Extended reverse-convex programming: an approximate enumeration approach to global optimization

A new approach to solving a large class of factorable nonlinear programming (NLP) problems to global optimality is presented in this paper. Unlike the traditional strategy of partitioning the decision-variable space employed in many branch-and-bound methods, the proposed approach approximates the NL...

Full description

Saved in:
Bibliographic Details
Published in:Journal of global optimization Vol. 65; no. 2; pp. 191 - 229
Main Author: Bunin, Gene A.
Format: Journal Article
Language:English
Published: New York Springer US 01.06.2016
Springer
Springer Nature B.V
Subjects:
ISSN:0925-5001, 1573-2916
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A new approach to solving a large class of factorable nonlinear programming (NLP) problems to global optimality is presented in this paper. Unlike the traditional strategy of partitioning the decision-variable space employed in many branch-and-bound methods, the proposed approach approximates the NLP problem by a reverse-convex programming (RCP) problem to a controlled precision, with the latter then solved by an enumerative search. To establish the theoretical guarantees of the method, the notion of “RCP regularity” is introduced and it is proven that enumeration is guaranteed to yield a global optimum when the RCP problem is regular. An extended RCP algorithmic framework is then presented and its performance is examined for a small set of test problems.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0925-5001
1573-2916
DOI:10.1007/s10898-015-0352-x