Wildfire impacts on forest microclimate vary with biophysical context
Increasing wildfire activity in western North America has the potential to remove forest canopy cover over large areas, increasing the vulnerability of understory plants and juvenile trees to microclimatic extremes. To understand the impacts of wildfire on forest microclimatic buffering, we monitore...
Saved in:
| Published in: | Ecosphere (Washington, D.C) Vol. 12; no. 5 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Washington
John Wiley & Sons, Inc
01.05.2021
Wiley |
| Subjects: | |
| ISSN: | 2150-8925, 2150-8925 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Increasing wildfire activity in western North America has the potential to remove forest canopy cover over large areas, increasing the vulnerability of understory plants and juvenile trees to microclimatic extremes. To understand the impacts of wildfire on forest microclimatic buffering, we monitored daily temperature and vapor pressure deficit (VPD) in 33 plots over the first two growing seasons following two wildfires from 2017. The Lolo Peak and Sunrise fires occurred during a regionally extensive fire season, burning mixed‐conifer and subalpine forests across complex mountainous topography in western Montana. Sensors were deployed from June to September in 2018 and 2019 in sites stratified by aspect, elevation, and fire severity (unburned, moderate, high) to capture a range of forest types, biophysical contexts, and fire effects. Loss of canopy and understory vegetation had marked effects on microclimate: On average, sites burned at high severity had 3.7°C higher daily maximum temperatures and 0.81 kPa higher daily maximum VPD relative to paired unburned sites. Differences between burned and unburned sites were most pronounced when ambient temperatures were high, across diurnal and seasonal time scales. Differences were also more pronounced at sites with less canopy cover, more bare ground postfire, and greater long‐term water availability (i.e., low climatic water deficit). Our results reveal fire‐caused changes in microclimate extremes that are biologically meaningful for the postfire establishment of tree seedlings and understory vegetation. These effects depend strongly on biophysical context, with cool‐wet forests more vulnerable to fire‐caused changes in microclimate compared with warm‐dry settings. Our results further highlight the functional importance of standing dead trees for moderating surface temperature in postfire environments. Anticipating forest ecosystem responses to increased warming and wildfire activity, and the potential for fire to catalyze vegetation changes, thus requires considering the substantial impacts of fire on microclimate. |
|---|---|
| AbstractList | Increasing wildfire activity in western North America has the potential to remove forest canopy cover over large areas, increasing the vulnerability of understory plants and juvenile trees to microclimatic extremes. To understand the impacts of wildfire on forest microclimatic buffering, we monitored daily temperature and vapor pressure deficit (VPD) in 33 plots over the first two growing seasons following two wildfires from 2017. The Lolo Peak and Sunrise fires occurred during a regionally extensive fire season, burning mixed‐conifer and subalpine forests across complex mountainous topography in western Montana. Sensors were deployed from June to September in 2018 and 2019 in sites stratified by aspect, elevation, and fire severity (unburned, moderate, high) to capture a range of forest types, biophysical contexts, and fire effects. Loss of canopy and understory vegetation had marked effects on microclimate: On average, sites burned at high severity had 3.7°C higher daily maximum temperatures and 0.81 kPa higher daily maximum VPD relative to paired unburned sites. Differences between burned and unburned sites were most pronounced when ambient temperatures were high, across diurnal and seasonal time scales. Differences were also more pronounced at sites with less canopy cover, more bare ground postfire, and greater long‐term water availability (i.e., low climatic water deficit). Our results reveal fire‐caused changes in microclimate extremes that are biologically meaningful for the postfire establishment of tree seedlings and understory vegetation. These effects depend strongly on biophysical context, with cool‐wet forests more vulnerable to fire‐caused changes in microclimate compared with warm‐dry settings. Our results further highlight the functional importance of standing dead trees for moderating surface temperature in postfire environments. Anticipating forest ecosystem responses to increased warming and wildfire activity, and the potential for fire to catalyze vegetation changes, thus requires considering the substantial impacts of fire on microclimate. Abstract Increasing wildfire activity in western North America has the potential to remove forest canopy cover over large areas, increasing the vulnerability of understory plants and juvenile trees to microclimatic extremes. To