Recommendations for Clinicians, Technologists, and Healthcare Organizations on the Use of Generative Artificial Intelligence in Medicine: A Position Statement from the Society of General Internal Medicine

Generative artificial intelligence (generative AI) is a new technology with potentially broad applications across important domains of healthcare, but serious questions remain about how to balance the promise of generative AI against unintended consequences from adoption of these tools. In this posi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of general internal medicine : JGIM Ročník 40; číslo 3; s. 694 - 702
Hlavní autori: Crowe, Byron, Shah, Shreya, Teng, Derek, Ma, Stephen P., DeCamp, Matthew, Rosenberg, Eric I., Rodriguez, Jorge A., Collins, Benjamin X., Huber, Kathryn, Karches, Kyle, Zucker, Shana, Kim, Eun Ji, Rotenstein, Lisa, Rodman, Adam, Jones, Danielle, Richman, Ilana B., Henry, Tracey L., Somlo, Diane, Pitts, Samantha I., Chen, Jonathan H., Mishuris, Rebecca G.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Springer Nature B.V 01.02.2025
Springer International Publishing
Predmet:
ISSN:0884-8734, 1525-1497, 1525-1497
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Generative artificial intelligence (generative AI) is a new technology with potentially broad applications across important domains of healthcare, but serious questions remain about how to balance the promise of generative AI against unintended consequences from adoption of these tools. In this position statement, we provide recommendations on behalf of the Society of General Internal Medicine on how clinicians, technologists, and healthcare organizations can approach the use of these tools. We focus on three major domains of medical practice where clinicians and technology experts believe generative AI will have substantial immediate and long-term impacts: clinical decision-making, health systems optimization, and the patient-physician relationship. Additionally, we highlight our most important generative AI ethics and equity considerations for these stakeholders. For clinicians, we recommend approaching generative AI similarly to other important biomedical advancements, critically appraising its evidence and utility and incorporating it thoughtfully into practice. For technologists developing generative AI for healthcare applications, we recommend a major frameshift in thinking away from the expectation that clinicians will “supervise” generative AI. Rather, these organizations and individuals should hold themselves and their technologies to the same set of high standards expected of the clinical workforce and strive to design high-performing, well-studied tools that improve care and foster the therapeutic relationship, not simply those that improve efficiency or market share. We further recommend deep and ongoing partnerships with clinicians and patients as necessary collaborators in this work. And for healthcare organizations, we recommend pursuing a combination of both incremental and transformative change with generative AI, directing resources toward both endeavors, and avoiding the urge to rapidly displace the human clinical workforce with generative AI. We affirm that the practice of medicine remains a fundamentally human endeavor which should be enhanced by technology, not displaced by it.
AbstractList Generative artificial intelligence (generative AI) is a new technology with potentially broad applications across important domains of healthcare, but serious questions remain about how to balance the promise of generative AI against unintended consequences from adoption of these tools. In this position statement, we provide recommendations on behalf of the Society of General Internal Medicine on how clinicians, technologists, and healthcare organizations can approach the use of these tools. We focus on three major domains of medical practice where clinicians and technology experts believe generative AI will have substantial immediate and long-term impacts: clinical decision-making, health systems optimization, and the patient-physician relationship. Additionally, we highlight our most important generative AI ethics and equity considerations for these stakeholders. For clinicians, we recommend approaching generative AI similarly to other important biomedical advancements, critically appraising its evidence and utility and incorporating it thoughtfully into practice. For technologists developing generative AI for healthcare applications, we recommend a major frameshift in thinking away from the expectation that clinicians will "supervise" generative AI. Rather, these organizations and individuals should hold themselves and their technologies to the same set of high standards expected of the clinical workforce and strive to design high-performing, well-studied tools that improve care and foster the therapeutic relationship, not simply those that improve efficiency or market share. We further recommend deep and ongoing partnerships with clinicians and patients as necessary collaborators in this work. And for healthcare organizations, we recommend pursuing a combination of both incremental and transformative change with generative AI, directing resources toward both endeavors, and avoiding the urge to rapidly displace the human clinical workforce with generative AI. We affirm that the practice of medicine remains a fundamentally human endeavor which should be enhanced by technology, not displaced by it.
