Series solution for a delay differential equation arising in electrodynamics

In this study, the pantograph equation is investigated using the homotopy perturbation and variational iteration methods. The pantograph equation is a delay differential equation that arises in quite different fields of pure and applied mathematics, such as number theory, dynamical systems, probabil...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Communications in numerical methods in engineering Ročník 25; číslo 11; s. 1084 - 1096
Hlavní autoři: KOCAK, Hüseyin, YILDIRIM, Ahmet
Médium: Journal Article
Jazyk:angličtina
Vydáno: Chichester, UK John Wiley & Sons, Ltd 01.11.2009
Wiley
Témata:
ISSN:1069-8299, 1099-0887
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this study, the pantograph equation is investigated using the homotopy perturbation and variational iteration methods. The pantograph equation is a delay differential equation that arises in quite different fields of pure and applied mathematics, such as number theory, dynamical systems, probability, mechanics and electrodynamics. The procedure of present methods are based on the search for a solution in the form of a series with easily computed components. Application of these techniques to this problem shows the rapid convergence of the sequence constructed by these methods to the exact solution. Moreover, this technique reduces the volume of calculations by not requiring discretization of the variables, linearization or small perturbations. Copyright © 2009 John Wiley & Sons, Ltd.
AbstractList In this study, the pantograph equation is investigated using the homotopy perturbation and variational iteration methods. The pantograph equation is a delay differential equation that arises in quite different fields of pure and applied mathematics, such as number theory, dynamical systems, probability, mechanics and electrodynamics. The procedure of present methods are based on the search for a solution in the form of a series with easily computed components. Application of these techniques to this problem shows the rapid convergence of the sequence constructed by these methods to the exact solution. Moreover, this technique reduces the volume of calculations by not requiring discretization of the variables, linearization or small perturbations. Copyright © 2009 John Wiley & Sons, Ltd.
Author Koçak, Hüseyin
Yıldırım, Ahmet
Author_xml – sequence: 1
  givenname: Hüseyin
  surname: KOCAK
  fullname: KOCAK, Hüseyin
  organization: Science Faculty, Department of Mathematics, Ege University, 35100 Bornova-izmir, Turkey
– sequence: 2
  givenname: Ahmet
  surname: YILDIRIM
  fullname: YILDIRIM, Ahmet
  organization: Science Faculty, Department of Mathematics, Ege University, 35100 Bornova-izmir, Turkey
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22068890$$DView record in Pascal Francis
BookMark eNp10FFLwzAQB_AgCm5T8CP0RfClM2m7NnnUqlOYU5ziY7imF4l26Uw6tN_ebpOBok93D7_7w_37ZNfWFgk5YnTIKI1OlZ0PWcT5DukxKkRIOc92V3sqQh4JsU_63r9SSgXltEcmM3QGfeDratmY2ga6dgEEJVbQBqXRGh3axkAV4PsS1gKc8ca-BMYGWKFqXF22FuZG-QOyp6HyePg9B-Tp6vIxvw4nd-Ob_GwSqiRmPIyLosyELjPGFQJqjmnBBSsykYiRFnHKOSqMaMILDoCs1KAVL5MyZpGOhYoH5HiTuwCvoNIOrDJeLpyZg2tlFNEuQtDOnWyccrX3DvWWMCpXbcmuLblqq6PDX1SZZv1v48BUfx2Em4MPU2H7b7DMp7c_vfENfm49uDeZZnE2ks_TsXzIz_MLzu7lLP4CBDGNwQ
CitedBy_id crossref_primary_10_1016_j_aml_2016_08_018
crossref_primary_10_1016_j_cam_2024_115977
crossref_primary_10_1002_cnm_1361
crossref_primary_10_1063_5_0271644
crossref_primary_10_1080_00207160903477159
crossref_primary_10_1016_j_amc_2015_05_135
crossref_primary_10_1016_j_jmaa_2013_07_039
crossref_primary_10_1016_j_cnsns_2012_05_009
crossref_primary_10_1016_j_amc_2012_08_065
crossref_primary_10_1108_09615531111123119
crossref_primary_10_1016_j_matcom_2023_09_023
crossref_primary_10_1002_fld_2211
crossref_primary_10_1016_j_camwa_2010_01_042
crossref_primary_10_1155_2013_498902
Cites_doi 10.1016/j.mcm.2007.09.016
10.1016/S0020-7462(98)00048-1
10.1155/2008/869614
10.1016/j.cam.2006.07.009
10.1016/j.physleta.2007.04.072
10.1088/0031-8949/78/06/065004
10.1016/S0045-7825(99)00018-3
10.1002/cnm.1200
10.2528/PIER07090403
10.1142/S0217979206033796
10.1007/s10543-005-0022-3
10.1142/S0217979208048668
10.1016/j.jsv.2007.05.021
10.1098/rspa.1971.0078
10.1016/j.camwa.2008.07.020
10.1016/j.amc.2006.01.084
10.1002/cnm.1154
10.1016/j.jmaa.2006.02.063
10.1016/j.camwa.2006.12.083
10.1088/0031-8949/75/6/007
10.1080/00207160902874653
10.1016/j.amc.2003.07.017
10.1016/S0168-9274(97)00028-7
10.1016/S0020-7462(98)00085-7
10.1515/zna-2008-10-1102
10.1142/S0217979206034819
10.1016/j.na.2008.03.012
10.1080/00207160802247646
10.1007/s002110050470
10.1088/0031-8949/75/4/031
10.1016/j.amc.2006.08.086
ContentType Journal Article
Copyright Copyright © 2009 John Wiley & Sons, Ltd.
