Wildfire impacts on forest microclimate vary with biophysical context

Increasing wildfire activity in western North America has the potential to remove forest canopy cover over large areas, increasing the vulnerability of understory plants and juvenile trees to microclimatic extremes. To understand the impacts of wildfire on forest microclimatic buffering, we monitore...

Full description

Saved in:
Bibliographic Details
Published in:Ecosphere (Washington, D.C) Vol. 12; no. 5
Main Authors: Wolf, Kyra D., Higuera, Philip E., Davis, Kimberley T., Dobrowski, Solomon Z.
Format: Journal Article
Language:English
Published: Washington John Wiley & Sons, Inc 01.05.2021
Wiley
Subjects:
ISSN:2150-8925, 2150-8925
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Increasing wildfire activity in western North America has the potential to remove forest canopy cover over large areas, increasing the vulnerability of understory plants and juvenile trees to microclimatic extremes. To understand the impacts of wildfire on forest microclimatic buffering, we monitored daily temperature and vapor pressure deficit (VPD) in 33 plots over the first two growing seasons following two wildfires from 2017. The Lolo Peak and Sunrise fires occurred during a regionally extensive fire season, burning mixed‐conifer and subalpine forests across complex mountainous topography in western Montana. Sensors were deployed from June to September in 2018 and 2019 in sites stratified by aspect, elevation, and fire severity (unburned, moderate, high) to capture a range of forest types, biophysical contexts, and fire effects. Loss of canopy and understory vegetation had marked effects on microclimate: On average, sites burned at high severity had 3.7°C higher daily maximum temperatures and 0.81 kPa higher daily maximum VPD relative to paired unburned sites. Differences between burned and unburned sites were most pronounced when ambient temperatures were high, across diurnal and seasonal time scales. Differences were also more pronounced at sites with less canopy cover, more bare ground postfire, and greater long‐term water availability (i.e., low climatic water deficit). Our results reveal fire‐caused changes in microclimate extremes that are biologically meaningful for the postfire establishment of tree seedlings and understory vegetation. These effects depend strongly on biophysical context, with cool‐wet forests more vulnerable to fire‐caused changes in microclimate compared with warm‐dry settings. Our results further highlight the functional importance of standing dead trees for moderating surface temperature in postfire environments. Anticipating forest ecosystem responses to increased warming and wildfire activity, and the potential for fire to catalyze vegetation changes, thus requires considering the substantial impacts of fire on microclimate.
AbstractList Increasing wildfire activity in western North America has the potential to remove forest canopy cover over large areas, increasing the vulnerability of understory plants and juvenile trees to microclimatic extremes. To understand the impacts of wildfire on forest microclimatic buffering, we monitored daily temperature and vapor pressure deficit (VPD) in 33 plots over the first two growing seasons following two wildfires from 2017. The Lolo Peak and Sunrise fires occurred during a regionally extensive fire season, burning mixed‐conifer and subalpine forests across complex mountainous topography in western Montana. Sensors were deployed from June to September in 2018 and 2019 in sites stratified by aspect, elevation, and fire severity (unburned, moderate, high) to capture a range of forest types, biophysical contexts, and fire effects. Loss of canopy and understory vegetation had marked effects on microclimate: On average, sites burned at high severity had 3.7°C higher daily maximum temperatures and 0.81 kPa higher daily maximum VPD relative to paired unburned sites. Differences between burned and unburned sites were most pronounced when ambient temperatures were high, across diurnal and seasonal time scales. Differences were also more pronounced at sites with less canopy cover, more bare ground postfire, and greater long‐term water availability (i.e., low climatic water deficit). Our results reveal fire‐caused changes in microclimate extremes that are biologically meaningful for the postfire establishment of tree seedlings and understory vegetation. These effects depend strongly on biophysical context, with cool‐wet forests more vulnerable to fire‐caused changes in microclimate compared with warm‐dry settings. Our results further highlight the functional importance of standing dead trees for moderating surface temperature in postfire environments. Anticipating forest ecosystem responses to increased warming and wildfire activity, and the potential for fire to catalyze vegetation changes, thus requires considering the substantial impacts of fire on microclimate.