Generative artificial intelligence (generative AI) is a new technology with potentially broad applications across important domains of healthcare, but serious questions remain about how to balance the promise of generative AI against unintended consequences from adoption of these tools. In this position statement, we provide recommendations on behalf of the Society of General Internal Medicine on how clinicians, technologists, and healthcare organizations can approach the use of these tools. We focus on three major domains of medical practice where clinicians and technology experts believe generative AI will have substantial immediate and long-term impacts: clinical decision-making, health systems optimization, and the patient-physician relationship. Additionally, we highlight our most important generative AI ethics and equity considerations for these stakeholders. For clinicians, we recommend approaching generative AI similarly to other important biomedical advancements, critically appraising its evidence and utility and incorporating it thoughtfully into practice. For technologists developing generative AI for healthcare applications, we recommend a major frameshift in thinking away from the expectation that clinicians will "supervise" generative AI. Rather, these organizations and individuals should hold themselves and their technologies to the same set of high standards expected of the clinical workforce and strive to design high-performing, well-studied tools that improve care and foster the therapeutic relationship, not simply those that improve efficiency or market share. We further recommend deep and ongoing partnerships with clinicians and patients as necessary collaborators in this work. And for healthcare organizations, we recommend pursuing a combination of both incremental and transformative change with generative AI, directing resources toward both endeavors, and avoiding the urge to rapidly displace the human clinical workforce with generative AI. We affirm that the practice of medicine remains a fundamentally human endeavor which should be enhanced by technology, not displaced by it.Generative artificial intelligence (generative AI) is a new technology with potentially broad applications across important domains of healthcare, but serious questions remain about how to balance the promise of generative AI against unintended consequences from adoption of these tools. In this position statement, we provide recommendations on behalf of the Society of General Internal Medicine on how clinicians, technologists, and healthcare organizations can approach the use of these tools. We focus on three major domains of medical practice where clinicians and technology experts believe generative AI will have substantial immediate and long-term impacts: clinical decision-making, health systems optimization, and the patient-physician relationship. Additionally, we highlight our most important generative AI ethics and equity considerations for these stakeholders. For clinicians, we recommend approaching generative AI similarly to other important biomedical advancements, critically appraising its evidence and utility and incorporating it thoughtfully into practice. For technologists developing generative AI for healthcare applications, we recommend a major frameshift in thinking away from the expectation that clinicians will "supervise" generative AI. Rather, these organizations and individuals should hold themselves and their technologies to the same set of high standards expected of the clinical workforce and strive to design high-performing, well-studied tools that improve care and foster the therapeutic relationship, not simply those that improve efficiency or market share. We further recommend deep and ongoing partnerships with clinicians and patients as necessary collaborators in this work. And for healthcare organizations, we recommend pursuing a combination of both incremental and transformative change with generative AI, directing resources toward both endeavors, and avoiding the urge to rapidly displace the human clinical workforce with generative AI. We affirm that the practice of medicine remains a fundamentally human endeavor which should be enhanced by technology, not displaced by it.
Author Pitts, Samantha I.
Collins, Benjamin X.
Zucker, Shana
Rotenstein, Lisa
Mishuris, Rebecca G.
Crowe, Byron
Rodman, Adam
Shah, Shreya
Rosenberg, Eric I.
Somlo, Diane
Huber, Kathryn
Ma, Stephen P.
Karches, Kyle
Teng, Derek
Rodriguez, Jorge A.
Richman, Ilana B.
Kim, Eun Ji
Chen, Jonathan H.
DeCamp, Matthew
Henry, Tracey L.
Jones, Danielle
Author_xml – sequence: 1
  givenname: Byron
  orcidid: 0000-0001-9217-1533
  surname: Crowe
  fullname: Crowe, Byron
– sequence: 2
  givenname: Shreya
  surname: Shah
  fullname: Shah, Shreya
– sequence: 3
  givenname: Derek
  surname: Teng
  fullname: Teng, Derek
– sequence: 4
  givenname: Stephen P.
  surname: Ma
  fullname: Ma, Stephen P.
