Football sports video tracking and detection technology based on YOLOv5 and DeepSORT
Enhancing the analysis of football sports video is of great practical significance and commercial value for tactical analysis, player performance evaluation, tournament broadcasting, and many other aspects. Considering that the current target detection and tracking is characterized by complex scene...
Gespeichert in:
| Veröffentlicht in: | Discover applied sciences Jg. 7; H. 6; S. 563 - 17 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cham
Springer International Publishing
29.05.2025
Springer Nature B.V Springer |
| Schlagworte: | |
| ISSN: | 3004-9261, 2523-3963, 3004-9261, 2523-3971 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Enhancing the analysis of football sports video is of great practical significance and commercial value for tactical analysis, player performance evaluation, tournament broadcasting, and many other aspects. Considering that the current target detection and tracking is characterized by complex scene changes, target occlusion, and obvious external motion interference, the study proposes to improve the YOLOv5 and DeepSORT algorithms for improving the tracking and detection accuracy of sports video to enhance its application performance. First, the model is improved with lightweight network architecture and attention mechanism is introduced to improve feature extraction capability and target detection accuracy. After that, a traceless Kalman filter is introduced into the DeepSORT algorithm to improve the target matching performance and enhance the target tracking. The outcomes indicated that the average accuracy value of the improved YOLOv5 model for target detection was more than 90%, which effectively reduced the number of computational parameters. The detection performance under target overlap and uneven lighting and shadows exceeded 90%, and the difference between the algorithm and other algorithms was at least greater than 2%. When performing target tracking, the AUC values of the research algorithm in different scenarios have exceeded 85%, which is less affected by the overlap threshold and has a high tracking accuracy. It demonstrated the highest successful tracking rate and showed a more stable performance.
Article highlights
Highlight 1. Enhanced football video analysis and detection performance for complex scenes and occlusion.
Highlight 2. Enhanced tracking capability for complex scenes, facilitating real-time analysis and decision-making.
Highlight 3. Balancing lightweight architectural design and real-time computation, broadening the application scenarios. |
|---|---|
| AbstractList | Enhancing the analysis of football sports video is of great practical significance and commercial value for tactical analysis, player performance evaluation, tournament broadcasting, and many other aspects. Considering that the current target detection and tracking is characterized by complex scene changes, target occlusion, and obvious external motion interference, the study proposes to improve the YOLOv5 and DeepSORT algorithms for improving the tracking and detection accuracy of sports video to enhance its application performance. First, the model is improved with lightweight network architecture and attention mechanism is introduced to improve feature extraction capability and target detection accuracy. After that, a traceless Kalman filter is introduced into the DeepSORT algorithm to improve the target matching performance and enhance the target tracking. The outcomes indicated that the average accuracy value of the improved YOLOv5 model for target detection was more than 90%, which effectively reduced the number of computational parameters. The detection performance under target overlap and uneven lighting and shadows exceeded 90%, and the difference between the algorithm and other algorithms was at least greater than 2%. When performing target tracking, the AUC values of the research algorithm in different scenarios have exceeded 85%, which is less affected by the overlap threshold and has a high tracking accuracy. It demonstrated the highest successful tracking rate and showed a more stable performance.
Article highlights
Highlight 1. Enhanced football video analysis and detection performance for complex scenes and occlusion.
Highlight 2. Enhanced tracking capability for complex scenes, facilitating real-time analysis and decision-making.
