebra Optimization Algorithm (ZOA), Liver Cancer Algorithm (LCA), and Pied Kingfisher Optimizer (PKO). In addition, normalization based on maximal voluntary contraction (MVC) improved model robustness across subjects. The attention-based GRU further enhanced dynamic feature extraction, leading to an average RMSE reduction of 27.2% compared to baseline GRU and Long Short-Term Memory (LSTM) models. These results confirm the effectiveness of the proposed method in achieving accurate, stable, and continuous sEMG-driven knee joint angle prediction, offering strong potential for intelligent control in wearable exoskeleton systems.
AbstractList Exoskeleton robots have been increasingly applied in mountaineering, rescue, and military scenarios to alleviate physical burden and enhance mobility. This study proposes a novel approach for continuous knee joint angle prediction based on surface electromyography (sEMG), integrating an Improved Zebra Optimization Algorithm (IZOA) with an attention-enhanced Gated Recurrent Unit (GRU) network. The IZOA leverages Tent and Logistic chaotic mappings for improved population diversity and convergence, along with a memory-based strategy to enhance global search capabilities. Experimental evaluations across three motion tasks—level walking, stair ascent, and stair descent—demonstrated that the proposed method achieved a minimum root mean square error (RMSE) of 1.31°, with over 50% reduction in feature dimensionality, significantly outperforming Genetic Algorithm (GA), Zebra Optimization Algorithm (ZOA), Liver Cancer Algorithm (LCA), and Pied Kingfisher Optimizer (PKO). In addition, normalization based on maximal voluntary contraction (MVC) improved model robustness across subjects. The attention-based GRU further enhanced dynamic feature extraction, leading to an average RMSE reduction of 27.2% compared to baseline GRU and Long Short-Term Memory (LSTM) models. These results confirm the effectiveness of the proposed method in achieving accurate, stable, and continuous sEMG-driven knee joint angle prediction, offering strong potential for intelligent control in wearable exoskeleton systems.
Abstract Exoskeleton robots have been increasingly applied in mountaineering, rescue, and military scenarios to alleviate physical burden and enhance mobility. This study proposes a novel approach for continuous knee joint angle prediction based on surface electromyography (sEMG), integrating an Improved Zebra Optimization Algorithm (IZOA) with an attention-enhanced Gated Recurrent Unit (GRU) network. The IZOA leverages Tent and Logistic chaotic mappings for improved population diversity and convergence, along with a memory-based strategy to enhance global search capabilities. Experimental evaluations across three motion tasks—level walking, stair ascent, and stair descent—demonstrated that the proposed method achieved a minimum root mean square error (RMSE) of 1.31°, with over 50% reduction in feature dimensionality, significantly outperforming Genetic Algorithm (GA), Zebra Optimization Algorithm (ZOA), Liver Cancer Algorithm (LCA), and Pied Kingfisher Optimizer (PKO). In addition, normalization based on maximal voluntary contraction (MVC) improved model robustness across subjects. The attention-based GRU further enhanced dynamic feature extraction, leading to an average RMSE reduction of 27.2% compared to baseline GRU and Long Short-Term Memory (LSTM) models. These results confirm the effectiveness of the proposed method in achieving accurate, stable, and continuous sEMG-driven knee joint angle prediction, offering strong potential for intelligent control in wearable exoskeleton systems.