– sequence: 5
  givenname: Matthew
  surname: DeCamp
  fullname: DeCamp, Matthew
– sequence: 6
  givenname: Eric I.
  surname: Rosenberg
  fullname: Rosenberg, Eric I.
– sequence: 7
  givenname: Jorge A.
  surname: Rodriguez
  fullname: Rodriguez, Jorge A.
– sequence: 8
  givenname: Benjamin X.
  surname: Collins
  fullname: Collins, Benjamin X.
– sequence: 9
  givenname: Kathryn
  surname: Huber
  fullname: Huber, Kathryn
– sequence: 10
  givenname: Kyle
  surname: Karches
  fullname: Karches, Kyle
– sequence: 11
  givenname: Shana
  surname: Zucker
  fullname: Zucker, Shana
– sequence: 12
  givenname: Eun Ji
  surname: Kim
  fullname: Kim, Eun Ji
– sequence: 13
  givenname: Lisa
  surname: Rotenstein
  fullname: Rotenstein, Lisa
– sequence: 14
  givenname: Adam
  surname: Rodman
  fullname: Rodman, Adam
– sequence: 15
  givenname: Danielle
  surname: Jones
  fullname: Jones, Danielle
– sequence: 16
  givenname: Ilana B.
  surname: Richman
  fullname: Richman, Ilana B.
– sequence: 17
  givenname: Tracey L.
  surname: Henry
  fullname: Henry, Tracey L.
– sequence: 18
  givenname: Diane
  surname: Somlo
  fullname: Somlo, Diane
– sequence: 19
  givenname: Samantha I.
  surname: Pitts
  fullname: Pitts, Samantha I.
– sequence: 20
  givenname: Jonathan H.
  surname: Chen
  fullname: Chen, Jonathan H.
– sequence: 21
  givenname: Rebecca G.
  surname: Mishuris
  fullname: Mishuris, Rebecca G.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39531100$$D View this record in MEDLINE/PubMed
BookMark eNp9kl1rFDEUhoNU7Lb6B7yQgDdeOJozmY-MN7Is2hYqFdteh0zmzG7KTFKTbKH-xv6oZvbDj14IgSSc9314k3OOyIF1Fgl5DewDMFZ_DAAVqzKWFxlrgOUZe0ZmUOZlBkVTH5AZE6LIRM2LQ3IUwg1jwPNcvCCHvCk5JMaMPPxA7cYRbaeicTbQ3nm6GIw12igb3tMr1CvrBrc0Iaarsh09RTXElVYe6YVfKmt-7bzO0rhCeh2Qup6eoEWfKndI5z6afiIO9MxGHAazRKuRGku_YZcKFj_ROf3ugplI9DKqiClUpL134wZ66bTBeP8HvEV5mw57xkvyvFdDwFe7_Zhcf_1ytTjNzi9Ozhbz80wXHGIGAG3e8rYErFEw3mLDegZYNVAp6FTBurLHvi-6nGsudNNy0YlkYFXVVarkx-Tzlnu7bkfsdAqa8shbb0bl76VTRv5bsWYll-5OAogKCpEnwrsdwbufawxRjibo9DHKolsHySEXddkwNknfPpHeuPX07ElVQ1qC86R683ek31n2nU4CsRVo70Lw2Ett4qZvKaEZJDA5DZXcDpVMQyU3QyUna_7Euqf_x_QIJmbTAw
CitedBy_id crossref_primary_10_1002_jhm_70070
crossref_primary_10_1111_ajd_14566
crossref_primary_10_1136_bmjqs_2024_018384
Cites_doi 10.1001/jamanetworkopen.2024.3201
10.3389/fgene.2022.929453
10.1001/jamainternmed.2023.1838
10.1001/jama.2023.8288
10.1186/s12960-020-0448-3
10.1007/s11606-023-08190-8
10.1001/jama.2023.22981
10.1136/bmjqs-2013-002627
10.1016/S2589-7500(20)30187-4
10.1080/15228053.2024.2417522
10.1001/jamanetworkopen.2023.40232
10.6028/NIST.SP.1270
10.7326/M16-0961
10.1001/jamainternmed.2023.2909
10.1126/science.adh2713
10.1056/CAT.23.0404