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2009 John Wiley & Sons, Ltd.
– notice: 2015 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
DOI 10.1002/cnm.1288
DatabaseName Istex
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
Physics
EISSN 1099-0887
EndPage 1096
ExternalDocumentID 22068890
10_1002_cnm_1288
CNM1288
ark_67375_WNG_RCBCD81P_S
Genre article
GroupedDBID -~X
.GA
.Y3
10A
1L6
1OB
1OC
1ZS
31~
4.4
51W
51X
52N
52O
52P
52S
52T
52W
52X
5GY
5VS
66C
6J9
7PT
8-1
8-4
8-5
930
A03
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADEOM
ADIZJ
ADMGS
ADNMO
ADOZA
AEFGJ
AEIGN
AEIMD
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AI.
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZFZN
BDRZF
BRXPI
BSCLL
BY8
CO8
CS3
D-F
DCZOG
DRFUL
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
GBZZK
GNP
GODZA
HBH
HF~
HGLYW
HHY
HVGLF
I-F
JPC
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M6O
MEWTI
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
OIG
P4D
PALCI
QB0
QRW
RIWAO
RJQFR
ROL
RYL
SAMSI
SUPJJ
TN5
TUS
UB1
VH1
WIB
WIH
WIK
WQJ
WXSBR
XG1
XPP
XV2
ZY4
~02
ALUQN
AAYXX
CITATION
O8X
IQODW
ID FETCH-LOGICAL-c4318-3bbd79fd718ceaef8e6b891b79495f93688ece2048b8aae1dfafc8d4d312f39c3
IEDL.DBID DRFUL
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000271777600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1069-8299
IngestDate Mon Jul 21 09:14:00 EDT 2025
Tue Nov 18 21:53:09 EST 2025
Sat Nov 29 06:28:03 EST 2025
Sun Sep 21 06:17:19 EDT 2025
Tue Nov 11 03:29:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Electrodynamics
Probabilistic approach
delay differential equations
the variational iteration method
Delay equation
Exact solution
Applied mathematics
Homotopy
Perturbation techniques
Variational calculus
Modelling
Pantographs
Iterative methods
Linearization
the homotopy perturbation method
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4318-3bbd79fd718ceaef8e6b891b79495f93688ece2048b8aae1dfafc8d4d312f39c3
Notes istex:0C72113E044803A13A8B5F92B0CBBBCA20A2D36B
ark:/67375/WNG-RCBCD81P-S
ArticleID:CNM1288
PageCount 13
ParticipantIDs pascalfrancis_primary_22068890
crossref_primary_10_1002_cnm_1288
crossref_citationtrail_10_1002_cnm_1288
wiley_primary_10_1002_cnm_1288_CNM1288
istex_primary_ark_67375_WNG_RCBCD81P_S
PublicationCentury 2000
PublicationDate November 2009
PublicationDateYYYYMMDD 2009-11-01
PublicationDate_xml – month: 11
  year: 2009
  text: November 2009
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
PublicationTitle Communications in numerical methods in engineering
PublicationTitleAlternate Commun. Numer. Meth. Engng
PublicationYear 2009
Publisher John Wiley & Sons, Ltd
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
References He JH. A coupling method of a homotopy technique and a perturbation technique for non-linear problems. International Journal of Non-Linear Mechanics 2000; 35:37-43.
Yıldırım A. The homotopy perturbation method for approximate solution of the modified KdV equation. Zeitschrift für Naturforschung A, A Journal of Physical Sciences, 2008; 63a:621.
Yıldırım A. An algorithm for solving the fractional nonlinear Schrödinger equation by means of the homotopy perturbation method. International Journal of Nonlinear Sciences and Numerical Simulation 2009; (10):445-451.
Yıldırım A. Applying He's variational iteration method for solving differential-difference equation. Mathematical Problems in Engineering 2008; 2008:1-7. Article ID 869614.
Yıldırım A. He's homotopy perturbation method for solving the space- and time-fractional telegraph equations. International Journal of Computer Mathematics 2009; DOI: 10.1080/00207160902874653.
Yıldırım A. Variational iteration method for modified Camassa-Holm and Degasperis-Procesi equations. Communications in Numerical Methods in Engineering 2008; DOI: 10.1002/cnm.1154.
Shakeri F, Dehghan M. Inverse problem of diffusion equation by He's homotopy perturbation method. Physica Scripta 2007; 75:551.