Abstract Increasing wildfire activity in western North America has the potential to remove forest canopy cover over large areas, increasing the vulnerability of understory plants and juvenile trees to microclimatic extremes. To understand the impacts of wildfire on forest microclimatic buffering, we monitored daily temperature and vapor pressure deficit (VPD) in 33 plots over the first two growing seasons following two wildfires from 2017. The Lolo Peak and Sunrise fires occurred during a regionally extensive fire season, burning mixed‐conifer and subalpine forests across complex mountainous topography in western Montana. Sensors were deployed from June to September in 2018 and 2019 in sites stratified by aspect, elevation, and fire severity (unburned, moderate, high) to capture a range of forest types, biophysical contexts, and fire effects. Loss of canopy and understory vegetation had marked effects on microclimate: On average, sites burned at high severity had 3.7°C higher daily maximum temperatures and 0.81 kPa higher daily maximum VPD relative to paired unburned sites. Differences between burned and unburned sites were most pronounced when ambient temperatures were high, across diurnal and seasonal time scales. Differences were also more pronounced at sites with less canopy cover, more bare ground postfire, and greater long‐term water availability (i.e., low climatic water deficit). Our results reveal fire‐caused changes in microclimate extremes that are biologically meaningful for the postfire establishment of tree seedlings and understory vegetation. These effects depend strongly on biophysical context, with cool‐wet forests more vulnerable to fire‐caused changes in microclimate compared with warm‐dry settings. Our results further highlight the functional importance of standing dead trees for moderating surface temperature in postfire environments. Anticipating forest ecosystem responses to increased warming and wildfire activity, and the potential for fire to catalyze vegetation changes, thus requires considering the substantial impacts of fire on microclimate.
Increasing wildfire activity in western North America has the potential to remove forest canopy cover over large areas, increasing the vulnerability of understory plants and juvenile trees to microclimatic extremes. To understand the impacts of wildfire on forest microclimatic buffering, we monitored daily temperature and vapor pressure deficit (VPD) in 33 plots over the first two growing seasons following two wildfires from 2017. The Lolo Peak and Sunrise fires occurred during a regionally extensive fire season, burning mixed‐conifer and subalpine forests across complex mountainous topography in western Montana. Sensors were deployed from June to September in 2018 and 2019 in sites stratified by aspect, elevation, and fire severity (unburned, moderate, high) to capture a range of forest types, biophysical contexts, and fire effects. Loss of canopy and understory vegetation had marked effects on microclimate: On average, sites burned at high severity had 3.7°C higher daily maximum temperatures and 0.81 kPa higher daily maximum VPD relative to paired unburned sites. Differences between burned and unburned sites were most pronounced when ambient temperatures were high, across diurnal and seasonal time scales. Differences were also more pronounced at sites with less canopy cover, more bare ground postfire, and greater long‐term water availability (i.e., low climatic water deficit). Our results reveal fire‐caused changes in microclimate extremes that are biologically meaningful for the postfire establishment of tree seedlings and understory vegetation. These effects depend strongly on biophysical context, with cool‐wet forests more vulnerable to fire‐caused changes in microclimate compared with warm‐dry settings. Our results further highlight the functional importance of standing dead trees for moderating surface temperature in postfire environments. Anticipating forest ecosystem responses to increased warming and wildfire activity, and the potential for fire to catalyze vegetation changes, thus requires considering the substantial impacts of fire on microclimate.
Author Davis, Kimberley T.
Dobrowski, Solomon Z.
Wolf, Kyra D.
Higuera, Philip E.
Author_xml – sequence: 1
  givenname: Kyra D.
  orcidid: 0000-0003-4584-0348
  surname: Wolf
  fullname: Wolf, Kyra D.
  email: Kyra.Wolf@umontana.edu
  organization: University of Montana
– sequence: 2
  givenname: Philip E.
  orcidid: 0000-0001-5396-9956
  surname: Higuera
  fullname: Higuera, Philip E.
  organization: University of Montana
– sequence: 3
  givenname: Kimberley T.
  orcidid: 0000-0001-9727-374X
  surname: Davis
  fullname: Davis, Kimberley T.
  organization: University of Montana
– sequence: 4
  givenname: Solomon Z.
  orcidid: 0000-0003-2561-3850
  surname: Dobrowski
  fullname: Dobrowski, Solomon Z.