10.1111/j.1365-2753.2008.01065.x
10.1136/bmjqs-2019-010822
10.1007/s11606-020-06077-6
10.1001/jamanetworkopen.2023.44713
10.1001/jamanetworkopen.2024.0357
10.1377/hlthaff.2018.05509
10.1377/hlthaff.2016.1651
10.1007/s11606-022-07707-x
10.1126/science.aax2342
10.1001/jamanetworkopen.2023.24176
10.1016/j.mayocp.2022.09.002
10.1370/afm.2858
10.1038/s41591-023-02448-8
10.1001/jamainternmed.2024.0295
10.1136/bmj-2022-073933
10.1001/jama.2023.14217
10.1001/jamanetworkopen.2023.47075
10.1126/sciadv.abq6147
10.1001/jamanetworkopen.2023.47894
10.7326/M18-1990
10.1053/j.gastro.2023.04.033
10.1016/j.mcpdig.2023.08.002
10.1016/j.mayocp.2021.11.039
ContentType Journal Article
Copyright 2024. The Author(s).
Copyright Springer Nature B.V. Feb 2025
The Author(s) 2024 2024
Copyright_xml – notice: 2024. The Author(s).
– notice: Copyright Springer Nature B.V. Feb 2025
– notice: The Author(s) 2024 2024
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7U9
8FD
C1K
FR3
H94
K9.
M7N
NAPCQ
P64
RC3
7X8
5PM
DOI 10.1007/s11606-024-09102-0
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Genetics Abstracts
Virology and AIDS Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE
Nursing & Allied Health Premium
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1525-1497
EndPage 702
ExternalDocumentID PMC11861482
39531100
10_1007_s11606_024_09102_0
Genre Journal Article
GrantInformation_xml – fundername: NIMHD NIH HHS
  grantid: K23 MD016439
– fundername: NIMHD NIH HHS
  grantid: L32 MD018892
GroupedDBID ---
-Y2
.86
.GJ
.VR
06C
06D
0R~
0VY
199
1CY
1N0
1OC
1SB
2.D
203
28-
29K
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2WC
2~H
30V
31~
36B
4.4
406
408
40D
40E
53G
5GY
5RE
5VS
67Z
6NX
78A
7RV
7X7
8-1
8AO
8FI
8FJ
8G5
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAFWJ
AAHNG
AAIAL
AAJBT
AAJKR
AAMMB
AANXM
AANZL
AAPKM
AAQQT
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAWTO
AAYIU
AAYQN
AAYTO
AAYXX
ABAKF
ABBRH
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABIPD
ABIVO
ABJNI
ABJOX
ABKCH
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACHSB
ACHVE
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACSTC
ACUDM
ACXQS
ACZOJ
ADBBV
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFGJ
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEBI
AFEXP
AFFHD
AFFNX
AFHIU
AFJLC
AFKRA
AFLOW
AFOHR
AFQWF
AFRAH
AFWTZ
AFYQB
AFZJQ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGVAE
AGWIL
AGWZB
AGXDD
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIDQK
AIDYY
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJAOE
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
AOIJS
AQUVI
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AZFZN
AZQEC
B-.