Highlight 3. Balancing lightweight architectural design and real-time computation, broadening the application scenarios. Abstract Enhancing the analysis of football sports video is of great practical significance and commercial value for tactical analysis, player performance evaluation, tournament broadcasting, and many other aspects. Considering that the current target detection and tracking is characterized by complex scene changes, target occlusion, and obvious external motion interference, the study proposes to improve the YOLOv5 and DeepSORT algorithms for improving the tracking and detection accuracy of sports video to enhance its application performance. First, the model is improved with lightweight network architecture and attention mechanism is introduced to improve feature extraction capability and target detection accuracy. After that, a traceless Kalman filter is introduced into the DeepSORT algorithm to improve the target matching performance and enhance the target tracking. The outcomes indicated that the average accuracy value of the improved YOLOv5 model for target detection was more than 90%, which effectively reduced the number of computational parameters. The detection performance under target overlap and uneven lighting and shadows exceeded 90%, and the difference between the algorithm and other algorithms was at least greater than 2%. When performing target tracking, the AUC values of the research algorithm in different scenarios have exceeded 85%, which is less affected by the overlap threshold and has a high tracking accuracy. It demonstrated the highest successful tracking rate and showed a more stable performance. Enhancing the analysis of football sports video is of great practical significance and commercial value for tactical analysis, player performance evaluation, tournament broadcasting, and many other aspects. Considering that the current target detection and tracking is characterized by complex scene changes, target occlusion, and obvious external motion interference, the study proposes to improve the YOLOv5 and DeepSORT algorithms for improving the tracking and detection accuracy of sports video to enhance its application performance. First, the model is improved with lightweight network architecture and attention mechanism is introduced to improve feature extraction capability and target detection accuracy. After that, a traceless Kalman filter is introduced into the DeepSORT algorithm to improve the target matching performance and enhance the target tracking. The outcomes indicated that the average accuracy value of the improved YOLOv5 model for target detection was more than 90%, which effectively reduced the number of computational parameters. The detection performance under target overlap and uneven lighting and shadows exceeded 90%, and the difference between the algorithm and other algorithms was at least greater than 2%. When performing target tracking, the AUC values of the research algorithm in different scenarios have exceeded 85%, which is less affected by the overlap threshold and has a high tracking accuracy. It demonstrated the highest successful tracking rate and showed a more stable performance.Article highlightsHighlight 1. Enhanced football video analysis and detection performance for complex scenes and occlusion.Highlight 2. Enhanced tracking capability for complex scenes, facilitating real-time analysis and decision-making.Highlight 3. Balancing lightweight architectural design and real-time computation, broadening the application scenarios. |