ArticleNumber 149
Author Qiang, Ligang
Lv, Jian
Huang, Binhao
Author_xml – sequence: 1
  givenname: Jian
  surname: Lv
  fullname: Lv, Jian
  organization: Key Laboratory of Advanced Manufacturing Technology of the Ministry of Education, Guizhou University
– sequence: 2
  givenname: Binhao
  surname: Huang
  fullname: Huang, Binhao
  email: gs.bhhuang23@gzu.edu.cn
  organization: Key Laboratory of Advanced Manufacturing Technology of the Ministry of Education, Guizhou University
– sequence: 3
  givenname: Ligang
  surname: Qiang
  fullname: Qiang, Ligang
  organization: Guizhou Aerospace Control Technology Co, Ltd
BookMark eNp9kd9qFDEYxYNUcK19Aa8CXo_mf2a8K0tdC5WC2BtvwpdMZpt1JlmTrKIv4Sub7SqCF81NQvidk5PvPEdnMUWP0EtKXlNC9Jsi2uIdYbIjhCrRqSdoxRjlHWWiP0MryunQUan7Z-iilB1plFZScLVCv9Yp1hAP6VDwPvsxuBpSxGnCX6L3eJdCrBjidvY4RDyn7z7jOSy2YAvFj7ix5erD5i0GvPh6n0bs0mJDDHHbZDgs-5y-Ne7z7SVO-xqW8LM5QBwx1Orj8bHOx3uIrkGbj3cv0NMJ5uIv_uzn6O7d1af1--7mdnO9vrzpnOC0dowAHyhTeuwls9ZpLRQVUgEI0E5pENRZ20_COduOagLej1YBt4wyDp6fo-uT75hgZ_Y5LJB_mATBPFykvDWQa3CzN1yqYZLeKeao6AcNStJh4BPpFfeOy-b16uTV_vr14Es1u3TIscU3nEndBs8UaVR_olxOpWQ_GRcqHAdQM4TZUGKObZpTm6a1aR7aNKpJ2X_Sv4EfFfGTqDQ4bn3-l-oR1W-9aLPU
CitedBy_id crossref_primary_10_3390_math13182960
Cites_doi 10.1109/IJCNN52387.2021.9534323
10.1016/j.engappai.2022.105702
10.1109/ACCESS.2022.3172789
10.1016/j.eswa.2024.125930
10.1016/j.eswa.2023.121224
10.1109/4235.585893
10.1007/s00521-024-09879-5
10.3390/s21113622
10.1109/UR52253.2021.9494639
10.1038/s41586-024-07382-4
10.1016/j.bspc.2024.107229
10.1038/s41597-023-02263-3
10.1007/s00521-021-06775-0
10.1007/s42235-022-00289-8
10.1007/s12555-020-0934-3
10.1109/MWSCAS.2017.8053243
10.1007/978-3-031-71318-7_36
10.1145/3465055
10.1109/TMRB.2023.3292451
10.1016/j.asoc.2020.106092
10.1080/10255842.2024.2400318
10.1109/JTEHM.2020.3023898
10.1109/TNSRE.2022.3200485
10.1002/acs.3186
10.1016/j.bspc.2024.106245
10.1109/ICMIE55541.2022.10048665
10.1016/j.bspc.2024.106681
10.1016/j.bspc.2023.105447
10.1109/TBCAS.2021.3064841
10.1109/ACCESS.2021.3060096
10.1109/TNSRE.2023.3287867
10.1109/ACCESS.2019.2923747
10.1109/RASSE53195.2021.9686816
10.1016/j.compbiomed.2024.108803
10.1007/s42235-021-00083-y
10.1007/s12204-022-2489-3
10.1109/TASE.2022.3185706
10.1109/JSEN.2024.3446868
10.1016/j.jbiomech.2023.111738
10.1162/neco_a_01199
10.1109/JBHI.2023.3304639
10.1016/j.bspc.2022.103487
10.1016/j.bspc.2022.104096
10.1016/j.compbiomed.2023.107389
10.1109/AIM46487.2021.9517544
10.1038/s41586-024-08157-7
10.1109/JSEN.2021.3079428
10.1007/s00521-022-07755-8
10.1109/RAPID54472.2022.9911540
10.1016/j.apergo.2023.104100
10.1016/j.ergon.2024.103569
10.1109/TRO.2023.3236958
10.1016/j.cie.2017.10.025
10.3390/s21020578
10.1109/TBME.2024.3363212
10.1016/j.bspc.2020.101872
10.1016/j.knosys.2022.108789
ContentType Journal Article
Copyright The Author(s) 2025
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1007/s44443-025-00164-6
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
Coronavirus Research Database
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2213-1248
1319-1578
EndPage 26
ExternalDocumentID oai_doaj_org_article_3569f5ec62c14897a651993f0863ec35
10_1007_s44443_025_00164_6
GrantInformation_xml – fundername: the Scientific Support Plan of Guizhou Provincial Department of Science and Technology
  grantid: Guizhou Science; Technology Support [2022] General 197
GroupedDBID --K
0R~
4.4
457
5VS
AAEDT
AAEDW
AAIKJ
AAJSJ
AALRI
AASML
AAXUO
AAYWO
ABEEZ
ABMAC
ACGFS