understand the impacts of wildfire on forest microclimatic buffering, we monitored daily temperature and vapor pressure deficit (VPD) in 33 plots over the first two growing seasons following two wildfires from 2017. The Lolo Peak and Sunrise fires occurred during a regionally extensive fire season, burning mixed‐conifer and subalpine forests across complex mountainous topography in western Montana. Sensors were deployed from June to September in 2018 and 2019 in sites stratified by aspect, elevation, and fire severity (unburned, moderate, high) to capture a range of forest types, biophysical contexts, and fire effects. Loss of canopy and understory vegetation had marked effects on microclimate: On average, sites burned at high severity had 3.7°C higher daily maximum temperatures and 0.81 kPa higher daily maximum VPD relative to paired unburned sites. Differences between burned and unburned sites were most pronounced when ambient temperatures were high, across diurnal and seasonal time scales. Differences were also more pronounced at sites with less canopy cover, more bare ground postfire, and greater long‐term water availability (i.e., low climatic water deficit). Our results reveal fire‐caused changes in microclimate extremes that are biologically meaningful for the postfire establishment of tree seedlings and understory vegetation. These effects depend strongly on biophysical context, with cool‐wet forests more vulnerable to fire‐caused changes in microclimate compared with warm‐dry settings. Our results further highlight the functional importance of standing dead trees for moderating surface temperature in postfire environments. Anticipating forest ecosystem responses to increased warming and wildfire activity, and the potential for fire to catalyze vegetation changes, thus requires considering the substantial impacts of fire on microclimate. Increasing wildfire activity in western North America has the potential to remove forest canopy cover over large areas, increasing the vulnerability of understory plants and juvenile trees to microclimatic extremes. To understand the impacts of wildfire on forest microclimatic buffering, we monitored daily temperature and vapor pressure deficit (VPD) in 33 plots over the first two growing seasons following two wildfires from 2017. The Lolo Peak and Sunrise fires occurred during a regionally extensive fire season, burning mixed‐conifer and subalpine forests across complex mountainous topography in western Montana. Sensors were deployed from June to September in 2018 and 2019 in sites stratified by aspect, elevation, and fire severity (unburned, moderate, high) to capture a range of forest types, biophysical contexts, and fire effects. Loss of canopy and understory vegetation had marked effects on microclimate: On average, sites burned at high severity had 3.7°C higher daily maximum temperatures and 0.81 kPa higher daily maximum VPD relative to paired unburned sites. Differences between burned and unburned sites were most pronounced when ambient temperatures were high, across diurnal and seasonal time scales. Differences were also more pronounced at sites with less canopy cover, more bare ground postfire, and greater long‐term water availability (i.e., low climatic water deficit). Our results reveal fire‐caused changes in microclimate extremes that are biologically meaningful for the postfire establishment of tree seedlings and understory vegetation. These effects depend strongly on biophysical context, with cool‐wet forests more vulnerable to fire‐caused changes in microclimate compared with warm‐dry settings. Our results further highlight the functional importance of standing dead trees for moderating surface temperature in postfire environments. Anticipating forest ecosystem responses to increased warming and wildfire activity, and the potential for fire to catalyze vegetation changes, thus requires considering the substantial impacts of fire on microclimate. |
| Author | Davis, Kimberley T. Dobrowski, Solomon Z. Wolf, Kyra D. Higuera, Philip E. |
| Author_xml | – sequence: 1 givenname: Kyra D. orcidid: 0000-0003-4584-0348 surname: Wolf fullname: Wolf, Kyra D. email: Kyra.Wolf@umontana.edu organization: University of Montana – sequence: 2 givenname: Philip E. orcidid: 0000-0001-5396-9956 surname: Higuera fullname: Higuera, Philip E. organization: University of Montana – sequence: 3 givenname: Kimberley T. orcidid: 0000-0001-9727-374X surname: Davis fullname: Davis, Kimberley T. organization: University of Montana – sequence: 4 givenname: Solomon Z. orcidid: 0000-0003-2561-3850 surname: Dobrowski fullname: Dobrowski, Solomon Z. organization: University of Montana |
| BookMark | eNp1kUFvGyEQhVHkSEmTHPIPVuqlPdiBBZblWFluGylSD02UIwJ2aLDw4gKu439fHCdSZLVzYBD65ok37wOajHEEhK4JnhGM2xuwuZ1R1okTdN4Sjqe9bPnk3f0MXeW8xLU4Ez2j52jx6MPgfILGr9baltzEsXExQS7NytsUbfArXaD5o9Ou2fry1Bgf10-77K0OjY1jgedyiU6dDhmuXvsFevi6uJ9_n979-HY7_3I3tYwSUU9OB0FBMkYxtwMDoJgRbYhrBXFDbzspeq5BGsKMseB6aw12phfM8NbQC3R70B2iXqp1ql9LOxW1Vy8PMf1SOhVvA6iOS-EkYRYLwQSWktXeSdJhabhzump9OmitU_y9qX7VymcLIegR4iarlneE01qioh-P0GXcpLE6rRSluKOyI5W6OVB1azkncMr6oouvK0raB0Ww2qek9impfUp14vPRxJulf7Gv6lsfYPd_UC3mP9uXib-o4qGf |
