Magnetic proximity effect in biphenylene monolayer from first-principles

On-surface chemistry has emerged as a key technique for designing novel low-dimensional materials, enabling precise manipulation of their electronic and magnetic properties at the atomic scale. It also proves highly effective for the fabrication of heterostructures. Leveraging these benefits, herein...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of materials chemistry. C, Materials for optical and electronic devices Ročník 13; číslo 12; s. 5993
Hlavní autoři: López-Alcalá, Diego, Baldoví, José J
Médium: Journal Article
Jazyk:angličtina
Vydáno: England 20.03.2025
ISSN:2050-7526
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:On-surface chemistry has emerged as a key technique for designing novel low-dimensional materials, enabling precise manipulation of their electronic and magnetic properties at the atomic scale. It also proves highly effective for the fabrication of heterostructures. Leveraging these benefits, herein, we perform a first principles study of the magnetic proximity effect (MPE) in a heterostructure formed by a monolayer of the two-dimensional carbon allotrope biphenylene network (BPN) deposited on the surface of the above-room-temperature ferrimagnet yttrium iron garnet (YIG). Our results reveal strong hybridization between BPN orbitals and YIG surface states, resulting in non-homogeneous electron transfer and robust MPE. The proposed methodology accurately describes YIG magnetic interactions, allowing us to study the tuning effects of BPN on the magnetic properties of the substrate for the first time. Additionally, we explore the impact of van der Waals (vdW) distance at the interface, finding enhanced spin splitting up to 30% under external pressure. These findings highlight a promising strategy for inducing spin polarization in BPN without chemical modifications, opening new possibilities for BPN-based spintronic devices through the creation of heterostructures with magnetic materials.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2050-7526
DOI:10.1039/d4tc04702h