| ArticleNumber | 563 |
| Author | Wang, Bin |
| Author_xml | – sequence: 1 givenname: Bin surname: Wang fullname: Wang, Bin email: wangbin_0430@163.com organization: Basic Teaching Department, Henan Polytechnic |
| BookMark | eNp9kU9rGzEQxUVJoUmaL9DTQs-baiStFB1L_jVgMLTuoScxlkbuOtuVIymBfPuuvS0NPeQ0Yni_p8e8E3Y0ppEY-wD8HDg3n4oSqhMtF13LDYBu7Rt2LDlXrRUajl6837GzUraccym5MZ09ZqublOoah6Epu5RraZ76QKmpGf19P24aHEMTqJKvfRqbaf4c05A2z80aC4Vm2v1YLpZP3UF4RbT7tvy6es_eRhwKnf2Zp-z7zfXq8ku7WN7eXX5etF5JqC1ETdyuTQyIohMUdSd9ABUUDwG1lBF9p-1aQDTgoyIRkGQEMJFzH608ZXezb0i4dbvc_8L87BL27rBIeeMw194P5AAESG2N9korEGh1RCUEiWgQIsHk9XH22uX08Eilum16zOMU38kD2lnY_3gxq3xOpWSKzvcV97eZLtYPDrjbV-LmStxUiTtU4vao-A_9G_hVSM5QmcTjhvK_VK9QvwE-6Z8O |
| CitedBy_id | crossref_primary_10_1177_14727978251361832 |
| Cites_doi | 10.3389/fncom.2022.1010770 10.1038/s41467-023-36645-3 10.3233/JIFS-189224 10.48175/ijarsct-10457 10.1007/s00521-022-07026-6 10.35940/ijrte.A5589.0510121 10.3233/JIFS-189579 10.1007/s44174-023-00082-z 10.4236/ape.2023.131007 10.3233/JIFS-189223 10.1007/978-3-030-29743-5_2 10.1109/ICAIQSA64000.2024.10882213 10.1109/TMM.2023.3240881 10.1007/s12283-022-00372-7 10.32604/iasc.2023.033062 10.4236/jss.2023.111029 10.1515/jqas-2020-0088 10.1145/3665026.366502 10.1016/j.procs.2024.04.251 10.1007/s00521-022-07077-9 10.18178/joig.9.4.122-134 10.1371/journal.pone.0311942 10.1038/s41598-024-74777-8 10.1007/s11227-021-04274-6 10.1007/s11082-023-05769-7 10.1007/s12283-022-00381-6 10.1146/annurev-statistics-033021-110117 10.4236/oalib.1109055 10.7717/peerj-cs.2449 10.3390/app12094429 10.1016/j.aci.2018.01.001 10.1007/s43684-022-00037-z 10.14569/ijacsa.2023.0141191 10.1007/s00500-022-07295-2 10.1109/STAR62027.2024.10635932 10.1007/s10489-021-02491-3 10.1109/STAR58331.2023.10302647 10.12694/scpe.v25i6.3368 10.1109/TCSVT.2022.3187670 10.1007/s12283-021-00365-y 10.1016/j.aej.2024.07.105 10.1007/s00500-023-09321-3 10.1080/17538947.2023.2187465 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 Copyright Springer Nature B.V. Jun 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: Copyright Springer Nature B.V. Jun 2025 |
| DBID | C6C AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU D1I DWQXO GNUQQ HCIFZ KB. L6V M2P M7S PATMY PCBAR PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U DOA |
| DOI | 10.1007/s42452-025-07116-9 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) SciTech Premium Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection (ProQuest) ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Science Database Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Environmental Science Collection (ProQuest) ProQuest Central Basic Open Access: DOAJ - Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: KB. name: ProQuest Materials Science Database (NC LIVE) url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 3004-9261 2523-3971 |