| CitedBy_id | crossref_primary_10_1111_geb_13634 crossref_primary_10_3390_w16182562 crossref_primary_10_3390_s25103097 crossref_primary_10_1016_j_foreco_2024_121916 crossref_primary_10_1111_gcb_17196 crossref_primary_10_3390_f13091512 crossref_primary_10_1007_s11258_022_01248_3 crossref_primary_10_1139_cjfr_2021_0221 crossref_primary_10_1016_j_foreco_2022_120620 crossref_primary_10_1016_j_agrformet_2022_109067 crossref_primary_10_1073_pnas_2208120120 crossref_primary_10_1139_cjz_2023_0100 crossref_primary_10_1111_nph_19009 crossref_primary_10_1016_j_foreco_2023_121232 crossref_primary_10_1186_s42408_023_00181_8 crossref_primary_10_1016_j_agrformet_2023_109828 crossref_primary_10_1016_j_foreco_2025_122683 crossref_primary_10_1016_j_isprsjprs_2024_02_006 crossref_primary_10_1016_j_foreco_2024_122388 crossref_primary_10_1007_s00267_023_01843_8 crossref_primary_10_1002_jez_2687 crossref_primary_10_1016_j_agrformet_2022_109289 crossref_primary_10_1002_ece3_72165 crossref_primary_10_1029_2024EF005189 crossref_primary_10_1093_treephys_tpad136 crossref_primary_10_3389_ffgc_2021_731267 crossref_primary_10_1016_j_scitotenv_2023_165477 crossref_primary_10_1002_ecs2_4789 crossref_primary_10_1016_j_heliyon_2023_e16941 crossref_primary_10_1002_ecs2_70083 crossref_primary_10_1016_j_ecolind_2024_111899 crossref_primary_10_1038_s43247_023_00954_8 crossref_primary_10_3390_fire8030092 crossref_primary_10_1016_j_foreco_2024_122358 crossref_primary_10_1016_j_agrformet_2021_108741 crossref_primary_10_3390_fire7040125 crossref_primary_10_1007_s10021_024_00947_4 crossref_primary_10_1186_s42408_022_00153_4 crossref_primary_10_1002_ecs2_70009 crossref_primary_10_1016_j_foreco_2022_120129 crossref_primary_10_1111_gcb_70052 crossref_primary_10_1016_j_foreco_2022_120524 crossref_primary_10_1016_j_foreco_2022_120487 crossref_primary_10_1111_gcb_16764 crossref_primary_10_1002_ecs2_4178 crossref_primary_10_1016_j_foreco_2024_122321 crossref_primary_10_1016_j_foreco_2023_121190 crossref_primary_10_3390_f13060908 crossref_primary_10_1016_j_foreco_2024_122326 crossref_primary_10_1038_s41598_025_06814_z crossref_primary_10_1186_s42408_024_00285_9 crossref_primary_10_1016_j_foreco_2024_121848 crossref_primary_10_1038_s41597_025_04546_3 crossref_primary_10_1016_j_agrformet_2022_109077 crossref_primary_10_1016_j_ecolind_2025_113076 crossref_primary_10_1111_een_13418 crossref_primary_10_1007_s10980_025_02054_8 crossref_primary_10_1093_biosci_biab139 |
| Cites_doi | 10.1111/gcb.12194 10.1111/1365-2745.12121 10.1002/ecs2.2568 10.1111/1365-2435.13132 10.1016/S0167-8809(98)00182-0 10.1111/j.1654-1103.2002.tb02087.x 10.1139/x84-161 10.1007/s10584-005-5935-y 10.1111/ecog.02205 10.1139/X09-120 10.5194/bg-11-3739-2014 10.1038/s41598-018-24642-2 10.1093/forestry/cpq030 10.1016/j.agrformet.2013.06.011 10.1002/ecs2.1410 10.1073/pnas.1902841116 10.1029/2004JD005158 10.18637/jss.v082.i13 10.3996/072013-JFWM-051 10.1126/sciadv.1501392 10.1002/ecm.1340 10.1007/s10584-008-9505-y 10.1002/joc.4580 10.1002/eap.1420 10.3390/fire1010017 10.1111/j.1469-8137.2010.03515.x 10.1641/0006-3568(2004)054[0661:TIOFFA]2.0.CO;2 10.1073/pnas.1802316115 10.1038/s41559-019-0842-1 10.1111/1365-2435.13193 10.1111/gcb.15388 10.1016/j.foreco.2012.09.022 10.1002/ecs2.2809 10.1016/j.agrformet.2016.11.268 10.1029/2020GL089858 10.1093/treephys/16.8.665 10.1002/ldr.3237 10.1007/s00442-004-1788-8 10.1890/14-2302.1 10.1073/pnas.1110199108 10.1016/j.crte.2008.07.002 10.1002/ecy.2134 10.1093/biosci/biaa061 10.1007/978-94-007-1242-3_3 10.1016/j.foreco.2008.09.029 10.1029/2004GL020876 10.1016/j.jhydrol.2014.07.016 10.1098/rstb.2015.0178 10.1016/j.foreco.2009.11.030 10.1093/treephys/tpv045 10.1139/cjfr-2015-0033 10.1111/gcb.12023 10.1029/2004JD005299 10.1073/pnas.1815107116 10.1002/ecs2.1632 10.1111/j.1600-0706.2010.18270.x 10.1002/joc.3413 10.1111/ecog.03836 10.1073/pnas.1607171113 10.1016/j.agrformet.2008.09.011 10.1111/1365-2745.12426 10.1038/s41467-018-08237-z 10.1016/j.foreco.2020.118523 |
| ContentType | Journal Article |
| Copyright | 2021 The Authors. 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 The Authors. – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION ABUWG AEUYN AFKRA AZQEC BENPR BHPHI BKSAR CCPQU DWQXO HCIFZ PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 DOA |
| DOI | 10.1002/ecs2.3467 |
| DatabaseName | Wiley Online Library Open Access CrossRef ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central SciTech Premium Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Ecology |
| EISSN | 2150-8925 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_6597f914c077470994774691609b5ffa 10_1002_ecs2_3467 ECS23467 |
| Genre | article |
| GeographicLocations | Montana |
| GeographicLocations_xml | – name: Montana |
| GrantInformation_xml | – fundername: Joint Fire Science Program, through the Graduate Research Innovation program award funderid: 18‐1‐01‐53; 16‐1‐01‐15; 16–3‐01–24 |