Ishiwata E, Muroya Y. Rational approximation method for delay differential equations with proportional delay. Applied Mathematics and Computation 2007; 187:741-747.
Fan Z, Liu MZ, Cao W. Existence and uniqueness of the solutions and convergence of semi-implicit Euler methods for stochastic pantograph equations. Journal of Mathematical Analysis and Applications 2007; 325:1142-1159.
Yıldırım A. He's homotopy perturbation method for nonlinear differential-difference equations. International Journal of Computer Mathematics 2008; DOI: 10.1080/00207160802247646.
He JH, Wu XH. Variational iteration method: new development and applications. Computers and Mathematics with Applications 2007; 54:881-894.
Baker CTH, Bukwwar E. Continuous 2-methods for the stochastic pantograph equation. Electronic Transactions on Numerical Analysis 2000; 11:131-151.
Yıldırım A, Öziş T. Solutions of singular IVPs of Lane-Emden type by the variational iteration method. Nonlinear Analysis Series A: Theory, Methods and Applications 2008; DOI: 10.1016/j.na.2008.03.012.
Liu MZ, Li DS. Properties of analytic solution and numerical solution of multi-pantograph equation. Applied Mathematics and Computation 2004; 155:853-871.
Dehghan M, Shakeri F. Solution of an integro-differential equation arising in oscillating magnetic fields using He's homotopy perturbation method. PIER 2008; 78:361.
Zhao JJ, Xu Y, Wang HX, Liu MZ. Stability of a class of Runge-Kutta methods for a family of pantograph equations of neutral type. Applied Mathematics and Computation 2006; 181:1170-1181.
Öziş T, Yıldırım A. A study of nonlinear oscillators with u1/3 force by He's variational iteration method. Journal of Sound and Vibration 2007; 306:372-376.
He JH. New interpretation of homotopy perturbation method. International Journal of Modern Physics B 2006; 20:2561.
He JH. Variational iteration method-a kind of non-linear analytical technique: some examples. International Journal of Non-Linear Mechanics 1999; 34:699-708.
He JH. Variational iteration method-some recent results and new interpretations. Journal of Computational and Applied Mathematics 2007; 207:3-17.
Yıldırım A. Solution of BVPs for fourth-order integro-differential equations by using homotopy perturbation method. Computers and Mathematics with Applications 2008; 56:3175-3180.
Li DS, Liu MZ. Exact solution properties of a multi-pantograph delay differential equation. Journal of Harbin Institute of Technology 2000; 32:1-3.
Dehghan M, Shakeri F. Solution of a partial differential equation subject to temperature overspecification by He's homotopy perturbation method. Physica Scripta 2007; 75:778.
He JH. Some asymptotic methods for strongly nonlinear equations. International Journal of Modern Physics B 2006; 20:1141.
Liu MZ, Yang ZW, Hu GD. Asymptotical stability of numerical methods with constant stepsize for pantograph equations. BIT Numerical Mathematics 2005; 45:743-759.
He JH. Homotopy perturbation technique. Computer Methods in Applied Mechanics and Engineering 1999; 178:257-262.
Zhang C, Sun G. Boundedness and asymptotic stability of multistep methods for generalized pantograph equations. Journal of Computational Mathematics 2004; 22:447-456.
Koto T. Stability of Runge-Kutta methods for the generalized pantograph equation. Numerische Mathematik 1999; 84:233-247.
Yıldırım A. Application of the homotopy perturbation method for the Fokker-Planck equation. Communications in Numerical Methods in Engineering 2008; DOI: 10.1002/cnm.1200.
He JH. An elementary introduction to recently developed asymptotic methods and nanomechanics in textile engineering. International Journal of Modern Physics B 2008; 22:3487.
Ockendon JR, Taylor AB. The dynamics of a current collection system for an electric locomotive. Proceedings of the Royal Society of London, Series A 1971; 322:447-468.
Dehghan M, Shakeri F. The use of the decomposition procedure of Adomian for solving a delay differential equation arising in electrodynamics. Physica Scripta 2008; 78:065004.
Yıldırım A, Öziş T. Solutions of singular IVPs of Lane-Emden type by homotopy perturbation method. Physics Letters A 2007; 369:70.
Liu Y. Numerical investigation of the pantograph equation. Applied Numerical Mathematics 1997; 24:309-317.
Tamasan A. Differentiability with respect to lag for nonlinear pantograph equations. Pure and Applied Mathematics 1998; 9:215-220.
He JH. Recent development of the homotopy perturbation method. Topological Methods in Nonlinear Analysis 2008; 31:205.
Shakeri F, Dehghan M. Solution of the delay differential equations via homotopy perturbation method. Mathematical and Computer Modelling 2008; 48:486.