ACULB
ADBBV
ADEZE
ADVLN
AEXQZ
AFGXO
AFJKZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
C6C
EBS
FDB
GROUPED_DOAJ
IXB
KQ8
O-L
O9-
OK1
ROL
SES
SOJ
SSZ
XH2
AAQXK
AAYXX
ABWVN
AFFHD
AFKRA
AGQPQ
ARAPS
ASPBG
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CITATION
EJD
FEDTE
FGOYB
HCIFZ
HVGLF
HZ~
IPNFZ
K7-
M41
PHGZM
PHGZT
PIMPY
PQGLB
R2-
RIG
8FE
8FG
ABUWG
AZQEC
COVID
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c431t-20a391267d852bbc77461456aa4a7c67a41cbb8f4ccb41c6fa38db6a3b2123ae3
IEDL.DBID K7-
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001542196200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1319-1578
IngestDate Mon Nov 03 21:48:13 EST 2025
Tue Oct 07 07:23:27 EDT 2025
Tue Nov 18 22:14:46 EST 2025
Sat Nov 29 07:34:40 EST 2025
Fri Aug 29 01:11:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Surface Electromyography
Swarm intelligence algorithm
Knee joint angle prediction
Enhanced GRU
Exoskeleton robot
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c431t-20a391267d852bbc77461456aa4a7c67a41cbb8f4ccb41c6fa38db6a3b2123ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3257157260?pq-origsite=%requestingapplication%
PQID 3257157260
PQPubID 7424686
PageCount 26
ParticipantIDs doaj_primary_oai_doaj_org_article_3569f5ec62c14897a651993f0863ec35
proquest_journals_3257157260
crossref_citationtrail_10_1007_s44443_025_00164_6
crossref_primary_10_1007_s44443_025_00164_6
springer_journals_10_1007_s44443_025_00164_6
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Amsterdam
PublicationTitle Journal of King Saud University. Computer and information sciences
PublicationTitleAbbrev J. King Saud Univ. Comput. Inf. Sci
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
Springer
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: Springer
References J Yin (164_CR51) 2021; 15
DD Molinaro (164_CR34) 2024; 635
X Yong (164_CR52) 2023; 35
A Pradhan (164_CR36) 2021; 21
Y Yu (164_CR53) 2019; 31
164_CR55
164_CR12
164_CR56
164_CR13
RK Agrawal (164_CR2) 2020; 89
R Al-Wajih (164_CR3) 2021; 9
164_CR17
C Wei (164_CR47) 2022; 74
C Wang (164_CR44) 2022; 20
NAS Putro (164_CR37) 2024; 87
Y Chen (164_CR7) 2021; 21
Z Lu (164_CR31) 2024; 264
D Zouache (164_CR57) 2018; 115
J Fan (164_CR14) 2024; 237
S Luo (164_CR32) 2024; 630
M Jayasanthi (164_CR20) 2021; 35
G Khodabandelou (164_CR25) 2023; 118
C-F Chen (164_CR6) 2021; 18
B Wu (164_CR50) 2025; 101
AM Khalid (164_CR24) 2022; 248
164_CR22
T Tuncer (164_CR43) 2020; 58
EH Houssein (164_CR19) 2023; 165
164_CR23
W Chen (164_CR9) 2023; 79
164_CR28
W Wei (164_CR48) 2023; 10
164_CR29
S Kyeong (164_CR26) 2022; 20
A Gautam (164_CR15) 2020; 8
N Sun (164_CR40) 2022; 30
S Chaudhari (164_CR5) 2021; 12
Y Li (164_CR27) 2019; 7
164_CR4
SP Sitole (164_CR39) 2023; 5
164_CR30
M Abdel-Salam (164_CR1) 2024; 179
T Ma (164_CR33) 2023; 113
J Han (164_CR16) 2024; 97
G He (164_CR18) 2024; 29
N Jiang (164_CR21) 2024; 71
E Pashaei (164_CR35) 2022; 34
S Qiu (164_CR38) 2023; 20
Q Zhang (164_CR54) 2023; 39
B Choi (164_CR10) 2024; 101
YN Chen (164_CR8) 2023; 158
Z Wang (164_CR45) 2023; 31
X Wang (164_CR46) 2024; 94
J Coker (164_CR11) 2021; 21
DH Wolpert (164_CR49) 1997; 1
164_CR42
E Trojovská (164_CR41) 2022; 10
References_xml – ident: 164_CR22
  doi: 10.1109/IJCNN52387.2021.9534323
– volume: 118
  start-page: 105702
  year: 2023
  ident: 164_CR25
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2022.105702
– volume: 10
  start-page: 49445
  year: 2022