| GroupedDBID | ..I 0R~ 1OC 24P 5VS 8FE 8FH AAHBH AAHHS ACCFJ ACCMX ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AENEX AEQDE AEUYN AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU BCNDV BENPR BHPHI BKSAR CCPQU E3Z EBS ECGQY EJD FRP GROUPED_DOAJ HCIFZ IAO IEP ITC KQ8 LK5 M7R M~E OK1 P2P PCBAR PIMPY PROAC RSZ WIN AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION PHGZM PHGZT ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
| ID | FETCH-LOGICAL-c4317-c453d73e944305cd4ee3041ab1f271fd8c69785ae9b14bbcef8ccb0fb874b52b3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 68 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000655473800030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2150-8925 |
| IngestDate | Tue Oct 14 19:08:47 EDT 2025 Fri Sep 05 17:21:16 EDT 2025 Sun Nov 09 07:16:41 EST 2025 Tue Nov 18 20:55:51 EST 2025 Sat Nov 29 01:44:59 EST 2025 Wed Jan 22 16:30:28 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | Attribution |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4317-c453d73e944305cd4ee3041ab1f271fd8c69785ae9b14bbcef8ccb0fb874b52b3 |
| Notes | Corresponding Editor: Carrie R. Levine. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-5396-9956 0000-0001-9727-374X 0000-0003-4584-0348 0000-0003-2561-3850 |
| OpenAccessLink | https://www.proquest.com/docview/2533063961?pq-origsite=%requestingapplication% |
| PQID | 2533063961 |
| PQPubID | 4368365 |
| PageCount | 16 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6597f914c077470994774691609b5ffa proquest_miscellaneous_2561533337 proquest_journals_2533063961 crossref_citationtrail_10_1002_ecs2_3467 crossref_primary_10_1002_ecs2_3467 wiley_primary_10_1002_ecs2_3467_ECS23467 |
| PublicationCentury | 2000 |
| PublicationDate | May 2021 2021-05-00 20210501 2021-05-01 |
| PublicationDateYYYYMMDD | 2021-05-01 |
| PublicationDate_xml | – month: 05 year: 2021 text: May 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Washington |
| PublicationPlace_xml | – name: Washington |
| PublicationTitle | Ecosphere (Washington, D.C) |
| PublicationYear | 2021 |
| Publisher | John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
| References | 2015; 35 2017; 40 2021; 27 2017; 82 2019a; 116 2019; 10 2015; 103 2002; 13 2013; 287 2008; 340 2016; 36 2013; 19 2015; 45 2004; 31 2018; 8 2014; 5 2017; 234–235 2005; 143 1984; 14 2018; 1 2009; 93 2016; 113 2019; 116 2020; 47 2005; 72 2018; 32 2014; 11 2011; 120 2014; 519 2019; 3 2005; 110 2019; 30 2011 2017; 27 2015; 96 2013; 101 2019b; 42 2013; 180 1996; 16 2009; 257 2010; 83 2004; 54 2016; 7 2011; 108 2016; 2 2013; 33 2010; 259 2020; 70 2019; 89 2018; 115 2020; 478 2019 2015 2013 1999; 72 2018; 99 2011; 189 2009; 149 2016; 371 2009; 39 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 Monteith J. (e_1_2_6_46_1) 2013 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 |
| References_xml | – volume: 33 start-page: 121 year: 2013 end-page: 131 article-title: Development of gridded surface meteorological data for ecological applications and modelling publication-title: International Journal of Climatology – volume: 13 start-page: 603 year: 2002 end-page: 606 article-title: Equations for potential annual direct incident radiation and heat load publication-title: Journal of Vegetation Science – volume: 42 start-page: 1 year: 2019b end-page: 11 article-title: Microclimatic buffering in forests of the future: the role of local water balance publication-title: Ecography – volume: 32 start-page: 2298 year: 2018 end-page: 2309 article-title: Fire increases drought vulnerability of juveniles by altering forest microclimate and nitrogen availability publication-title: Functional Ecology – volume: 257 start-page: 435 year: 2009 end-page: 442 article-title: Canopy microclimate response to pattern and density of thinning in a Sierra Nevada forest publication-title: Forest Ecology and Management – volume: 287 start-page: 103 year: 2013 end-page: 112 article-title: Post‐fire regeneration across a fire severity gradient in the southern Cascades publication-title: Forest Ecology and Management – volume: 116 start-page: 11319 year: 2019 end-page: 11328 article-title: Short‐interval severe fire erodes the resilience of subalpine lodgepole pine forests publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 45 start-page: 1607 year: 2015 end-page: 1616 article-title: A field experiment informs expected patterns of conifer regeneration after disturbance under changing climate conditions publication-title: Canadian Journal of Forest Research – volume: 103 start-page: 1253 year: 2015 end-page: 1263 article-title: Forest disturbance accelerates thermophilization of understory plant communities publication-title: Journal of Ecology – volume: 519 start-page: 490 year: 2014 end-page: 502 article-title: Soil moisture variation and dynamics across a wildfire burn boundary in a loblolly pine ( ) forest publication-title: Journal of Hydrology – volume: 19 start-page: 75 year: 2013 end-page: 89 article-title: A plant’s perspective of extremes: terrestrial plant responses to changing climatic variability publication-title: Global Change Biology – volume: 