  organization: University of Montana
BookMark eNp1kUFvGyEQhVHkSEmTHPIPVuqlPdiBBZblWFluGylSD02UIwJ2aLDw4gKu439fHCdSZLVzYBD65ok37wOajHEEhK4JnhGM2xuwuZ1R1okTdN4Sjqe9bPnk3f0MXeW8xLU4Ez2j52jx6MPgfILGr9baltzEsXExQS7NytsUbfArXaD5o9Ou2fry1Bgf10-77K0OjY1jgedyiU6dDhmuXvsFevi6uJ9_n979-HY7_3I3tYwSUU9OB0FBMkYxtwMDoJgRbYhrBXFDbzspeq5BGsKMseB6aw12phfM8NbQC3R70B2iXqp1ql9LOxW1Vy8PMf1SOhVvA6iOS-EkYRYLwQSWktXeSdJhabhzump9OmitU_y9qX7VymcLIegR4iarlneE01qioh-P0GXcpLE6rRSluKOyI5W6OVB1azkncMr6oouvK0raB0Ww2qek9impfUp14vPRxJulf7Gv6lsfYPd_UC3mP9uXib-o4qGf
CitedBy_id crossref_primary_10_1111_geb_13634
crossref_primary_10_3390_w16182562
crossref_primary_10_3390_s25103097
crossref_primary_10_1016_j_foreco_2024_121916
crossref_primary_10_1111_gcb_17196
crossref_primary_10_3390_f13091512
crossref_primary_10_1007_s11258_022_01248_3
crossref_primary_10_1139_cjfr_2021_0221
crossref_primary_10_1016_j_foreco_2022_120620
crossref_primary_10_1016_j_agrformet_2022_109067
crossref_primary_10_1073_pnas_2208120120
crossref_primary_10_1139_cjz_2023_0100
crossref_primary_10_1111_nph_19009
crossref_primary_10_1016_j_foreco_2023_121232
crossref_primary_10_1186_s42408_023_00181_8
crossref_primary_10_1016_j_agrformet_2023_109828
crossref_primary_10_1016_j_foreco_2025_122683
crossref_primary_10_1016_j_isprsjprs_2024_02_006
crossref_primary_10_1016_j_foreco_2024_122388
crossref_primary_10_1007_s00267_023_01843_8
crossref_primary_10_1002_jez_2687
crossref_primary_10_1016_j_agrformet_2022_109289
crossref_primary_10_1002_ece3_72165
crossref_primary_10_1029_2024EF005189
crossref_primary_10_1093_treephys_tpad136
crossref_primary_10_3389_ffgc_2021_731267
crossref_primary_10_1016_j_scitotenv_2023_165477
crossref_primary_10_1002_ecs2_4789
crossref_primary_10_1016_j_heliyon_2023_e16941
crossref_primary_10_1002_ecs2_70083
crossref_primary_10_1016_j_ecolind_2024_111899
crossref_primary_10_1038_s43247_023_00954_8
crossref_primary_10_3390_fire8030092
crossref_primary_10_1016_j_foreco_2024_122358
crossref_primary_10_1016_j_agrformet_2021_108741
crossref_primary_10_3390_fire7040125
crossref_primary_10_1007_s10021_024_00947_4
crossref_primary_10_1186_s42408_022_00153_4
crossref_primary_10_1002_ecs2_70009
crossref_primary_10_1016_j_foreco_2022_120129
crossref_primary_10_1111_gcb_70052
crossref_primary_10_1016_j_foreco_2022_120524
crossref_primary_10_1016_j_foreco_2022_120487
crossref_primary_10_1111_gcb_16764
crossref_primary_10_1002_ecs2_4178
crossref_primary_10_1016_j_foreco_2024_122321
crossref_primary_10_1016_j_foreco_2023_121190
crossref_primary_10_3390_f13060908
crossref_primary_10_1016_j_foreco_2024_122326
crossref_primary_10_1038_s41598_025_06814_z
crossref_primary_10_1186_s42408_024_00285_9
crossref_primary_10_1016_j_foreco_2024_121848
crossref_primary_10_1038_s41597_025_04546_3
crossref_primary_10_1016_j_agrformet_2022_109077
crossref_primary_10_1016_j_ecolind_2025_113076
crossref_primary_10_1111_een_13418
crossref_primary_10_1007_s10980_025_02054_8
crossref_primary_10_1093_biosci_biab139
Cites_doi 10.1111/gcb.12194
10.1111/1365-2745.12121
10.1002/ecs2.2568
10.1111/1365-2435.13132
10.1016/S0167-8809(98)00182-0
10.1111/j.1654-1103.2002.tb02087.x
10.1139/x84-161
10.1007/s10584-005-5935-y
10.1111/ecog.02205
10.1139/X09-120
10.5194/bg-11-3739-2014
10.1038/s41598-018-24642-2
10.1093/forestry/cpq030
10.1016/j.agrformet.2013.06.011
10.1002/ecs2.1410
10.1073/pnas.1902841116
10.1029/2004JD005158
10.18637/jss.v082.i13
10.3996/072013-JFWM-051
10.1126/sciadv.1501392
10.1002/ecm.1340
10.1007/s10584-008-9505-y
10.1002/joc.4580
10.1002/eap.1420
10.3390/fire1010017
10.1111/j.1469-8137.2010.03515.x
10.1641/0006-3568(2004)054[0661:TIOFFA]2.0.CO;2
10.1073/pnas.1802316115