BA0
BAWUL
BBWZM
BDATZ
BENPR
BFHJK
BGNMA
BKEYQ
BPHCQ
BVXVI
CAG
CCPQU
CITATION
CO8
COF
CS3
CSCUP
D-I
DDRTE
DIK
DNIVK
DPUIP
DU5
DWQXO
E3Z
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EN4
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GRRUI
GUQSH
GX1
H13
HF~
HG5
HG6
HMCUK
HMJXF
HRMNR
HVGLF
HYE
HZ~
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KDC
KOV
KPH
LH4
LLZTM
LW6
M0T
M1P
M2O
M4Y
MA-
N2Q
N4W
N9A
NAPCQ
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OK1
OVD
P19
P2P
P6G
P9S
PF-
PHGZM
PHGZT
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPM
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJN
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TR2
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WIN
WK8
WOQ
WOW
YFH
YLTOR
YOC
YUY
Z45
ZGI
ZMTXR
ZOVNA
~EX
AAYZH
AESKC
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c431t-111b2b3b51e7e803be90f01e6916a1da40d5feff4d23c38c9b38d8b3b066d6a53
IEDL.DBID RSV
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001352674400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0884-8734
1525-1497
IngestDate Tue Nov 04 02:05:21 EST 2025
Thu Sep 04 18:07:55 EDT 2025
Wed Nov 05 08:45:15 EST 2025
Mon Jul 21 02:03:38 EDT 2025
Sat Nov 29 08:20:00 EST 2025
Tue Nov 18 21:12:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords clinical practice
healthcare technology
artificial intelligence
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c431t-111b2b3b51e7e803be90f01e6916a1da40d5feff4d23c38c9b38d8b3b066d6a53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9217-1533
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC11861482
PMID 39531100
PQID 3171171833
PQPubID 30490
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11861482
proquest_miscellaneous_3128759002
proquest_journals_3171171833
pubmed_primary_39531100
crossref_citationtrail_10_1007_s11606_024_09102_0
crossref_primary_10_1007_s11606_024_09102_0
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
– name: Cham
PublicationTitle Journal of general internal medicine : JGIM
PublicationTitleAlternate J Gen Intern Med
PublicationYear 2025
Publisher Springer Nature B.V
Springer International Publishing
Publisher_xml – name: Springer Nature B.V
– name: Springer International Publishing
References LS Rotenstein (9102_CR43) 2023; 6
T-C Lee (9102_CR54) 2023; 165
9102_CR7
E Strong (9102_CR12) 2023; 183
9102_CR6
9102_CR9
9102_CR8
M Tai-Seale (9102_CR45) 2019; 38
J Adler-Milstein (9102_CR33) 2017; 36
A Chen (9102_CR37) 2023; 38
TD Shanafelt (9102_CR39) 2022; 97
9102_CR48
9102_CR49
S Anderer (9102_CR25) 2024; 331
M DeCamp (9102_CR62) 2023; 381
A Nayak (9102_CR22) 2023; 6
9102_CR40
9102_CR41
LF McMahon (9102_CR36) 2021; 36
K Montgomery (9102_CR68) 2006
AJ Thirunavukarasu (9102_CR5) 2023; 29
9102_CR38
9102_CR35
A Shachak (9102_CR47) 2009; 15
9102_CR34
9102_CR31
9102_CR32
Z Kanjee (9102_CR11) 2023; 330
X Zhang (9102_CR27) 2020; 18
M Bhattacharyya (9102_CR24) 2023; 15
9102_CR28
9102_CR29
A Rajkomar (9102_CR61) 2018; 169
P Garcia (9102_CR51) 2024; 7
CG Gunderson (9102_CR16) 2020; 29
9102_CR66
9102_CR23
9102_CR20
9102_CR64
9102_CR21