7 year: 2016 article-title: Topographic and fire weather controls of fire refugia in forested ecosystems of northwestern North America publication-title: Ecosphere – volume: 93 start-page: 517 year: 2009 end-page: 525 article-title: Recovery of surface albedo and plant cover after wildfire in a forest in interior Alaska publication-title: Climatic Change – volume: 113 start-page: 11770 year: 2016 end-page: 11775 article-title: Impact of anthropogenic climate change on wildfire across western US forests publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 70 start-page: 659 year: 2020 end-page: 673 article-title: Wildfire‐driven forest conversion in western North American landscapes publication-title: BioScience – volume: 16 start-page: 665 year: 1996 end-page: 672 article-title: High temperature and drought stress effects on survival of Pinus ponderosa seedlings publication-title: Tree Physiology – volume: 47 year: 2020 article-title: Warmer and drier fire seasons contribute to increases in area burned at high severity in western US Forests From 1985 to 2017 publication-title: Geophysical Research Letters – volume: 31 start-page: L18211 year: 2004 article-title: Detecting the effect of climate change on Canadian forest fires publication-title: Geophysical Research Letters – volume: 5 start-page: 174 year: 2014 end-page: 182 article-title: Wildfire and Postfire restoration action effects on microclimate and seedling pine tree survivorship publication-title: Journal of Fish and Wildlife Management – volume: 11 start-page: 3739 year: 2014 end-page: 3755 article-title: Multi‐scale influence of vapor pressure deficit on fire ignition and spread in boreal forest ecosystems publication-title: Biogeosciences – volume: 478 start-page: 118523 year: 2020 article-title: Topographic position amplifies consequences of short‐interval stand‐replacing fires on postfire tree establishment in subalpine conifer forests publication-title: Forest Ecology and Management – volume: 39 start-page: 2059 year: 2009 end-page: 2064 article-title: Early establishment of conifer recruits in the northern Rocky Mountains as a function of postfire duff depth publication-title: Canadian Journal of Forest Research – volume: 116 start-page: 6193 year: 2019a end-page: 6198 article-title: Wildfires and climate change push low‐elevation forests across a critical climate threshold for tree regeneration publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 115 start-page: E8349 year: 2018 end-page: E8357 article-title: Decreasing fire season precipitation increased recent western US forest wildfire activity publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 40 start-page: 606 year: 2017 end-page: 617 article-title: Climatic thresholds shape northern high‐latitude fire regimes and imply vulnerability to future climate change publication-title: Ecography – volume: 82 start-page: 1 year: 2017 end-page: 26 article-title: lmerTest package: tests in linear mixed effects models publication-title: Journal of Statistical Software – year: 2019 – volume: 3 start-page: 744 year: 2019 end-page: 749 article-title: Global buffering of temperatures under forest canopies publication-title: Nature Ecology & Evolution – volume: 83 start-page: 477 year: 2010 end-page: 482 article-title: Effects of post‐fire logging on forest surface air temperatures in the Siskiyou Mountains, Oregon, USA publication-title: Forestry – year: 2015 – volume: 371 start-page: 20150178 year: 2016 article-title: Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring publication-title: Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences – volume: 10 year: 2019 article-title: Contributions of fire refugia to resilient ponderosa pine and dry mixed‐conifer forest landscapes publication-title: Ecosphere – volume: 180 start-page: 281 year: 2013 end-page: 286 article-title: Design and evaluation of an inexpensive radiation shield for monitoring surface air temperatures publication-title: Agricultural and Forest Meteorology – volume: 14 start-page: 905 year: 1984 end-page: 908 article-title: Conifers and broadleaf species: Stomatal sensitivity differs in western Oregon publication-title: Canadian Journal of Forest Research – volume: 27 start-page: 1 year: 2021 end-page: 2 article-title: Record‐setting climate enabled the extraordinary 2020 fire season in the western United States publication-title: Global Change Biology – volume: 36 start-page: 3620 year: 2016 end-page: 3632 article-title: Development of high‐resolution (250 m) historical daily gridded air temperature data using reanalysis and distributed sensor networks for the US Northern Rocky Mountains publication-title: International Journal of Climatology – volume: 1 year: 2018 end-page: 17 article-title: Switching on the big burn of 2017 publication-title: Fire – volume: 108 start-page: 13165 year: 2011 end-page: 13170 article-title: Continued warming could transform Greater Yellowstone fire regimes by mid‐21st century publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 96 start-page: 3023 year: 2015 end-page: 