  ident: 164_CR41
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2022.3172789
– volume: 264
  start-page: 125930
  year: 2024
  ident: 164_CR31
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2024.125930
– volume: 237
  start-page: 121224
  year: 2024
  ident: 164_CR14
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.121224
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 164_CR49
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.585893
– ident: 164_CR4
  doi: 10.1007/s00521-024-09879-5
– volume: 21
  start-page: 3622
  issue: 11
  year: 2021
  ident: 164_CR11
  publication-title: Sensors
  doi: 10.3390/s21113622
– ident: 164_CR30
  doi: 10.1109/UR52253.2021.9494639
– volume: 630
  start-page: 353
  issue: 8016
  year: 2024
  ident: 164_CR32
  publication-title: Nature
  doi: 10.1038/s41586-024-07382-4
– volume: 101
  start-page: 107229
  year: 2025
  ident: 164_CR50
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2024.107229
– volume: 10
  start-page: 358
  issue: 1
  year: 2023
  ident: 164_CR48
  publication-title: Scientific Data
  doi: 10.1038/s41597-023-02263-3
– volume: 34
  start-page: 6427
  issue: 8
  year: 2022
  ident: 164_CR35
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-021-06775-0
– volume: 20
  start-page: 436
  issue: 2
  year: 2023
  ident: 164_CR38
  publication-title: J Bionic Eng
  doi: 10.1007/s42235-022-00289-8
– volume: 20
  start-page: 1018
  issue: 3
  year: 2022
  ident: 164_CR26
  publication-title: Int J Control, Automation Syst
  doi: 10.1007/s12555-020-0934-3
– ident: 164_CR12
  doi: 10.1109/MWSCAS.2017.8053243
– ident: 164_CR17
  doi: 10.1007/978-3-031-71318-7_36
– volume: 12
  start-page: 1
  issue: 5
  year: 2021
  ident: 164_CR5
  publication-title: ACM Trans Intell Syst Technol (TIST)
  doi: 10.1145/3465055
– volume: 5
  start-page: 528
  issue: 3
  year: 2023
  ident: 164_CR39
  publication-title: IEEE Trans Med Robotics Bionics
  doi: 10.1109/TMRB.2023.3292451
– volume: 89
  start-page: 106092
  year: 2020
  ident: 164_CR2
  publication-title: Appl Soft Computing
  doi: 10.1016/j.asoc.2020.106092
– ident: 164_CR23
  doi: 10.1080/10255842.2024.2400318
– volume: 8
  start-page: 1
  year: 2020
  ident: 164_CR15
  publication-title: IEEE J Transl Eng Health Med
  doi: 10.1109/JTEHM.2020.3023898
– volume: 30
  start-page: 2446
  year: 2022
  ident: 164_CR40
  publication-title: IEEE Trans Neural Syst Rehabilitation Eng
  doi: 10.1109/TNSRE.2022.3200485
– volume: 35
  start-page: 38
  issue: 1
  year: 2021
  ident: 164_CR20
  publication-title: Int J Adapt Control Signal Process
  doi: 10.1002/acs.3186
– volume: 94
  start-page: 106245
  year: 2024
  ident: 164_CR46
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2024.106245
– ident: 164_CR56
  doi: 10.1109/ICMIE55541.2022.10048665
– volume: 97
  start-page: 106681
  year: 2024
  ident: 164_CR16
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2024.106681
– volume: 87
  start-page: 105447
  year: 2024
  ident: 164_CR37
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2023.105447
– volume: 15
  start-page: 259
  issue: 2
  year: 2021
  ident: 164_CR51
  publication-title: IEEE Trans Biomed Circuits Syst
  doi: 10.1109/TBCAS.2021.3064841
– volume: 9
  start-page: 31662
  year: 2021
  ident: 164_CR3
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3060096
– volume: 31
  start-page: 2800
  year: 2023
  ident: 164_CR45
  publication-title: IEEE Transac Neural Syst Rehabilitation Eng