2004; 22
2007; 207
2007; 306
2007; 325
2007; 369
2008; 63a
2007; 187
1997; 24
2009
2008
2008; 78
2008; 56
1971; 322
1999; 84
2008; 31
2007; 75
2007; 54
2008; 2008
2005; 45
2004; 155
2006; 20
2000; 35
2000; 32
2000; 11
1999; 34
2008; 48
2006; 181
2008; 22
1999; 178
1998; 9
Baker CTH (e_1_2_1_7_2) 2000; 11
Tamasan A (e_1_2_1_6_2) 1998; 9
e_1_2_1_22_2
Yıldırım A (e_1_2_1_34_2) 2009
e_1_2_1_23_2
e_1_2_1_20_2
e_1_2_1_21_2
e_1_2_1_26_2
e_1_2_1_27_2
e_1_2_1_24_2
e_1_2_1_25_2
He JH (e_1_2_1_36_2) 2008; 31
e_1_2_1_28_2
e_1_2_1_29_2
Li DS (e_1_2_1_8_2) 2000; 32
e_1_2_1_30_2
e_1_2_1_4_2
e_1_2_1_5_2
e_1_2_1_2_2
Zhang C (e_1_2_1_10_2) 2004; 22
e_1_2_1_11_2
e_1_2_1_3_2
e_1_2_1_12_2
e_1_2_1_33_2
e_1_2_1_32_2
e_1_2_1_31_2
e_1_2_1_15_2
e_1_2_1_38_2
e_1_2_1_16_2
e_1_2_1_37_2
e_1_2_1_13_2
e_1_2_1_14_2
e_1_2_1_35_2
e_1_2_1_19_2
e_1_2_1_17_2
e_1_2_1_9_2
e_1_2_1_18_2
e_1_2_1_39_2
References_xml – reference: Li DS, Liu MZ. Exact solution properties of a multi-pantograph delay differential equation. Journal of Harbin Institute of Technology 2000; 32:1-3.
– reference: Yıldırım A. An algorithm for solving the fractional nonlinear Schrödinger equation by means of the homotopy perturbation method. International Journal of Nonlinear Sciences and Numerical Simulation 2009; (10):445-451.
– reference: Yıldırım A, Öziş T. Solutions of singular IVPs of Lane-Emden type by homotopy perturbation method. Physics Letters A 2007; 369:70.
– reference: Yıldırım A. The homotopy perturbation method for approximate solution of the modified KdV equation. Zeitschrift für Naturforschung A, A Journal of Physical Sciences, 2008; 63a:621.
– reference: He JH. A coupling method of a homotopy technique and a perturbation technique for non-linear problems. International Journal of Non-Linear Mechanics 2000; 35:37-43.
– reference: Shakeri F, Dehghan M. Inverse problem of diffusion equation by He's homotopy perturbation method. Physica Scripta 2007; 75:551.
– reference: Yıldırım A. Application of the homotopy perturbation method for the Fokker-Planck equation. Communications in Numerical Methods in Engineering 2008; DOI: 10.1002/cnm.1200.
– reference: Shakeri F, Dehghan M. Solution of the delay differential equations via homotopy perturbation method. Mathematical and Computer Modelling 2008; 48:486.
– reference: Dehghan M, Shakeri F. Solution of an integro-differential equation arising in oscillating magnetic fields using He's homotopy perturbation method. PIER 2008; 78:361.
– reference: Dehghan M, Shakeri F. Solution of a partial differential equation subject to temperature overspecification by He's homotopy perturbation method. Physica Scripta 2007; 75:778.
– reference: Fan Z, Liu MZ, Cao W. Existence and uniqueness of the solutions and convergence of semi-implicit Euler methods for stochastic pantograph equations. Journal of Mathematical Analysis and Applications 2007; 325:1142-1159.
– reference: Tamasan A. Differentiability with respect to lag for nonlinear pantograph equations. Pure and Applied Mathematics 1998; 9:215-220.
– reference: Baker CTH, Bukwwar E. Continuous 2-methods for the stochastic pantograph equation. Electronic Transactions on Numerical Analysis 2000; 11:131-151.
– reference: He JH. Variational iteration method-some recent results and new interpretations. Journal of Computational and Applied Mathematics 2007; 207:3-17.
– reference: Yıldırım A. Variational iteration method for modified Camassa-Holm and Degasperis-Procesi equations. Communications in Numerical Methods in Engineering 2008; DOI: 10.1002/cnm.1154.
– reference: Yıldırım A. Applying He's variational iteration method for solving differential-difference equation. Mathematical Problems in Engineering 2008; 2008:1-7. Article ID 869614.
– reference: Liu MZ, Li DS. Properties of analytic solution and numerical solution of multi-pantograph equation. Applied Mathematics and Computation 2004; 155:853-871.
– reference: He JH. An elementary introduction to recently developed asymptotic methods and nanomechanics in textile engineering. International Journal of Modern Physics B 2008; 22:3487.
– reference: Dehghan M, Shakeri F. The use of the decomposition procedure of Adomian for solving a delay differential equation arising in electrodynamics. Physica Scripta 2008; 78:065004.
– reference: Ockendon JR, Taylor AB. The dynamics of a current collection system for an electric locomotive. Proceedings of the Royal Society of London, Series A 1971; 322:447-468.
– reference: Zhang C, Sun G. Boundedness and asymptotic stability of multistep methods for generalized pantograph equations. Journal of Computational Mathematics 2004; 22:447-456.