3032 article-title: Disentangling legacy effects from environmental filters of postfire assembly of boreal tree assemblages publication-title: Ecology – volume: 110 start-page: D13101 year: 2005 article-title: Changes in the surface energy budget after fire in boreal ecosystems of interior Alaska: an annual perspective publication-title: Journal of Geophysical Research – volume: 35 start-page: 771 year: 2015 end-page: 782 article-title: Linking carbon and water relations to drought‐induced mortality in seedlings publication-title: Tree Physiology – volume: 30 start-page: 448 year: 2019 end-page: 458 article-title: Short‐ and long‐term effects of fire in subtropical cloud forests on an oceanic island publication-title: Land Degradation & Development – volume: 32 start-page: 1729 year: 2018 end-page: 1745 article-title: Anticipating fire‐mediated impacts of climate change using a demographic framework publication-title: Functional Ecology – volume: 120 start-page: 1 year: 2011 end-page: 8 article-title: Habitat microclimates drive fine‐scale variation in extreme temperatures publication-title: Oikos – volume: 54 start-page: 661 year: 2004 end-page: 676 article-title: The interaction of fire, fuels, and climate across Rocky Mountain Forests publication-title: BioScience – volume: 8 start-page: 6749 year: 2018 article-title: Disequilibrium of fire‐prone forests sets the stage for a rapid decline in conifer dominance during the 21st century publication-title: Scientific Reports – volume: 19 start-page: 2001 year: 2013 end-page: 2021 article-title: Altered dynamics of forest recovery under a changing climate publication-title: Global Change Biology – volume: 72 start-page: 227 year: 1999 end-page: 237 article-title: Effects of burning on prairie aspen grove microclimate publication-title: Agriculture, Ecosystems and Environment – volume: 110 start-page: D09106 year: 2005 article-title: Fire effects on net radiation and energy partitioning: contrasting responses of tundra and boreal forest ecosystems publication-title: Journal of Geophysical Research – volume: 89 year: 2019 article-title: Origins of abrupt change? Postfire subalpine conifer regeneration declines nonlinearly with warming and drying publication-title: Ecological Monographs – volume: 10 year: 2019 article-title: Climate will increasingly determine post‐fire tree regeneration success in low‐elevation forests, Northern Rockies, USA publication-title: Ecosphere – volume: 10 start-page: 214 year: 2019 article-title: Biophysical feedback of global forest fires on surface temperature publication-title: Nature Communications – volume: 234–235 start-page: 11 year: 2017 end-page: 21 article-title: Stand structural drivers of microclimate in mature temperate mixed forests publication-title: Agricultural and Forest Meteorology – volume: 189 start-page: 806 year: 2011 end-page: 817 article-title: Whole‐system responses of experimental plant communities to climate extremes imposed in different seasons publication-title: New Phytologist – start-page: 65 year: 2011 end-page: 87 – volume: 2 year: 2016 article-title: Spatial models reveal the microclimatic buffering capacity of old‐growth forests publication-title: Science Advances – volume: 143 start-page: 1 year: 2005 end-page: 10 article-title: Effects of fire on properties of forest soils: a review publication-title: Oecologia – volume: 72 start-page: 1 year: 2005 end-page: 16 article-title: Future area burned in Canada publication-title: Climatic Change – volume: 99 start-page: 567 year: 2018 end-page: 575 article-title: Moisture availability limits subalpine tree establishment publication-title: Ecology – volume: 7 year: 2016 article-title: Regeneration of montane forests 24 years after the 1988 Yellowstone fires: A fire‐catalyzed shift in lower treelines? publication-title: Ecosphere – volume: 27 start-page: 26 year: 2017 end-page: 36 article-title: Climate change and the eco‐hydrology of fire: Will area burned increase in a warming western USA publication-title: Ecological Applications – volume: 149 start-page: 491 year: 2009 end-page: 500 article-title: Persistent effects of fire‐induced vegetation change on energy partitioning and evapotranspiration in ponderosa pine forests publication-title: Agricultural and Forest Meteorology – volume: 340 start-page: 621 year: 2008 end-page: 628 article-title: Research frontiers in climate change: effects of extreme meteorological events on ecosystems publication-title: Comptes Rendus ‐ Geoscience – volume: 101 start-page: 1201 year: 2013 end-page: 1213 article-title: Microclimate in forests with varying leaf area index and soil moisture: potential implications for seedling establishment in a changing climate publication-title: Journal of Ecology – volume: 259 start-page: 904 year: 2010 end-page: 915 article-title: Spatial variability in microclimate in a mixed‐conifer forest before and after thinning and burning treatments publication-title: Forest Ecology and Management – year: 2013 – ident: e_1_2_6_4_1 doi: 10.1111/gcb.12194 – ident: e_1_2_6_64_1 doi: 