  doi: 10.1109/TNSRE.2023.3287867
– volume: 7
  start-page: 82320
  year: 2019
  ident: 164_CR27
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2923747
– ident: 164_CR28
  doi: 10.1109/RASSE53195.2021.9686816
– volume: 179
  start-page: 108803
  year: 2024
  ident: 164_CR1
  publication-title: Computers Biol Med
  doi: 10.1016/j.compbiomed.2024.108803
– volume: 18
  start-page: 1059
  year: 2021
  ident: 164_CR6
  publication-title: J Bionic Eng
  doi: 10.1007/s42235-021-00083-y
– volume: 29
  start-page: 1
  issue: 1
  year: 2024
  ident: 164_CR18
  publication-title: J Shanghai Jiaotong Univ (Science)
  doi: 10.1007/s12204-022-2489-3
– volume: 20
  start-page: 901
  issue: 2
  year: 2022
  ident: 164_CR44
  publication-title: IEEE Trans Automation Sci Eng
  doi: 10.1109/TASE.2022.3185706
– ident: 164_CR42
  doi: 10.1109/JSEN.2024.3446868
– volume: 158
  start-page: 111738
  year: 2023
  ident: 164_CR8
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2023.111738
– volume: 31
  start-page: 1235
  issue: 7
  year: 2019
  ident: 164_CR53
  publication-title: Neural Computation
  doi: 10.1162/neco_a_01199
– ident: 164_CR29
  doi: 10.1109/JBHI.2023.3304639
– volume: 74
  start-page: 103487
  year: 2022
  ident: 164_CR47
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2022.103487
– volume: 79
  start-page: 104096
  year: 2023
  ident: 164_CR9
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2022.104096
– volume: 165
  start-page: 107389
  year: 2023
  ident: 164_CR19
  publication-title: Computers Biol Med
  doi: 10.1016/j.compbiomed.2023.107389
– ident: 164_CR55
  doi: 10.1109/AIM46487.2021.9517544
– volume: 635
  start-page: 337
  issue: 8038
  year: 2024
  ident: 164_CR34
  publication-title: Nature
  doi: 10.1038/s41586-024-08157-7
– volume: 21
  start-page: 21718
  issue: 19
  year: 2021
  ident: 164_CR36
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2021.3079428
– volume: 35
  start-page: 275
  issue: 1
  year: 2023
  ident: 164_CR52
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-022-07755-8
– ident: 164_CR13
  doi: 10.1109/RAPID54472.2022.9911540
– volume: 113
  start-page: 104100
  year: 2023
  ident: 164_CR33
  publication-title: Applied Ergonomics
  doi: 10.1016/j.apergo.2023.104100
– volume: 101
  start-page: 103569
  year: 2024
  ident: 164_CR10
  publication-title: Int J Industrial Ergonomics
  doi: 10.1016/j.ergon.2024.103569
– volume: 39
  start-page: 2183
  issue: 3
  year: 2023
  ident: 164_CR54
  publication-title: IEEE Trans Robotics
  doi: 10.1109/TRO.2023.3236958
– volume: 115
  start-page: 26
  year: 2018
  ident: 164_CR57
  publication-title: Computers & Industrial Eng
  doi: 10.1016/j.cie.2017.10.025
– volume: 21
  start-page: 578
  issue: 2
  year: 2021
  ident: 164_CR7
  publication-title: Sensors
  doi: 10.3390/s21020578
– volume: 71
  start-page: 2154
  issue: 7
  year: 2024
  ident: 164_CR21
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2024.3363212
– volume: 58
  start-page: 101872
  year: 2020
  ident: 164_CR43
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2020.101872
– volume: 248
  start-page: 108789
  year: 2022
  ident: 164_CR24
  publication-title: Knowledge-based Syst
  doi: 10.1016/j.knosys.2022.108789
SSID ssj0001765436
Score 2.3261473
Snippet Exoskeleton robots have been increasingly applied in mountaineering, rescue, and military scenarios to alleviate physical burden and enhance mobility. This...