| EndPage | 17 |
| ExternalDocumentID | oai_doaj_org_article_112136976c46412a96fa422e2f7a1fe1 10_1007_s42452_025_07116_9 |
| GroupedDBID | AAJSJ AASML ADMLS ALMA_UNASSIGNED_HOLDINGS C6C GROUPED_DOAJ M~E SOJ AAYXX BGNMA CITATION EBLON M4Y NU0 0R~ 3V. 7XB 88I 8FE 8FG 8FK AAHNG AAKKN ABDZT ABECU ABEEZ ABFTV ABHQN ABJCF ABKCH ABMQK ABTMW ABUWG ABXPI ACACY ACMLO ACOKC ACSTC ACULB ADKNI ADURQ ADYFF AEJRE AEUYN AFGXO AFKRA AFQWF AGDGC AGJBK AILAN AITGF AJZVZ AMKLP ATCPS AXYYD AZQEC BAPOH BENPR BGLVJ BHPHI BKSAR C24 CCPQU D1I DWQXO EBS FNLPD GNUQQ GNWQR HCIFZ J-C KB. KOV L6V M2P M7S NQJWS OK1 PATMY PCBAR PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U STPWE TSG UOJIU UTJUX VEKWB VFIZW ZMTXR |
| ID | FETCH-LOGICAL-c431t-1f6e09b7fdaa252ef653cd14d40dda633fac569b21f71cf4e2dae3f117f00cf93 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001498831500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 3004-9261 2523-3963 |
| IngestDate | Mon Nov 10 04:30:37 EST 2025 Wed Oct 08 14:10:42 EDT 2025 Sat Nov 29 07:50:43 EST 2025 Tue Nov 18 21:07:11 EST 2025 Fri May 30 10:54:20 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Multi-object tracking algorithm Lightweight network structure Object detection MOTP MOTA Football Unscented Kalman filter MAP |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c431t-1f6e09b7fdaa252ef653cd14d40dda633fac569b21f71cf4e2dae3f117f00cf93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/3213695919?pq-origsite=%requestingapplication% |
| PQID | 3213695919 |
| PQPubID | 5758472 |
| PageCount | 17 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_112136976c46412a96fa422e2f7a1fe1 proquest_journals_3213695919 crossref_citationtrail_10_1007_s42452_025_07116_9 crossref_primary_10_1007_s42452_025_07116_9 springer_journals_10_1007_s42452_025_07116_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-05-29 |
| PublicationDateYYYYMMDD | 2025-05-29 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-29 day: 29 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: London |
| PublicationTitle | Discover applied sciences |
| PublicationTitleAbbrev | Discov Appl Sci |
| PublicationYear | 2025 |
| Publisher | Springer International Publishing Springer Nature B.V Springer |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: Springer |
| References | B Mohan Prakash (7116_CR35) 2022; 2 T Mahalingam (7116_CR25) 2021; 17 S Zhong (7116_CR34) 2022; 13 X Li (7116_CR14) 2023; 27 K Wang (7116_CR39) 2022; 52 H Liu (7116_CR24) 2022; 32 R Alhejaily (7116_CR29) 2023; 36 D Jaipriya (7116_CR30) 2023; 2 Y Liu (7116_CR37) 2021; 9 D Jaipriya (7116_CR31) 2022; 16 7116_CR3 7116_CR10 7116_CR4 D Mulimani (7116_CR17) 2021; 10 T Wang (7116_CR38) 2023; 35 P Rahimian (7116_CR7) 2022; 18 H Wang (7116_CR15) 2024; 25 RJ Aughey (7116_CR28) 2022; 25 BT Naik (7116_CR11) 2022; 12 X Hu (7116_CR36) 2024; 56 W Li (7116_CR21) 2023; 14 Y Liu (7116_CR26) 2021; 40 X Zhou (7116_CR1) 2022; 9 Z Hao (7116_CR18) 2021; 40 MDS Hussain (7116_CR6) 2023; 3 7116_CR9 F Huang (7116_CR43) 2023; 16 J AbuKhait (7116_CR27) 2023; 14 G Jin (7116_CR12) 2022; 78 TM Bampouras (7116_CR16) 2022; 25 C Sun (7116_CR22) 2021; 40 L Wang (7116_CR5) 2024; 104 S Soniya (7116_CR41) 2024; 14 Y Du (7116_CR8) 2023; 25 PP Groumpos (7116_CR33) 2023; 1 S Zhong (7116_CR2) 2023; 11 B Malakreddy (7116_CR19) 2024; 235 F Vidal-Codina (7116_CR20) 2022; 25 H Ren (7116_CR23) 2023; 35 SA Kovalchik (7116_CR40) 2023; 10 S Soniya (7116_CR42) 2025; 11 D Jaipriya (7116_CR32) 2025; 20 X He (7116_CR13) 2022; 26 |