– reference: Liu Y. Numerical investigation of the pantograph equation. Applied Numerical Mathematics 1997; 24:309-317.
– reference: He JH. New interpretation of homotopy perturbation method. International Journal of Modern Physics B 2006; 20:2561.
– reference: He JH. Variational iteration method-a kind of non-linear analytical technique: some examples. International Journal of Non-Linear Mechanics 1999; 34:699-708.
– reference: Liu MZ, Yang ZW, Hu GD. Asymptotical stability of numerical methods with constant stepsize for pantograph equations. BIT Numerical Mathematics 2005; 45:743-759.
– reference: He JH. Recent development of the homotopy perturbation method. Topological Methods in Nonlinear Analysis 2008; 31:205.
– reference: He JH. Some asymptotic methods for strongly nonlinear equations. International Journal of Modern Physics B 2006; 20:1141.
– reference: Ishiwata E, Muroya Y. Rational approximation method for delay differential equations with proportional delay. Applied Mathematics and Computation 2007; 187:741-747.
– reference: Yıldırım A, Öziş T. Solutions of singular IVPs of Lane-Emden type by the variational iteration method. Nonlinear Analysis Series A: Theory, Methods and Applications 2008; DOI: 10.1016/j.na.2008.03.012.
– reference: Yıldırım A. He's homotopy perturbation method for nonlinear differential-difference equations. International Journal of Computer Mathematics 2008; DOI: 10.1080/00207160802247646.
– reference: Öziş T, Yıldırım A. A study of nonlinear oscillators with u1/3 force by He's variational iteration method. Journal of Sound and Vibration 2007; 306:372-376.
– reference: Yıldırım A. Solution of BVPs for fourth-order integro-differential equations by using homotopy perturbation method. Computers and Mathematics with Applications 2008; 56:3175-3180.
– reference: He JH, Wu XH. Variational iteration method: new development and applications. Computers and Mathematics with Applications 2007; 54:881-894.
– reference: Koto T. Stability of Runge-Kutta methods for the generalized pantograph equation. Numerische Mathematik 1999; 84:233-247.
– reference: Yıldırım A. He's homotopy perturbation method for solving the space- and time-fractional telegraph equations. International Journal of Computer Mathematics 2009; DOI: 10.1080/00207160902874653.
– reference: He JH. Homotopy perturbation technique. Computer Methods in Applied Mechanics and Engineering 1999; 178:257-262.
– reference: Zhao JJ, Xu Y, Wang HX, Liu MZ. Stability of a class of Runge-Kutta methods for a family of pantograph equations of neutral type. Applied Mathematics and Computation 2006; 181:1170-1181.
– volume: 181
  start-page: 1170
  year: 2006
  end-page: 1181
  article-title: Stability of a class of Runge–Kutta methods for a family of pantograph equations of neutral type
  publication-title: Applied Mathematics and Computation
– volume: 9
  start-page: 215
  year: 1998
  end-page: 220
  article-title: Differentiability with respect to lag for nonlinear pantograph equations
  publication-title: Pure and Applied Mathematics
– volume: 20
  start-page: 1141
  year: 2006
  article-title: Some asymptotic methods for strongly nonlinear equations
  publication-title: International Journal of Modern Physics B
– volume: 22
  start-page: 3487
  year: 2008
  article-title: An elementary introduction to recently developed asymptotic methods and nanomechanics in textile engineering
  publication-title: International Journal of Modern Physics B
– volume: 22
  start-page: 447
  year: 2004
  end-page: 456
  article-title: Boundedness and asymptotic stability of multistep methods for generalized pantograph equations
  publication-title: Journal of Computational Mathematics
– volume: 78
  start-page: 361
  year: 2008
  article-title: Solution of an integro‐differential equation arising in oscillating magnetic fields using He's homotopy perturbation method
  publication-title: PIER
– volume: 187
  start-page: 741
  year: 2007
  end-page: 747
  article-title: Rational approximation method for delay differential equations with proportional delay
  publication-title: Applied Mathematics and Computation
– volume: 56
  start-page: 3175
  year: 2008
  end-page: 3180
  article-title: Solution of BVPs for fourth‐order integro‐differential equations by using homotopy perturbation method
  publication-title: Computers and Mathematics with Applications
– year: 2008
  article-title: He's homotopy perturbation method for nonlinear differential‐difference equations
  publication-title: International Journal of Computer Mathematics