D Zeltzer (9102_CR14) 2023; 1
TF Byrd (9102_CR67) 2023; 6
9102_CR63
Z Obermeyer (9102_CR60) 2019; 366
NH Shah (9102_CR1) 2023; 330
9102_CR50
DS Bitterman (9102_CR17) 2020; 2
S Lin (9102_CR30) 2022; 97
JW Ayers (9102_CR52) 2023; 183
M Bak (9102_CR65) 2022; 13
J Porter (9102_CR44) 2023; 38
C Sinsky (9102_CR42) 2016; 165
9102_CR19
9102_CR18
9102_CR3
S Cabral (9102_CR13) 2024; 184
9102_CR59
9102_CR2
T Bodenheimer (9102_CR26) 2022; 20
J Zaretsky (9102_CR53) 2024; 7
9102_CR57
9102_CR58
H Singh (9102_CR15) 2014; 23
JA Ligibel (9102_CR46) 2023; 6
9102_CR55
9102_CR56
A Rodman (9102_CR4) 2023; 6
9102_CR10
References_xml – ident: 9102_CR31
– volume: 7
  start-page: e243201
  issue: 3
  year: 2024
  ident: 9102_CR51
  publication-title: JAMA Netw Open
  doi: 10.1001/jamanetworkopen.2024.3201
– volume: 13
  start-page: 929453
  year: 2022
  ident: 9102_CR65
  publication-title: Front Genet
  doi: 10.3389/fgene.2022.929453
– ident: 9102_CR64
– ident: 9102_CR41
– ident: 9102_CR48
– volume: 183
  start-page: 589
  issue: 6
  year: 2023
  ident: 9102_CR52
  publication-title: JAMA Intern Med
  doi: 10.1001/jamainternmed.2023.1838
– volume: 330
  start-page: 78
  issue: 1
  year: 2023
  ident: 9102_CR11
  publication-title: JAMA
  doi: 10.1001/jama.2023.8288
– volume: 18
  start-page: 8
  issue: 1
  year: 2020
  ident: 9102_CR27
  publication-title: Hum Resour Health
  doi: 10.1186/s12960-020-0448-3
– volume: 38
  start-page: 2613
  issue: 11
  year: 2023
  ident: 9102_CR37
  publication-title: J Gen Intern Med
  doi: 10.1007/s11606-023-08190-8
– volume: 331
  start-page: 629
  issue: 8
  year: 2024
  ident: 9102_CR25
  publication-title: JAMA
  doi: 10.1001/jama.2023.22981
– ident: 9102_CR2
– volume: 23
  start-page: 727
  issue: 9
  year: 2014
  ident: 9102_CR15
  publication-title: BMJ Qual Saf
  doi: 10.1136/bmjqs-2013-002627
– ident: 9102_CR6
– volume: 2
  start-page: e447
  issue: 9
  year: 2020
  ident: 9102_CR17
  publication-title: Lancet Digit Health
  doi: 10.1016/S2589-7500(20)30187-4
– ident: 9102_CR19
– ident: 9102_CR38
– ident: 9102_CR55
– ident: 9102_CR32
– ident: 9102_CR8
  doi: 10.1080/15228053.2024.2417522
– volume: 6
  start-page: e2340232
  issue: 12
  year: 2023
  ident: 9102_CR22
  publication-title: JAMA Netw Open
  doi: 10.1001/jamanetworkopen.2023.40232
– ident: 9102_CR59
  doi: 10.6028/NIST.SP.1270
– volume: 165
  start-page: 753
  issue: 11
  year: 2016
  ident: 9102_CR42
  publication-title: Ann Intern Med
  doi: 10.7326/M16-0961
– volume: 183
  start-page: 1028
  issue: 9
  year: 2023
  ident: 9102_CR12
  publication-title: JAMA Intern Med
  doi: 10.1001/jamainternmed.2023.2909
– ident: 9102_CR49
– volume: 381
  start-page: 150
  issue: 6654
  year: 2023
  ident: 9102_CR62
  publication-title: Science
  doi: 10.1126/science.adh2713
– ident: 9102_CR28
– ident: 9102_CR63
– ident: 9102_CR50
  doi: 10.1056/CAT.23.0404
– ident: 9102_CR21
– volume: 15
  start-page: 641
  issue: 4
  year: 2009
  ident: 9102_CR47
  publication-title: J Eval Clin Pract
  doi: 10.1111/j.1365-2753.2008.01065.x
– volume: 29
  start-page: 1008
  issue: 12
  year: 2020
  ident: 9102_CR16