| References_xml | – volume: 16 start-page: 1010770 year: 2022 ident: 7116_CR31 publication-title: Front Comput Neurosci. doi: 10.3389/fncom.2022.1010770 – volume: 14 start-page: 989 issue: 1 year: 2023 ident: 7116_CR21 publication-title: Nat Commun doi: 10.1038/s41467-023-36645-3 – volume: 40 start-page: 2265 issue: 2 year: 2021 ident: 7116_CR22 publication-title: J Intell Fuzzy Syst doi: 10.3233/JIFS-189224 – volume: 3 start-page: 2581 issue: 10 year: 2023 ident: 7116_CR6 publication-title: Int J Adv Res Sci Commun Technol. doi: 10.48175/ijarsct-10457 – volume: 35 start-page: 4267 issue: 6 year: 2023 ident: 7116_CR38 publication-title: Neural Comput Appl doi: 10.1007/s00521-022-07026-6 – volume: 10 start-page: 1 issue: 1 year: 2021 ident: 7116_CR17 publication-title: Int J Recent Technol Eng doi: 10.35940/ijrte.A5589.0510121 – volume: 40 start-page: 7589 issue: 4 year: 2021 ident: 7116_CR18 publication-title: J Intell Fuzzy Syst doi: 10.3233/JIFS-189579 – volume: 2 start-page: 601 year: 2023 ident: 7116_CR30 publication-title: Biomed Mater Devic doi: 10.1007/s44174-023-00082-z – volume: 13 start-page: 66 issue: 1 year: 2022 ident: 7116_CR34 publication-title: Adv Phys Educ doi: 10.4236/ape.2023.131007 – volume: 40 start-page: 2253 issue: 2 year: 2021 ident: 7116_CR26 publication-title: J Intell Fuzzy Syst doi: 10.3233/JIFS-189223 – volume: 1 start-page: 197 issue: 4 year: 2023 ident: 7116_CR33 publication-title: Artif Intell Appl doi: 10.1007/978-3-030-29743-5_2 – ident: 7116_CR4 doi: 10.1109/ICAIQSA64000.2024.10882213 – volume: 25 start-page: 8725 year: 2023 ident: 7116_CR8 publication-title: IEEE Trans Multimedia doi: 10.1109/TMM.2023.3240881 – volume: 25 start-page: 1 issue: 1 year: 2022 ident: 7116_CR16 publication-title: Sports Eng doi: 10.1007/s12283-022-00372-7 – volume: 36 start-page: 2669 issue: 3 year: 2023 ident: 7116_CR29 publication-title: Intell Autom Soft Comput. doi: 10.32604/iasc.2023.033062 – volume: 11 start-page: 429 issue: 1 year: 2023 ident: 7116_CR2 publication-title: J Soc Sci doi: 10.4236/jss.2023.111029 – volume: 18 start-page: 35 issue: 1 year: 2022 ident: 7116_CR7 publication-title: J Quant Anal Sports doi: 10.1515/jqas-2020-0088 – ident: 7116_CR3 doi: 10.1145/3665026.366502 – volume: 235 start-page: 2662 year: 2024 ident: 7116_CR19 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2024.04.251 – volume: 35 start-page: 4201 issue: 6 year: 2023 ident: 7116_CR23 publication-title: Neural Comput Appl doi: 10.1007/s00521-022-07077-9 – volume: 9 start-page: 122 issue: 4 year: 2021 ident: 7116_CR37 publication-title: Int J Image Graph doi: 10.18178/joig.9.4.122-134 – volume: 20 start-page: e0311942 issue: 1 year: 2025 ident: 