– volume: 45
  start-page: 743
  year: 2005
  end-page: 759
  article-title: Asymptotical stability of numerical methods with constant stepsize for pantograph equations
  publication-title: BIT Numerical Mathematics
– volume: 325
  start-page: 1142
  year: 2007
  end-page: 1159
  article-title: Existence and uniqueness of the solutions and convergence of semi‐implicit Euler methods for stochastic pantograph equations
  publication-title: Journal of Mathematical Analysis and Applications
– volume: 63a
  start-page: 621
  year: 2008
  article-title: The homotopy perturbation method for approximate solution of the modified KdV equation
  publication-title: Zeitschrift für Naturforschung A, A Journal of Physical Sciences
– volume: 84
  start-page: 233
  year: 1999
  end-page: 247
  article-title: Stability of Runge–Kutta methods for the generalized pantograph equation
  publication-title: Numerische Mathematik
– volume: 11
  start-page: 131
  year: 2000
  end-page: 151
  article-title: Continuous 2‐methods for the stochastic pantograph equation
  publication-title: Electronic Transactions on Numerical Analysis
– volume: 31
  start-page: 205
  year: 2008
  article-title: Recent development of the homotopy perturbation method
  publication-title: Topological Methods in Nonlinear Analysis
– year: 2009
  article-title: He's homotopy perturbation method for solving the space‐ and time‐fractional telegraph equations
  publication-title: International Journal of Computer Mathematics
– volume: 178
  start-page: 257
  year: 1999
  end-page: 262
  article-title: Homotopy perturbation technique
  publication-title: Computer Methods in Applied Mechanics and Engineering
– year: 2008
  article-title: Application of the homotopy perturbation method for the Fokker–Planck equation
  publication-title: Communications in Numerical Methods in Engineering
– volume: 34
  start-page: 699
  year: 1999
  end-page: 708
  article-title: Variational iteration method—a kind of non‐linear analytical technique: some examples
  publication-title: International Journal of Non‐Linear Mechanics
– volume: 207
  start-page: 3
  year: 2007
  end-page: 17
  article-title: Variational iteration method—some recent results and new interpretations
  publication-title: Journal of Computational and Applied Mathematics
– volume: 48
  start-page: 486
  year: 2008
  article-title: Solution of the delay differential equations via homotopy perturbation method
  publication-title: Mathematical and Computer Modelling
– volume: 24
  start-page: 309
  year: 1997
  end-page: 317
  article-title: Numerical investigation of the pantograph equation
  publication-title: Applied Numerical Mathematics
– start-page: 445
  issue: 10
  year: 2009
  end-page: 451
  article-title: An algorithm for solving the fractional nonlinear Schrödinger equation by means of the homotopy perturbation method
  publication-title: International Journal of Nonlinear Sciences and Numerical Simulation
– volume: 78
  year: 2008
  article-title: The use of the decomposition procedure of Adomian for solving a delay differential equation arising in electrodynamics
  publication-title: Physica Scripta
– year: 2008
  article-title: Variational iteration method for modified Camassa–Holm and Degasperis–Procesi equations
  publication-title: Communications in Numerical Methods in Engineering
– volume: 75
  start-page: 778
  year: 2007
  article-title: Solution of a partial differential equation subject to temperature overspecification by He's homotopy perturbation method
  publication-title: Physica Scripta
– volume: 306
  start-page: 372
  year: 2007
  end-page: 376
  article-title: A study of nonlinear oscillators with force by He's variational iteration method
  publication-title: Journal of Sound and Vibration
– volume: 75
  start-page: 551
  year: 2007
  article-title: Inverse problem of diffusion equation by He's homotopy perturbation method
  publication-title: Physica Scripta
– year: 2008
  article-title: Solutions of singular IVPs of Lane–Emden type by the variational iteration method
  publication-title: Nonlinear Analysis Series A: Theory, Methods and Applications
– volume: 32
  start-page: 1
  year: 2000
  end-page: 3
  article-title: Exact solution properties of a multi‐pantograph delay differential equation
  publication-title: Journal of Harbin Institute of Technology
– volume: 20
  start-page: 2561
  year: 2006
  article-title: New interpretation of homotopy perturbation method
  publication-title: International Journal of Modern Physics B