10.1111/1365-2745.12121 – ident: e_1_2_6_35_1 doi: 10.1002/ecs2.2568 – ident: e_1_2_6_18_1 doi: 10.1111/1365-2435.13132 – ident: e_1_2_6_55_1 doi: 10.1016/S0167-8809(98)00182-0 – ident: e_1_2_6_44_1 doi: 10.1111/j.1654-1103.2002.tb02087.x – ident: e_1_2_6_43_1 doi: 10.1139/x84-161 – ident: e_1_2_6_22_1 doi: 10.1007/s10584-005-5935-y – ident: e_1_2_6_67_1 doi: 10.1111/ecog.02205 – ident: e_1_2_6_27_1 doi: 10.1139/X09-120 – ident: e_1_2_6_58_1 doi: 10.5194/bg-11-3739-2014 – ident: e_1_2_6_59_1 doi: 10.1038/s41598-018-24642-2 – ident: e_1_2_6_23_1 doi: 10.1093/forestry/cpq030 – ident: e_1_2_6_30_1 doi: 10.1016/j.agrformet.2013.06.011 – ident: e_1_2_6_21_1 doi: 10.1002/ecs2.1410 – ident: e_1_2_6_63_1 doi: 10.1073/pnas.1902841116 – ident: e_1_2_6_40_1 doi: 10.1029/2004JD005158 – ident: e_1_2_6_39_1 doi: 10.18637/jss.v082.i13 – ident: e_1_2_6_9_1 doi: 10.3996/072013-JFWM-051 – ident: e_1_2_6_24_1 doi: 10.1126/sciadv.1501392 – ident: e_1_2_6_26_1 doi: 10.1002/ecm.1340 – ident: e_1_2_6_62_1 doi: 10.1007/s10584-008-9505-y – ident: e_1_2_6_31_1 doi: 10.1002/joc.4580 – ident: e_1_2_6_45_1 doi: 10.1002/eap.1420 – ident: e_1_2_6_50_1 – ident: e_1_2_6_6_1 doi: 10.3390/fire1010017 – ident: e_1_2_6_19_1 doi: 10.1111/j.1469-8137.2010.03515.x – ident: e_1_2_6_57_1 doi: 10.1641/0006-3568(2004)054[0661:TIOFFA]2.0.CO;2 – ident: e_1_2_6_32_1 doi: 10.1073/pnas.1802316115 – ident: e_1_2_6_20_1 doi: 10.1038/s41559-019-0842-1 – ident: e_1_2_6_52_1 doi: 10.1111/1365-2435.13193 – ident: e_1_2_6_28_1 doi: 10.1111/gcb.15388 – ident: e_1_2_6_15_1 doi: 10.1016/j.foreco.2012.09.022 – ident: e_1_2_6_14_1 doi: 10.1002/ecs2.2809 – ident: e_1_2_6_37_1 doi: 10.1016/j.agrformet.2016.11.268 – ident: e_1_2_6_49_1 doi: 10.1029/2020GL089858 – ident: e_1_2_6_36_1 doi: 10.1093/treephys/16.8.665 – ident: e_1_2_6_48_1 – ident: e_1_2_6_7_1 doi: 10.1002/ldr.3237 – ident: e_1_2_6_11_1 doi: 10.1007/s00442-004-1788-8 – volume-title: Principles of Environmental Physics: plants, Animals, and the Atmosphere. Page Principles of Environmental Physics: plants, Animals, and the Atmosphere year: 2013 ident: e_1_2_6_46_1 – ident: e_1_2_6_8_1 doi: 10.1890/14-2302.1 – ident: e_1_2_6_66_1 doi: 10.1073/pnas.1110199108 – ident: e_1_2_6_33_1 doi: 10.1016/j.crte.2008.07.002 – ident: e_1_2_6_5_1 doi: 10.1002/ecy.2134 – ident: e_1_2_6_13_1 doi: 10.1093/biosci/biaa061 – ident: e_1_2_6_34_1 doi: 10.1007/978-94-007-1242-3_3 – ident: e_1_2_6_51_1 doi: 10.1016/j.foreco.2008.09.029 – ident: e_1_2_6_25_1 doi: 10.1029/2004GL020876 – ident: e_1_2_6_10_1 doi: 10.1016/j.jhydrol.2014.07.016 – ident: e_1_2_6_65_1 doi: 10.1098/rstb.2015.0178 – ident: e_1_2_6_42_1 doi: 10.1016/j.foreco.2009.11.030 – ident: e_1_2_6_53_1 doi: 10.1093/treephys/tpv045 – ident: e_1_2_6_56_1 doi: 10.1139/cjfr-2015-0033 – ident: e_1_2_6_54_1 doi: 10.1111/gcb.12023 – ident: e_1_2_6_12_1 doi: 10.1029/2004JD005299 – ident: e_1_2_6_16_1 doi: 10.1073/pnas.1815107116 – ident: e_1_2_6_38_1 doi: 10.1002/ecs2.1632 – ident: e_1_2_6_61_1 doi: 10.1111/j.1600-0706.2010.18270.x – ident: e_1_2_6_2_1 doi: 10.1002/joc.3413 – ident: e_1_2_6_17_1 doi: 10.1111/ecog.03836 – ident: e_1_2_6_3_1 doi: 10.1073/pnas.1607171113 – ident: e_1_2_6_47_1 doi: 10.1016/j.agrformet.2008.09.011 – ident: e_1_2_6_60_1 doi: 10.1111/1365-2745.12426 – ident: e_1_2_6_41_1 doi: 10.1038/s41467-018-08237-z – ident: e_1_2_6_29_1 doi: 10.1016/j.foreco.2020.118523 |
| SSID | ssj0000547843 |
| Score | 2.495029 |
| Snippet | Increasing wildfire activity in western North America has the potential to remove forest canopy cover over large areas, increasing the vulnerability of... Abstract Increasing wildfire activity in western North America has the potential to remove forest canopy cover over large areas, increasing the vulnerability... |
| SourceID | doaj proquest crossref wiley |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Animal behavior biophysical gradient Canopies conifer forest Environmental changes fire season fire severity Forest & brush fires forest canopy Forest ecosystems Forest fires juveniles Microclimate microclimatic buffering Montana mountains Rocky Mountains Seedlings Sensors surface temperature topography trees Trends Understory Vapor pressure vapor pressure deficit Vegetation Vegetation changes Water availability Water deficit wildfire Wildfires |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF5EFLyIT6xWWcWDl2iyu8lujiotHqQIKnhb9gkFTUtThf57ZzdpraB48ZKEZAjDTGbnm2TyDULnwnLtMk8T4aHSYcKQRGW5ShSkF-WpZ85GEtd7PhiIl5fyYWnUV-gJa-iBG8NdFYB4fZkxkwJQ4YBnGOwLADVpqXPvIzRKeblUTDWs3owLRudUQim5cqYml7SZJ_-VgCJP_zdwuQxRY47pb6HNFhzi60apbbTiqh203ovE0rNd1IMQth7WKNz821jjUYUBdMId8VtorDOvQwCgDn-oyQyHN6xYD0fj1hM4dKXDUryHnvu9p9u7pB2DkJiQ3WGbU8upK1mg5zKWOUdTlimdecIzb4UpoBTMlSt1xrQ2zgtjdOq14EznRNN9tFqNKneAsCq8zRV3zijLCkGUT5lmhFhLtFJeddDF3DbStBzhYVTFq2zYjYkMZpTBjB10thAdN8QYPwndBAMvBAKXdTwBHpath-VfHu6g7tw9sg2wWpLQFQvoqsg66HRxGUIjfO9QlRu9B5mIZikFPS6iW3_XVPZuH0k4OPwPlY_QBgm9L7ExsotWp5N3d4zWzMd0WE9O4qP6CQwL7E4 priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access dbid: 24P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9VAEB9qVfBi_cSnrazioZfY7EeSDZ5secWDlIIKvS37KQ9qUl7agv-9M5u8aEFB6CUJyYQddnZmf7s7-1uAdzo0LvIkC51wpKO0F4XllS0sdi82yaRiyCSun5uTE3121p5uwYfNXpiRH2KecCPPyPGaHNy64eA3aWj0g3gv0c_vwF3OZUNNWqjTeYKlJKaqnDWHxZaFbkW1YRYqxcH8943-KNP238CafyLW3OUc79xK2UfwcEKa7OPYNB7DVuyewP1lZqn--RSWGA9CwoDHxo2SA-s7hggW9WE_KEvPn68QzUZ2jaUymq5lbtVfTGZllOKOcf0ZfDtefj36VExnKhSeoAJeKxkaGVtFXF8-qBhlqbh1PImGp6B9jePKysbWceWcj0l778rkdKNcJZx8Dttd38UXwGydQmWbGL0NqtbCplI5JUQIwlmb7AL2NzVr_EQ4TudenJuRKlkYqhVDtbKAt7Poxciy8TehQzLPLEDE2PlFv_5uJj8zNQ6QUsuVLxHXNgh_Fd5rxMBl66pESu1ujGsmbx2MoBRbhGo1X8Cb-TP6GS2e2C72VySTobGUqMd-NvW_NTXLoy-CHl7-v-greCAoXSbnUu7C9uX6Ku7BPX99uRrWr3PT_gWmRPtF priority: 102 providerName: Wiley-Blackwell |