7116_CR32 publication-title: PLoS One doi: 10.1371/journal.pone.0311942 – volume: 14 start-page: 23641 issue: 1 year: 2024 ident: 7116_CR41 publication-title: Sci Rep doi: 10.1038/s41598-024-74777-8 – volume: 78 start-page: 9475 issue: 7 year: 2022 ident: 7116_CR12 publication-title: J Supercomput doi: 10.1007/s11227-021-04274-6 – volume: 56 start-page: 150 issue: 2 year: 2024 ident: 7116_CR36 publication-title: Opt Quant Electron doi: 10.1007/s11082-023-05769-7 – volume: 25 start-page: 1 issue: 1 year: 2022 ident: 7116_CR20 publication-title: Sports Eng doi: 10.1007/s12283-022-00381-6 – volume: 10 start-page: 677 issue: 1 year: 2023 ident: 7116_CR40 publication-title: Annu Rev Stat Appl doi: 10.1146/annurev-statistics-033021-110117 – volume: 9 start-page: 1 issue: 7 year: 2022 ident: 7116_CR1 publication-title: Open Access Librar J doi: 10.4236/oalib.1109055 – volume: 11 start-page: e2449 year: 2025 ident: 7116_CR42 publication-title: Peerj Comput Sci. doi: 10.7717/peerj-cs.2449 – volume: 12 start-page: 4429 issue: 9 year: 2022 ident: 7116_CR11 publication-title: Appl Sci doi: 10.3390/app12094429 – volume: 17 start-page: 2 issue: 1 year: 2021 ident: 7116_CR25 publication-title: Comput Inform doi: 10.1016/j.aci.2018.01.001 – volume: 2 start-page: 22 issue: 1 year: 2022 ident: 7116_CR35 publication-title: Auton Intell Syst doi: 10.1007/s43684-022-00037-z – volume: 14 start-page: 894 issue: 11 year: 2023 ident: 7116_CR27 publication-title: Int J Adv Comput Sci. doi: 10.14569/ijacsa.2023.0141191 – volume: 26 start-page: 10971 issue: 20 year: 2022 ident: 7116_CR13 publication-title: Soft Comput doi: 10.1007/s00500-022-07295-2 – ident: 7116_CR10 doi: 10.1109/STAR62027.2024.10635932 – volume: 52 start-page: 2070 issue: 2 year: 2022 ident: 7116_CR39 publication-title: Appl Intell doi: 10.1007/s10489-021-02491-3 – ident: 7116_CR9 doi: 10.1109/STAR58331.2023.10302647 – volume: 25 start-page: 5358 issue: 6 year: 2024 ident: 7116_CR15 publication-title: Scalable Comput Prac doi: 10.12694/scpe.v25i6.3368 – volume: 32 start-page: 7894 issue: 11 year: 2022 ident: 7116_CR24 publication-title: IEEE Trans Circ Syst Vid doi: 10.1109/TCSVT.2022.3187670 – volume: 25 start-page: 1 issue: 1 year: 2022 ident: 7116_CR28 publication-title: Sports Eng. doi: 10.1007/s12283-021-00365-y – volume: 104 start-page: 710 year: 2024 ident: 7116_CR5 publication-title: Alex Eng J doi: 10.1016/j.aej.2024.07.105 – volume: 27 start-page: 19317 issue: 24 year: 2023 ident: 7116_CR14 publication-title: Soft Comput doi: 10.1007/s00500-023-09321-3 – volume: 16 start-page: 910 issue: 1 year: 2023 ident: 7116_CR43 publication-title: Int J Digit Earth doi: 10.1080/17538947.2023.2187465 |
| SSID | ssj0003307759 ssj0002793483 ssib051670015 |
| Score | 2.3002949 |
| Snippet | Enhancing the analysis of football sports video is of great practical significance and commercial value for tactical analysis, player performance evaluation,... Abstract Enhancing the analysis of football sports video is of great practical significance and commercial value for tactical analysis, player performance... |
| SourceID | doaj proquest crossref springer |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 563 |