– volume: 2008
  start-page: 1
  year: 2008
  end-page: 7
  article-title: Applying He's variational iteration method for solving differential‐difference equation
  publication-title: Mathematical Problems in Engineering
– volume: 155
  start-page: 853
  year: 2004
  end-page: 871
  article-title: Properties of analytic solution and numerical solution of multi‐pantograph equation
  publication-title: Applied Mathematics and Computation
– volume: 322
  start-page: 447
  year: 1971
  end-page: 468
  article-title: The dynamics of a current collection system for an electric locomotive
  publication-title: Proceedings of the Royal Society of London, Series A
– volume: 54
  start-page: 881
  year: 2007
  end-page: 894
  article-title: Variational iteration method: new development and applications
  publication-title: Computers and Mathematics with Applications
– volume: 35
  start-page: 37
  year: 2000
  end-page: 43
  article-title: A coupling method of a homotopy technique and a perturbation technique for non‐linear problems
  publication-title: International Journal of Non‐Linear Mechanics
– volume: 369
  start-page: 70
  year: 2007
  article-title: Solutions of singular IVPs of Lane–Emden type by homotopy perturbation method
  publication-title: Physics Letters A
– ident: e_1_2_1_33_2
  doi: 10.1016/j.mcm.2007.09.016
– volume: 9
  start-page: 215
  year: 1998
  ident: e_1_2_1_6_2
  article-title: Differentiability with respect to lag for nonlinear pantograph equations
  publication-title: Pure and Applied Mathematics
– ident: e_1_2_1_18_2
  doi: 10.1016/S0020-7462(98)00048-1
– ident: e_1_2_1_21_2
  doi: 10.1155/2008/869614
– ident: e_1_2_1_17_2
  doi: 10.1016/j.cam.2006.07.009
– ident: e_1_2_1_25_2
  doi: 10.1016/j.physleta.2007.04.072
– volume: 31
  start-page: 205
  year: 2008
  ident: e_1_2_1_36_2
  article-title: Recent development of the homotopy perturbation method
  publication-title: Topological Methods in Nonlinear Analysis
– ident: e_1_2_1_2_2
– ident: e_1_2_1_15_2
  doi: 10.1088/0031-8949/78/06/065004
– ident: e_1_2_1_23_2
  doi: 10.1016/S0045-7825(99)00018-3
– ident: e_1_2_1_29_2
  doi: 10.1002/cnm.1200
– ident: e_1_2_1_30_2
  doi: 10.2528/PIER07090403
– ident: e_1_2_1_37_2
  doi: 10.1142/S0217979206033796
– ident: e_1_2_1_11_2
  doi: 10.1007/s10543-005-0022-3
– ident: e_1_2_1_39_2
  doi: 10.1142/S0217979208048668
– ident: e_1_2_1_19_2
  doi: 10.1016/j.jsv.2007.05.021
– ident: e_1_2_1_3_2
  doi: 10.1098/rspa.1971.0078
– volume: 11
  start-page: 131
  year: 2000
  ident: e_1_2_1_7_2
  article-title: Continuous 2‐methods for the stochastic pantograph equation
  publication-title: Electronic Transactions on Numerical Analysis
– ident: e_1_2_1_26_2
  doi: 10.1016/j.camwa.2008.07.020
– ident: e_1_2_1_13_2
  doi: 10.1016/j.amc.2006.01.084
– ident: e_1_2_1_22_2
  doi: 10.1002/cnm.1154
– ident: e_1_2_1_14_2
  doi: 10.1016/j.jmaa.2006.02.063
– ident: e_1_2_1_16_2
  doi: 10.1016/j.camwa.2006.12.083
– ident: e_1_2_1_32_2
  doi: 10.1088/0031-8949/75/6/007
– ident: e_1_2_1_35_2
  doi: 10.1080/00207160902874653
– ident: e_1_2_1_9_2
  doi: 10.1016/j.amc.2003.07.017
– volume: 22
  start-page: 447
  year: 2004
  ident: e_1_2_1_10_2
  article-title: Boundedness and asymptotic stability of multistep methods for generalized pantograph equations
  publication-title: Journal of Computational Mathematics
– ident: e_1_2_1_5_2
  doi: 10.1016/S0168-9274(97)00028-7
– ident: e_1_2_1_24_2
  doi: 10.1016/S0020-7462(98)00085-7
– ident: e_1_2_1_28_2
  doi: 10.1515/zna-2008-10-1102
– volume: 32
  start-page: 1
  year: 2000
  ident: e_1_2_1_8_2
  article-title: Exact solution properties of a multi‐pantograph delay differential equation
  publication-title: Journal of Harbin Institute of Technology
– ident: e_1_2_1_38_2
  doi: 10.1142/S0217979206034819
– ident: e_1_2_1_20_2
  doi: 10.1016/j.na.2008.03.012
– ident: e_1_2_1_27_2
  doi: 10.1080/00207160802247646
– ident: e_1_2_1_4_2
  doi: 10.1007/s002110050470
– ident: e_1_2_1_31_2
  doi: 10.1088/0031-8949/75/4/031
– start-page: 445
  issue: 10
  year: 2009
  ident: e_1_2_1_34_2
  article-title: An algorithm for solving the fractional nonlinear Schrödinger equation by means of the homotopy perturbation method
  publication-title: International Journal of Nonlinear Sciences and Numerical Simulation
– ident: e_1_2_1_12_2
  doi: 10.1016/j.amc.2006.08.086
SSID ssj0009080
Score 1.950499
Snippet In this study, the pantograph equation is investigated using the homotopy perturbation and variational iteration methods. The pantograph equation is a delay...