Abstract Exoskeleton robots have been increasingly applied in mountaineering, rescue, and military scenarios to alleviate physical burden and enhance mobility....
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 149
SubjectTerms Accuracy
Attention
Collaboration
Computer Imaging
Computer Science
Database Management
Datasets
Efficiency
Electromyography
Energy consumption
Enhanced GRU
Exoskeleton robot
Exoskeletons
Feature extraction
Feature selection
Genetic algorithms
Knee
Knee joint angle prediction
Machine Learning
Mountaineering
Neural networks
Optimization
Optimization algorithms
Original Paper
Pattern Recognition and Graphics
Pattern recognition systems
Real time
Robots
Root-mean-square errors
Signal processing
Software Engineering/Programming and Operating Systems
Surface Electromyography
Swarm intelligence algorithm
Systems and Data Security
Theory of Computation
Vision
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQ6qGXlr7UbQHNoTcalcSvhBsgoJcCqoqEerFsx27TLl60u3DgT_CXmXGyW6jU9tKcomQcWePPnnE88w1j7xxXMsTtUASLOx0hHK2DMhbSVo1H_1mUlc_FJvTxcX1-3pzeK_VFMWE9PXCvuA9cqibK4FXl0XNvtFWSYs4iuuI8eJ7ZS9HrubeZyn9XNOVM5tQiytIpEZdDxkzOmxN40fGlLDLFVKEeWKVM3v_A4_ztkDTbnsM19mRwGmG37-wzthLSc_Z0UZABhvn5gt0S11SXrnA3D5dTOoIhtcMkws8UAvyYdGkONn0bB-gSjKlAGoy7CzcDMmYtoOzs4NPRDljoK0sD4tHlEhLYDLr8AwLlvp7swgTXmovuBr9gUwvE0pnjJouQvuegAjj6fPaSnR0efNn_WAwVFwqPjsQcp4zlTVkp3daycs6jb4jmWyprhdVeaStK71wdhfcOb1W0vG6dstyRBbSBv2KraZLCawZairaK9XblPOWuiiZqiwrnTa3r2LZuxMqFxo0f6MipKsbYLImU8ygZbGTyKBk1YlvLNpc9GcdfpfdoIJeSRKSdHyC8zAAv8y94jdj6AgZmmN0zw3GdQ0ghlEfs_QIav17_uUtv_keX3rLHVYYuRSGus9X59CpssEf-et7Nppt5HtwB9VAFYQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Continuous prediction of knee joint angle in lower limbs based on sEMG: a method combining an improved ZOA optimizer and attention-enhanced GRU
URI https://link.springer.com/article/10.1007/s44443-025-00164-6
https://www.proquest.com/docview/3257157260
https://doaj.org/article/3569f5ec62c14897a651993f0863ec35
Volume 37
WOSCitedRecordID wos001542196200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2213-1248
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001765436
  issn: 1319-1578
  databaseCode: DOA
  dateStart: 20250101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2213-1248
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001765436
  issn: 1319-1578
  databaseCode: K7-
  dateStart: 20250301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2213-1248
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001765436
  issn: 1319-1578