| SubjectTerms | Accuracy Algorithms Applied and Technical Physics Artificial intelligence Athletes Chemistry/Food Science Decision making Earth Sciences Efficiency Engineering Environment Football Kalman filters Lightweight network structure Materials Science Multi-object tracking algorithm Object detection Object recognition Occlusion Performance evaluation Real time Sports Target detection Tracking Unscented Kalman filter |
| SummonAdditionalLinks | – databaseName: Open Access: DOAJ - Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4iHryIomK1Sg7edHGTzaM5-ioeSitapZ5CNg8Qyra0a3-_SXa7toJ68ZpN2DAzyTeTZL4B4DzNU2sEEQnrIJ0EB96vOcu9I-ejCZZTTGIe92uP9_ud0Ug8rpT6Cm_CKnrgSnBXKHCOMQ-amjCCsBLMKYKxxY4r5GwMfLzXsxJMhT3YR-mcU1FnycRcuXDFh5NQvdWjKmKJWEOiSNi_5mV-uxiNeNPdBTu1owivqwnugQ1b7INhdzIpczUewxiNzmHIopvAcqZ0OPKGqjDQ2DI-rypg2RybwwBWBvq2t0FvsKCx45210-fB0_AAvHTvh7cPSV0XIdEe7ssEOWZTkXNnlMIUW8dopg0ihqTGKJZlTmnKRI6R40g7YrFRNnMIcZem2onsEGwWk8IeAai4FSTnRLvc47xiwmtMd7ROc5MagngLoKWMpK5Jw0PtirFs6I6jXKWXq4xylaIFLpox04oy49feN0H0Tc9Adx0bvBHI2gjkX0bQAu2l4mS9Bucyi2OoQP4fl0tlfn3-eUrH_zGlE7CNo7HRBIs22CxnH_YUbOlF-T6fnUVr_QSd8uhq priority: 102 providerName: Directory of Open Access Journals |
| Title | Football sports video tracking and detection technology based on YOLOv5 and DeepSORT |
| URI | https://link.springer.com/article/10.1007/s42452-025-07116-9 https://www.proquest.com/docview/3213695919 https://doaj.org/article/112136976c46412a96fa422e2f7a1fe1 |
| Volume | 7 |
| WOSCitedRecordID | wos001498831500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 3004-9261 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003307759 issn: 3004-9261 databaseCode: DOA dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 3004-9261 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003307759 issn: 3004-9261 databaseCode: M~E dateStart: 20240101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: AUTh Library subscriptions: ProQuest Central customDbUrl: eissn: 3004-9261 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793483 issn: 3004-9261 databaseCode: BENPR dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 3004-9261 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793483 issn: 3004-9261 databaseCode: PCBAR dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 3004-9261 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793483 issn: 3004-9261 databaseCode: PATMY dateStart: 20190101 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Engineering Database (NC LIVE) customDbUrl: eissn: 3004-9261 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793483 issn: 3004-9261 databaseCode: M7S dateStart: 20190101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Materials Science Database (NC LIVE) customDbUrl: eissn: 3004-9261 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793483 issn: 3004-9261 databaseCode: KB. dateStart: 20190101 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Science Database (NC LIVE) customDbUrl: eissn: 3004-9261 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793483 issn: 3004-9261 databaseCode: M2P dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 