SourceID pascalfrancis
crossref
wiley
istex
SourceType Index Database
Enrichment Source
Publisher
StartPage 1084
SubjectTerms Computational techniques
delay differential equations
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Mathematical methods in physics
Physics
the homotopy perturbation method
the variational iteration method
Title Series solution for a delay differential equation arising in electrodynamics
URI https://api.istex.fr/ark:/67375/WNG-RCBCD81P-S/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcnm.1288
Volume 25
WOSCitedRecordID wos000271777600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-0887
  dateEnd: 20091231
  omitProxy: false
  ssIdentifier: ssj0009080
  issn: 1069-8299
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFH5o60EP7mJdygiip9g0aZKZo7ZWD7WIWuwtTGaBYo3aqOi_9022WlAQPIWQN8nwdiYz3wdw6La45NxmFhXCt1oYExbHMmIFPpdMRZ4OVMpa0gv6fTocsut8V6U5C5PhQ5QLbiYy0nxtApxHSWMKGirixxNMrnQeqg66rVeBauemO-hNIXdtmmER-DgTzLoF9KztNIqxM8WoavT6YTZH8gT1ozNii9mmNa063ZX_zHcVlvNek5xmzrEGcypeh5W87yR5VCfrsPQNlBDvrkok12QDemb5TCWkcFGCTS7hxGBLfpKCXQWzxJiolww1nBhaQ3wTGcUkJ9mRGe19sgmD7vld-9LKGRgsgY0FtdwokgHTEguYUFxpqvyIsmaEQcw8zVyfUiWUwf6NKOeqKTXXgsqWdJuOdplwt6ASP8VqGwgNhKcCjlVRuvhcUHOMSrGItTSVtufV4LgwRShyeHLDkjEOM2BlJ0QFhkaBNTgoJZ8zSI4fZI5Sa5YCfPJgtrAFXnjfvwhv2mftDm1eh7c1qM-YuxzgOIaOh9n4ptSqv34qbPevzHXnr4K7sJj-kkoPNO5B5XXypvZhQby_jpJJPffiL9VR9vo
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS9xAFD5YV6g-1Dvd1ssIok_RbK4z9ElXV8VsEKu4b8NkLiC1qW60tP--Z3LThQqCTyHkTDKcO5OZ7wPY9gOhhHCZQ6WMnABjwhFYRpw4EorpLDSxLllLkjhN6WjELqbgW3MWpsKHaBfcbGSU-doGuF2Q3n9GDZX5zz3MrvQDdAL0InTvztHl4Dp5xtx1aQVGEOFUMO022LOut9-MnahGHavYP3Z3pChQQaZitpjsWsuyM5h_14QX4FPdbZKDyj0WYUrnSzBfd56kjutiCeZewBLi3bDFci2WIbELaLogjZMSbHOJIBZd8i9p-FUwT9wR_VDhhhNLbIhvIrc5qWl2VEV8X6zA9eD4qn_q1BwMjsTWgjp-lqmYGYUlTGqhDdVRRlkvwzBmoWF-RKmW2qL_ZlQI3VNGGElVoPyeZ3wm_VWYzn_l-jMQGstQxwLrovLxuaT2IJVmGQsMVW4YdmG3sQWXNUC55cm44xW0ssdRgdwqsAtbreR9BcrxH5md0pytgBj_sJvY4pDfpCf8sn_YP6K9C_69CxsT9m4HeJ4l5GEuvqk066uf4v10aK9f3iq4CR9Pr4YJT87S868wW_6gKo83rsH04_hJr8OM_P14W4w3apf-B5eg-uo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZSxxBEC50N4g-xBvXeLQQzNPo7Jzd5El3sxqyDosH2bempw8QdWJ2VJJ_n-q5dEFByNMwTHVPU9V10Mf3AXz2A6GEcJlDpYycAH3CEZhGnDgSiuk0NLEuWEuGcZLQ8ZiNZuBrfRemxIdoFtysZxTx2jq4vlfm8Bk1VGZ3Bxhd6Sy0A8sh04J2_3xwNXzG3HVpCUYQ4VAw7NbYs653WLedykZtq9g_9nSkyFFBpmS2mK5ai7QzWPyvAS_Bx6raJEfl9FiGGZ2twGJVeZLKr_MVWHgBS4hvZw2Wa74KQ7uApnNST1KCZS4RxKJL_iU1vwrGiVuif5e44cQSG2JP5DojFc2OKonv8zW4Gny77J06FQeDI7G0oI6fpipmRmEKk1poQ3WUUtZN0Y1ZaJgfUaqltui_KRVCd5URRlIVKL_rGZ9Jfx1a2a9MbwChsQx1LDAvKh-_S2ovUmmWssBQ5YZhB77UtuCyAii3PBm3vIRW9jgqkFsFdmCvkbwvQTlekdkvzNkIiMmNPcQWh_xncsLPe8e9Pu2O-EUHdqbs3TTwPEvIw1zsqTDrm7_iveTMPjffK7gLc6P-gA-_Jz8-wXyxP1XcbtyC1sPkUW_DB_n0cJ1PdqoZ_Q8ruvpl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Series+solution+for+a+delay+differential+equation+arising+in+electrodynamics&rft.jtitle=Communications+in+numerical+methods+in+engineering&rft.au=Ko%C3%A7ak%2C+H%C3%BCseyin&rft.au=Y%C4%B1ld%C4%B1r%C4%B1m%2C+Ahmet&rft.date=2009-11-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=1069-8299&rft.eissn=1099-0887&rft.volume=25&rft.issue=11&rft.spage=1084&rft.epage=1096&rft_id=info:doi/10.1002%2Fcnm.1288&rft.externalDBID=10.1002%252Fcnm.1288&rft.externalDocID=CNM1288
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1069-8299&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1069-8299&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1069-8299&client=summon