  publication-title: BMJ Qual Saf
  doi: 10.1136/bmjqs-2019-010822
– ident: 9102_CR3
– ident: 9102_CR7
– ident: 9102_CR18
– ident: 9102_CR35
– ident: 9102_CR56
– volume: 36
  start-page: 515
  issue: 2
  year: 2021
  ident: 9102_CR36
  publication-title: J Gen Intern Med
  doi: 10.1007/s11606-020-06077-6
– ident: 9102_CR10
– volume: 6
  start-page: e2344713
  issue: 11
  year: 2023
  ident: 9102_CR43
  publication-title: JAMA Netw Open
  doi: 10.1001/jamanetworkopen.2023.44713
– volume: 7
  start-page: e240357
  issue: 3
  year: 2024
  ident: 9102_CR53
  publication-title: JAMA Netw Open
  doi: 10.1001/jamanetworkopen.2024.0357
– volume: 38
  start-page: 1073
  issue: 7
  year: 2019
  ident: 9102_CR45
  publication-title: Health Aff (Millwood)
  doi: 10.1377/hlthaff.2018.05509
– volume: 36
  start-page: 1416
  issue: 8
  year: 2017
  ident: 9102_CR33
  publication-title: Health Aff (Millwood)
  doi: 10.1377/hlthaff.2016.1651
– ident: 9102_CR66
– volume: 38
  start-page: 147
  issue: 1
  year: 2023
  ident: 9102_CR44
  publication-title: J Gen Intern Med
  doi: 10.1007/s11606-022-07707-x
– volume: 366
  start-page: 447
  issue: 6464
  year: 2019
  ident: 9102_CR60
  publication-title: Science
  doi: 10.1126/science.aax2342
– volume: 6
  start-page: e2324176
  issue: 7
  year: 2023
  ident: 9102_CR67
  publication-title: JAMA Netw Open
  doi: 10.1001/jamanetworkopen.2023.24176
– ident: 9102_CR20
– volume: 97
  start-page: 2248
  issue: 12
  year: 2022
  ident: 9102_CR39
  publication-title: Mayo Clin Proc
  doi: 10.1016/j.mayocp.2022.09.002
– volume: 20
  start-page: 464
  issue: 5
  year: 2022
  ident: 9102_CR26
  publication-title: Ann Fam Med
  doi: 10.1370/afm.2858
– volume: 29
  start-page: 1930
  issue: 8
  year: 2023
  ident: 9102_CR5
  publication-title: Nat Med
  doi: 10.1038/s41591-023-02448-8
– volume: 184
  start-page: 581
  issue: 5
  year: 2024
  ident: 9102_CR13
  publication-title: JAMA Intern Med
  doi: 10.1001/jamainternmed.2024.0295
– ident: 9102_CR29
  doi: 10.1136/bmj-2022-073933
– ident: 9102_CR34
– ident: 9102_CR57
– volume-title: How doctors think: clinical judgment and the practice of medicine
  year: 2006
  ident: 9102_CR68
– volume: 330
  start-page: 866
  issue: 9
  year: 2023
  ident: 9102_CR1
  publication-title: JAMA
  doi: 10.1001/jama.2023.14217
– volume: 6
  start-page: e2347075
  issue: 12
  year: 2023
  ident: 9102_CR4
  publication-title: JAMA Netw Open
  doi: 10.1001/jamanetworkopen.2023.47075
– ident: 9102_CR40
– ident: 9102_CR58
  doi: 10.1126/sciadv.abq6147
– volume: 6
  start-page: e2347894
  issue: 12
  year: 2023
  ident: 9102_CR46
  publication-title: JAMA Netw Open
  doi: 10.1001/jamanetworkopen.2023.47894
– volume: 169
  start-page: 866
  issue: 12
  year: 2018
  ident: 9102_CR61
  publication-title: Ann Intern Med
  doi: 10.7326/M18-1990
– volume: 165
  start-page: 509
  issue: 2
  year: 2023
  ident: 9102_CR54
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2023.04.033
– volume: 1
  start-page: 480
  issue: 4
  year: 2023
  ident: 9102_CR14
  publication-title: Mayo Clin Proc Digit Health
  doi: 10.1016/j.mcpdig.2023.08.002