| Title | Wildfire impacts on forest microclimate vary with biophysical context |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fecs2.3467 https://www.proquest.com/docview/2533063961 https://www.proquest.com/docview/2561533337 https://doaj.org/article/6597f914c077470994774691609b5ffa |
| Volume | 12 |
| WOSCitedRecordID | wos000655473800030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2150-8925 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000547843 issn: 2150-8925 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2150-8925 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000547843 issn: 2150-8925 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2150-8925 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000547843 issn: 2150-8925 databaseCode: PCBAR dateStart: 20100701 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2150-8925 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000547843 issn: 2150-8925 databaseCode: BENPR dateStart: 20100701 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2150-8925 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000547843 issn: 2150-8925 databaseCode: PIMPY dateStart: 20100701 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2150-8925 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000547843 issn: 2150-8925 databaseCode: WIN dateStart: 20100101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2150-8925 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000547843 issn: 2150-8925 databaseCode: 24P dateStart: 20100101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoCxIX3hVbysogDr2EJrbzOiFapaISXUU8RDlZfqKVSrLdtJV64bcz43i3IAEXLk7iWPIoY48_jyffEPKqsqV2medJ5WGnIyrDEpXlKlGwvCjPvXA2kLi-L2ez6vS0bqPDbYhhlSubGAy17Q36yPcZhkHCclpkbxbnCWaNwtPVmEJjg2whUxmM862DZtZ-WHtZUqSrEnxFKZSyfWcG9pqPeeVvFqLA1_8byPwVqoa15uj-_0r5gNyLKJO-HYfFQ3LLdY_InSYwVF8_Jg3YAuvB2NHxJ8mB9h0F9Ar90O8YoWfO5oBkHb1Sy2uKrlqq5_0iqpRieDvY9Cfk81Hz6fBdEvMpJAZhApQ5tyV3tUCeL2OFczwVmdKZZ2XmbWUK2FPmytU6E1ob5ytjdOp1VQqdM823yWbXd-4poarwNlelc0ZZUVRM-VRowZi1TCvl1YTsrT6uNJFsHHNenMmRJplJ1INEPUzIy3XTxciw8adGB6ihdQMkxQ4V_fKbjHNMFrA58nUmTAqYtgToK-BaAP5Na517FGp3pTQZZ-ogbzQ2IS_Wr2GO4cGJ6lx_iW0CLOYc5NgL4-Lvksrm8CPDm51_9_aM3GUYHhNiJ3fJ5sXy0j0nt83VxXxYTskGE-00juZpcBRAefKjgbr2-KT9Ck9fjmc_AcB7A04 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFFQuvBGBAgsCqRdTe71-HRCCkqpR0ygSRWpPyz6rSMUOSVuUP8VvZMaPFCTg1gMX27JX9tr7eeab9fgbgFe5zbSLfBzkHiMdkRseqChRgUL3onzshbO1iOsoG4_zo6NisgY_un9hKK2ys4m1obaVoTnybU5pkOhO0-jd7FtAVaPo62pXQqOBxb5bfseQbfF2-BHH9zXnu4PDnb2grSoQGHKWuExim8WuEKR2ZaxwDkP6SOnI8yzyNjcpRlaJcoWOhNbG-dwYHXqdZ0InXMd43muwLgjsPVifDA8mx6tZnZDksUTcSRiFfNuZBX8TN3XsLx1fXR_gN1L7KzWufdvu7f_tqdyBWy2LZu8b2N-FNVfegxuDWoF7eR8GaOusR2POmp9AF6wqGbJzvC_2lTIQzekUmbpjF2q-ZDQVzfS0mrWQZZS-jz7rAXy-knt4CL2yKt0jYCr1NlGZc0ZZkeZc-VBowbm1XCvlVR-2usGUphVTp5oep7KRgeaSxl3SuPfh5arprFEQ-VOjD4SIVQMS_a53VPMT2doQmWLw54tImBA5e4bUXuA6RX4fFjrx1KnNDiSytUQLeYmQPrxYHUYbQh-GVOmqc2pT0_44xn5s1Tj8e0_lYOcTp43H_77ac9jYOzwYydFwvP8EbnJKBarzRDehdzY_d0_hurk4my7mz9p3iMGXqwboT2DTW9M |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCouvBGBAgsCqRcTe71-HRCCNhFRSxQJkNrTss8qUolD3Bblr_HrmPEjBQm49cDFtuyVvWt_nvlmPf4G4EVuM-0iHwe5x0hH5IYHKkpUoNC9KB974Wwt4nqQTSb54WEx3YAf3b8wlFbZ2cTaUNvS0Bz5gFMaJLrTNBr4Ni1iujd6s_gWUAUp-tLaldNoILLvVt8xfKtej_fwWb_kfDT8tPs-aCsMBIYcJy6T2GaxKwQpXxkrnMPwPlI68jyLvM1NilFWolyhI6G1cT43Rode55nQCdcxnvcKbCIlF7wHm9Pxh-nReoYnJKksEXdyRiEfOFPxV3FT0_7CCda1An4juL_S5NrPjW7-z3foFtxo2TV727wOt2HDze_AtWGtzL26C0O0gdajkWfNz6EVK-cMWTuOkX2lzERzMkMG79i5Wq4YTVEzPSsXLZQZpfXjcO_B50sZw33ozcu5ewBMpd4mKnPOKCvSnCsfCi04t5Zrpbzqw073YKVpRdap1seJbOShuSQMSMJAH56vmy4aZZE_NXpH6Fg3IDHweke5PJatbZEpBoW-iIQJkctnSPkFrlPk_WGhE0-d2u4AI1sLVckLtPTh2fow2hb6YKTmrjyjNnU4EMfYj50ak3_vqRzufuS08fDfV3sKW4hKeTCe7D-C65wyhOr00W3onS7P3GO4as5PZ9XySfs6Mfhy2fj8CTOOZJM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wildfire+impacts+on+forest+microclimate+vary+with+biophysical+context&rft.jtitle=Ecosphere+%28Washington%2C+D.C%29&rft.au=Wolf%2C+Kyra+D.&rft.au=Higuera%2C+Philip+E.&rft.au=Davis%2C+Kimberley+T.&rft.au=Dobrowski%2C+Solomon+Z.&rft.date=2021-05-01&rft.issn=2150-8925&rft.eissn=2150-8925&rft.volume=12&rft.issue=5&rft_id=info:doi/10.1002%2Fecs2.3467&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ecs2_3467 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2150-8925&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2150-8925&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2150-8925&client=summon |