10.1038/s41559-019-0842-1
10.1111/1365-2435.13193
10.1111/gcb.15388
10.1016/j.foreco.2012.09.022
10.1002/ecs2.2809
10.1016/j.agrformet.2016.11.268
10.1029/2020GL089858
10.1093/treephys/16.8.665
10.1002/ldr.3237
10.1007/s00442-004-1788-8
10.1890/14-2302.1
10.1073/pnas.1110199108
10.1016/j.crte.2008.07.002
10.1002/ecy.2134
10.1093/biosci/biaa061
10.1007/978-94-007-1242-3_3
10.1016/j.foreco.2008.09.029
10.1029/2004GL020876
10.1016/j.jhydrol.2014.07.016
10.1098/rstb.2015.0178
10.1016/j.foreco.2009.11.030
10.1093/treephys/tpv045
10.1139/cjfr-2015-0033
10.1111/gcb.12023
10.1029/2004JD005299
10.1073/pnas.1815107116
10.1002/ecs2.1632
10.1111/j.1600-0706.2010.18270.x
10.1002/joc.3413
10.1111/ecog.03836
10.1073/pnas.1607171113
10.1016/j.agrformet.2008.09.011
10.1111/1365-2745.12426
10.1038/s41467-018-08237-z
10.1016/j.foreco.2020.118523
ContentType Journal Article
Copyright 2021 The Authors.
2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors.
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
HCIFZ
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
DOA
DOI 10.1002/ecs2.3467
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
EISSN 2150-8925
EndPage n/a
ExternalDocumentID oai_doaj_org_article_6597f914c077470994774691609b5ffa
10_1002_ecs2_3467
ECS23467
Genre article
GeographicLocations Montana
GeographicLocations_xml – name: Montana
GrantInformation_xml – fundername: Joint Fire Science Program, through the Graduate Research Innovation program award
  funderid: 18‐1‐01‐53; 16‐1‐01‐15; 16–3‐01–24
GroupedDBID ..I
0R~
1OC
24P
5VS
8FE
8FH
AAHBH
AAHHS
ACCFJ
ACCMX
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AEUYN
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
E3Z
EBS
ECGQY
EJD
FRP
GROUPED_DOAJ
HCIFZ
IAO
IEP
ITC
KQ8
LK5
M7R
M~E
OK1
P2P
PCBAR
PIMPY
PROAC
RSZ
WIN
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
PHGZM
PHGZT
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c4317-c453d73e944305cd4ee3041ab1f271fd8c69785ae9b14bbcef8ccb0fb874b52b3
IEDL.DBID BENPR
ISICitedReferencesCount 68
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000655473800030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2150-8925
IngestDate Tue Oct 14 19:08:47 EDT 2025
Fri Sep 05 17:21:16 EDT 2025
Sun Nov 09 07:16:41 EST 2025
Tue Nov 18 20:55:51 EST 2025
Sat Nov 29 01:44:59 EST 2025
Wed Jan 22 16:30:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4317-c453d73e944305cd4ee3041ab1f271fd8c69785ae9b14bbcef8ccb0fb874b52b3
Notes Corresponding Editor: Carrie R. Levine.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5396-9956
0000-0001-9727-374X
0000-0003-4584-0348
0000-0003-2561-3850
OpenAccessLink https://www.proquest.com/docview/2533063961?pq-origsite=%requestingapplication%
PQID 2533063961
PQPubID 4368365
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_6597f914c077470994774691609b5ffa
proquest_miscellaneous_2561533337
proquest_journals_2533063961
crossref_citationtrail_10_1002_ecs2_3467
crossref_primary_10_1002_ecs2_3467
wiley_primary_10_1002_ecs2_3467_ECS23467
PublicationCentury 2000
PublicationDate May 2021
2021-05-00
20210501
2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: May 2021
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Ecosphere (Washington, D.C)
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2015; 35
2017; 40
2021; 27
2017; 82
2019a; 116
2019; 10
2015; 103
2002; 13
2013; 287
2008; 340
2016; 36
2013; 19
2015; 45
2004; 31
2018; 8
2014; 5
2017; 234–235
2005; 143
1984; 14
2018; 1
2009; 93
2016; 113
2019; 116
2020; 47
2005; 72
2018; 32
2014; 11
2011; 120
2014; 519
2019; 3
2005; 110
2019; 30
2011
2017; 27
2015; 96
2013; 101
2019b; 42
2013; 180
1996; 16
2009; 257
2010; 83