– ident: 9102_CR23
– volume: 15
  start-page: e39238
  issue: 5
  year: 2023
  ident: 9102_CR24
  publication-title: Cureus
– volume: 97
  start-page: 653
  issue: 4
  year: 2022
  ident: 9102_CR30
  publication-title: Mayo Clin Proc
  doi: 10.1016/j.mayocp.2021.11.039
– ident: 9102_CR9
SSID ssj0013228
Score 2.4916995
Snippet Generative artificial intelligence (generative AI) is a new technology with potentially broad applications across important domains of healthcare, but serious...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 694
SubjectTerms Artificial intelligence
Artificial Intelligence - ethics
Artificial Intelligence - standards
Artificial Intelligence - trends
Clinical Decision-Making - methods
Decision making
Delivery of Health Care
Ethical standards
Generative Artificial Intelligence
Health care
Humans
Internal medicine
Internal Medicine - methods
Internal Medicine - standards
Medicine
Organizations
Patients
Physician patient relationships
Physician-Patient Relations
Physicians
Position Papers
Societies, Medical - standards
Stakeholders
Technologists
Title Recommendations for Clinicians, Technologists, and Healthcare Organizations on the Use of Generative Artificial Intelligence in Medicine: A Position Statement from the Society of General Internal Medicine
URI https://www.ncbi.nlm.nih.gov/pubmed/39531100
https://www.proquest.com/docview/3171171833
https://www.proquest.com/docview/3128759002
https://pubmed.ncbi.nlm.nih.gov/PMC11861482
Volume 40
WOSCitedRecordID wos001352674400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1525-1497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013228
  issn: 0884-8734
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RhKpeoPTF8tIg9VaiOrY363BDFQgOIERLtbcoiR2xUjeLyMKv5Ecx43jDbluQkHKxYo8dzdj-Jh5_A_DVWmFT6WSkmXdWJ05FtAmrSLpcWlUpl5bCJ5sYnJ-b4TC9WIL9Z0_wvzdxnLDXK3XEe5uM2EGPE8npCi5__p4_MjAtZNQ0xZUON2T-L2JxF_oHWv4dITm35RyvvW6w72E1QEs8bG1hHZZc_QHenoXD84_wwK7meOxCGqUGCa9iywtKNtLsY_ebnVRPxby2eNKFh-HCrU2c1EjQEa8ah5MKW_JqXjl99y0rBZ7O0X3iqMbZUA7wEC9CsBh6tMu_KJFvunihIZL0SXAryn_dTMYnuDo--vXjJArJHKKSMMo0ojW1kIUq-rEbOCNU4VJRidglhE_z2OZa2H7lqkpbqUplyrRQxhpqQJjIJnlffYblelK7DcCiYFTUd4koU61zKqpUFJUgz8cOklz1IJ4pNysD0zkn3PiTPXE0s5oyUlPm1ZSJHnzr2ty0PB8v1t6e2UwW5nyTERKL6TGKBrDXvabZykcwee0md1yHPFRO1Cp78KU1sa47ldJ6SB32wCwYX1eBmcAX39Sja88ITl6iJ3TdfNVXbME7ydmMfQz6NixPb-_cDqyU99NRc7sLbwZDs-vn2COiax-V
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recommendations+for+Clinicians%2C+Technologists%2C+and+Healthcare+Organizations+on+the+Use+of+Generative+Artificial+Intelligence+in+Medicine%3A+A+Position+Statement+from+the+Society+of+General+Internal+Medicine&rft.jtitle=Journal+of+general+internal+medicine+%3A+JGIM&rft.au=Crowe%2C+Byron&rft.au=Shah%2C+Shreya&rft.au=Teng%2C+Derek&rft.au=Ma%2C+Stephen+P&rft.date=2025-02-01&rft.issn=1525-1497&rft.eissn=1525-1497&rft.volume=40&rft.issue=3&rft.spage=694&rft_id=info:doi/10.1007%2Fs11606-024-09102-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0884-8734&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0884-8734&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0884-8734&client=summon