3004-9261 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793483 issn: 3004-9261 databaseCode: PIMPY dateStart: 20190101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 3004-9261 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793483 issn: 3004-9261 databaseCode: C24 dateStart: 20210101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1Nb9Mw1IKOAzuMb60wJh-4gSH-iF2f0DpagdjaqCtoO0WOP9CmKilttiO_HdtzOobELlxeJOclSvye_b783gPgTVZl1kgmER9gjYIC79ecFV6R89YEr3LCYh739yMxmQxOT2WRHG7rdKyy2xPjRm0aHXzkHyjBlMtcYvlx-ROFrlEhuppaaNwHW6FSGeuBreFoUsw6jspxyEJJAu8ihtkkZbE2J_EWGKKe_VImTcynC2FAgkKHVy95MUfylrSKRf1vaaJ_BU-jTBo_-t-_eQx2kjYKD67Z5wm4Z-unYPuPGoXPwHzcNG2lFgsYDeA1DIl7DWxXSgcvO1S1gca28URXDduNpx4G-WigHzubHk2v8oj4ydrlyXQ2fw6-jUfzw88otWJA2msYLcKO20xWwhml_MxZx3OqDWaGZcYoTqlTOueyItgJrB2zxChLHcbCZZl2kr4Avbqp7S6ASljJKsG0q7xqobj0TKIHWmeVyQzDog9wN-WlTnXKQ7uMRbmpsBzJVHoylZFMpeyDt5tnltdVOu7EHgZKbjBDhe040Kx-lGnBessokkhwzTjDREnuFCPEEicUdhb3wV5H2TIt-3V5Q9Y-eNfxxs3tf3_Sy7vf9go8JJErc0TkHui1q0v7GjzQV-35erWfmH4_-hM8_Dp87-ExKQIUJwH-Gnms4nB4MAvXL8fF2W_-twso |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB5VKRJwKG-RUsAHOIHF2uu14wNCQIkaNU0iCKg9bb1-IFC0G5KlVf8UvxHb2U0pEr31wNXrffqb147nG4BnSZFYI5nEvEc0Dg68lzkrvCPnowleZJTFOu4vQzEa9Q4P5WQDfrW1MGFbZasTo6I2lQ7_yF-llKRcZpLIN_MfOHSNCtnVtoXGChb79uzUh2zL14Ndv77PKe1_mL7fw01XAay9sawxcdwmshDOKEUzah3PUm0IMywxRvE0dUpnXBaUOEG0Y5YaZVNHiHBJol0gX_Iqf5N5sPc6sDkZHEyOWgRnJFS9NAb2e0zryZRFLlB_qxSnHu5N5U6s3wtpR4pDR1lv6QnH8oJ1jE0ELni-fyVrow3s3_rfvt5t2Gq8bfR2JR53YMOWd-HmHxyM92Dar6q6ULMZigH-EoXCxArVC6VDFgGp0iBj67hjrUT1OhOBgv03yI8djYfjkyxO3LV2_mn8cXofPl_Jaz2ATlmV9iEgJaxkhWDaFd51Ulx6IdA9rZPCJIYR0QXSLnGuGx720A5klq8ZpCMscg-LPMIil114sT5nvmIhuXT2u4Cc9czAIB4HqsXXvFFIPvKLkBBcM84IVZI7xSi11AlFnCVd2GmRlDdqbZmfw6gLL1ssnh_-9yNtX361p3B9b3owzIeD0f4juEGjRGSYyh3o1Iuf9jFc0yf1t-XiSSNwCI6vGqW_Ab5kYvE |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB5VKUL0UN5qSgEf4ARW116vHR8QahsiqkZJVAIqp8XrBwJFuyFZivhr_DpsZzelSPTWA1ev9-lvXjuebwCeJUVijWQS8x7RODjwXuas8I6cjyZ4kVEW67g_DMVo1Ds7k5MN-NXWwoRtla1OjIraVDr8I99PKUm5zCSR-67ZFjHpD17Pv-HQQSpkWtt2GiuInNifP3z4tnx13Pdr_ZzSwZvp0VvcdBjA2hvOGhPHbSIL4YxSNKPW8SzVhjDDEmMUT1OndMZlQYkTRDtmqVE2dYQIlyTaBSImr_43e1wktAObk6PDg9MWzRkJFTCNsf0aU3wyZZEX1N8qxamHflPFE2v5QgqS4tBd1lt9wrG8ZCljQ4FLXvBfidtoDwe3_-cveQe2Gy8cHazE5i5s2PIebP3BzXgfpoOqqgs1m6EY-C9RKFisUL1QOmQXkCoNMraOO9lKVK8zFCj4BQb5sY_j4fg8ixP71s7fjU-nD-D9tbzWQ-iUVWl3AClhJSsE067wLpXi0guH7mmdFCYxjIgukHa5c93ws4c2IbN8zSwdIZJ7iOQRIrnswov1OfMVO8mVsw8DitYzA7N4HKgWn_NGUfmIMMJDcM04I1RJ7hSj1FInFHGWdGGvRVXeqLtlfgGpLrxscXlx-N-PtHv11Z7CTQ_NfHg8OnkEt2gUjgxTuQedevHdPoYb-rz-slw8aWQPwafrBulvB51rYQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Football+sports+video+tracking+and+detection+technology+based+on+YOLOv5+and+DeepSORT&rft.jtitle=SN+applied+sciences&rft.date=2025-05-29&rft.pub=Springer+Nature+B.V&rft.issn=2523-3963&rft.eissn=2523-3971&rft.volume=7&rft.issue=6&rft.spage=563&rft_id=info:doi/10.1007%2Fs42452-025-07116-9&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=3004-9261&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=3004-9261&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=3004-9261&client=summon |