2004; 54
2016; 7
2011; 108
2016; 2
2013; 33
2010; 259
2020; 70
2019; 89
2018; 115
2020; 478
2019
2015
2013
1999; 72
2018; 99
2011; 189
2009; 149
2016; 371
2009; 39
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
Monteith J. (e_1_2_6_46_1) 2013
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
References_xml – volume: 33
  start-page: 121
  year: 2013
  end-page: 131
  article-title: Development of gridded surface meteorological data for ecological applications and modelling
  publication-title: International Journal of Climatology
– volume: 13
  start-page: 603
  year: 2002
  end-page: 606
  article-title: Equations for potential annual direct incident radiation and heat load
  publication-title: Journal of Vegetation Science
– volume: 42
  start-page: 1
  year: 2019b
  end-page: 11
  article-title: Microclimatic buffering in forests of the future: the role of local water balance
  publication-title: Ecography
– volume: 32
  start-page: 2298
  year: 2018
  end-page: 2309
  article-title: Fire increases drought vulnerability of juveniles by altering forest microclimate and nitrogen availability
  publication-title: Functional Ecology
– volume: 257
  start-page: 435
  year: 2009
  end-page: 442
  article-title: Canopy microclimate response to pattern and density of thinning in a Sierra Nevada forest
  publication-title: Forest Ecology and Management
– volume: 287
  start-page: 103
  year: 2013
  end-page: 112
  article-title: Post‐fire regeneration across a fire severity gradient in the southern Cascades
  publication-title: Forest Ecology and Management
– volume: 116
  start-page: 11319
  year: 2019
  end-page: 11328
  article-title: Short‐interval severe fire erodes the resilience of subalpine lodgepole pine forests
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 45
  start-page: 1607
  year: 2015
  end-page: 1616
  article-title: A field experiment informs expected patterns of conifer regeneration after disturbance under changing climate conditions
  publication-title: Canadian Journal of Forest Research
– volume: 103
  start-page: 1253
  year: 2015
  end-page: 1263
  article-title: Forest disturbance accelerates thermophilization of understory plant communities
  publication-title: Journal of Ecology
– volume: 519
  start-page: 490
  year: 2014
  end-page: 502
  article-title: Soil moisture variation and dynamics across a wildfire burn boundary in a loblolly pine ( ) forest
  publication-title: Journal of Hydrology
– volume: 19
  start-page: 75
  year: 2013
  end-page: 89
  article-title: A plant’s perspective of extremes: terrestrial plant responses to changing climatic variability
  publication-title: Global Change Biology
– volume: 7
  year: 2016
  article-title: Topographic and fire weather controls of fire refugia in forested ecosystems of northwestern North America
  publication-title: Ecosphere
– volume: 93
  start-page: 517
  year: 2009
  end-page: 525
  article-title: Recovery of surface albedo and plant cover after wildfire in a forest in interior Alaska
  publication-title: Climatic Change
– volume: 113
  start-page: 11770
  year: 2016
  end-page: 11775
  article-title: Impact of anthropogenic climate change on wildfire across western US forests
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 70
  start-page: 659
  year: 2020
  end-page: 673
  article-title: Wildfire‐driven forest conversion in western North American landscapes
  publication-title: BioScience
– volume: 16
  start-page: 665
  year: 1996
  end-page: 672
  article-title: High temperature and drought stress effects on survival of Pinus ponderosa seedlings
  publication-title: Tree Physiology
– volume: 47
  year: 2020