  databaseCode: BENPR
  dateStart: 20250301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2213-1248
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001765436
  issn: 1319-1578
  databaseCode: PIMPY
  dateStart: 20250301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLdg48Bl41N0jOoduEHEEsd2wgVtqBsIrVQTkwaXyHbsEeic0rQc-Cf4l3l2nVZDYhdyipJny9L79PPz-xHyXFHOjD0wiZG408lz5e0gswmTWakxfs7TTAewCTEeFxcX5SQm3LpYVtnbxGCo61b7HPkrirKVMoHD38x-JB41yp-uRgiN22Q7zbLUy_kHkWxyLMLfnOTxrky4MZfj4w8uWRKaSyX8mj8KbfuvxZp_HY8Gr3O8-7_rvUd2YrwJhysBuU9uGfeA7PZYDhBV-yH57dtUNW7ZLjuYzf3pjecYtBa-O2PgW9u4BUh3OTXQOJh6bDWYNleqA-8Ha0DabnR68hokrECpAZepAvoEDoMm5C6Q7svHQ2jRTF01v3AG6WrwDT5DyWVi3NdQjwAnZ-ePyPnx6NPbd0kEa0g0xiAL1DZJyzTjoi5YppTGsBI9P-NS5lJoLmSeaqUKm2ut8JVbSYtacUmVd57S0Mdky7XOPCEgWF5ntjjIlPbXXvPSCokco2UhClvXakDSnmWVjp3MPaDGtFr3YA5srnBQFdhc8QF5sR4zW_XxuJH6yEvCmtL34A4f2vllFVW6ooyXlhnNM417ylJIznw1pMVNIjWasgHZ7yWjioahqzZiMSAve9na_P73kvZunu0puZsFqfaliftkazFfmmfkjv65aLr5kGwfjcaTs2HIOAyDkuC3yfvTyec_nvMWuQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKi0QvlKdYKDAHOEFEN34lSAi1sH2o7VJVrVRxMbbjtIFtsmx2QfAn-Cf8RsbeZFdForceyClKxlbkfDPjx8x8hDwzVHCXr7nIaVzpMGa8HeR5xHWcWpw_s25sA9mE7PeTk5P0YIH8bnNhfFhlaxODoc4q6_fIX1HEVpdLbP52-DXyrFH-dLWl0JjCYtf9-I5LtvrNznv8v8_jeLN39G47algFIovOcoyw0DTtxkJmCY-NsTj_QRfFhdZMSyukZl1rTJIzaw3eilzTJDNCU-OtvHYU-71GlhhlEvVqaaPXPzic7-pIn6spmuyckKPH8PJHpTwK5awiccEDBqKAC7Pbvw5kg5_bXPnfRugWudnMqGF9qgK3yYIr75CVlq0CGuN1l_zyhbiKclJNahiO_PmUxyRUOXwpnYPPVVGOQZenAwdFCQPPHgeD4tzU4D19Bihb9_a3XoOGKe024LCYwK-BzaAIuzMo9_HDOlRoiM-Ln9iDLjPwJUxDUGnkyrMQcQFbh8f3yPGVDMt9slhWpXtAQHKWxXmyFhvrE3tZmkuNCKFpIpM8y0yHdFuIKNvUaveUIQM1qzIdYKWwkQqwUqJDXszaDKeVSi6V3vDIm0n6KuPhQTU6VY3RUpSLNOfOitjiqjmVWnAf75njMpg6S3mHrLZIVI3pq9Uchh3yssXy_PW_P-nh5b09JTe2j_b31N5Of_cRWY6DRvlAzFWyOB5N3GNy3X4bF_XoSaOUQD5dNcr_ALw1cWg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Continuous+prediction+of+knee+joint+angle+in+lower+limbs+based+on+sEMG%3A+a+method+combining+an+improved+ZOA+optimizer+and+attention-enhanced+GRU&rft.jtitle=Journal+of+King+Saud+University.+Computer+and+information+sciences&rft.au=Lv%2C+Jian&rft.au=Huang%2C+Binhao&rft.au=Qiang%2C+Ligang&rft.date=2025-08-01&rft.issn=1319-1578&rft.eissn=2213-1248&rft.volume=37&rft.issue=6&rft_id=info:doi/10.1007%2Fs44443-025-00164-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s44443_025_00164_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1319-1578&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1319-1578&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1319-1578&client=summon