  article-title: Warmer and drier fire seasons contribute to increases in area burned at high severity in western US Forests From 1985 to 2017
  publication-title: Geophysical Research Letters
– volume: 31
  start-page: L18211
  year: 2004
  article-title: Detecting the effect of climate change on Canadian forest fires
  publication-title: Geophysical Research Letters
– volume: 5
  start-page: 174
  year: 2014
  end-page: 182
  article-title: Wildfire and Postfire restoration action effects on microclimate and seedling pine tree survivorship
  publication-title: Journal of Fish and Wildlife Management
– volume: 11
  start-page: 3739
  year: 2014
  end-page: 3755
  article-title: Multi‐scale influence of vapor pressure deficit on fire ignition and spread in boreal forest ecosystems
  publication-title: Biogeosciences
– volume: 478
  start-page: 118523
  year: 2020
  article-title: Topographic position amplifies consequences of short‐interval stand‐replacing fires on postfire tree establishment in subalpine conifer forests
  publication-title: Forest Ecology and Management
– volume: 39
  start-page: 2059
  year: 2009
  end-page: 2064
  article-title: Early establishment of conifer recruits in the northern Rocky Mountains as a function of postfire duff depth
  publication-title: Canadian Journal of Forest Research
– volume: 116
  start-page: 6193
  year: 2019a
  end-page: 6198
  article-title: Wildfires and climate change push low‐elevation forests across a critical climate threshold for tree regeneration
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 115
  start-page: E8349
  year: 2018
  end-page: E8357
  article-title: Decreasing fire season precipitation increased recent western US forest wildfire activity
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 40
  start-page: 606
  year: 2017
  end-page: 617
  article-title: Climatic thresholds shape northern high‐latitude fire regimes and imply vulnerability to future climate change
  publication-title: Ecography
– volume: 82
  start-page: 1
  year: 2017
  end-page: 26
  article-title: lmerTest package: tests in linear mixed effects models
  publication-title: Journal of Statistical Software
– year: 2019
– volume: 3
  start-page: 744
  year: 2019
  end-page: 749
  article-title: Global buffering of temperatures under forest canopies
  publication-title: Nature Ecology & Evolution
– volume: 83
  start-page: 477
  year: 2010
  end-page: 482
  article-title: Effects of post‐fire logging on forest surface air temperatures in the Siskiyou Mountains, Oregon, USA
  publication-title: Forestry
– year: 2015
– volume: 371
  start-page: 20150178
  year: 2016
  article-title: Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring
  publication-title: Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences
– volume: 10
  year: 2019
  article-title: Contributions of fire refugia to resilient ponderosa pine and dry mixed‐conifer forest landscapes
  publication-title: Ecosphere
– volume: 180
  start-page: 281
  year: 2013
  end-page: 286
  article-title: Design and evaluation of an inexpensive radiation shield for monitoring surface air temperatures
  publication-title: Agricultural and Forest Meteorology
– volume: 14
  start-page: 905
  year: 1984
  end-page: 908
  article-title: Conifers and broadleaf species: Stomatal sensitivity differs in western Oregon
  publication-title: Canadian Journal of Forest Research
– volume: 27
  start-page: 1
  year: 2021
  end-page: 2
  article-title: Record‐setting climate enabled the extraordinary 2020 fire season in the western United States
  publication-title: Global Change Biology
– volume: 36
  start-page: 3620
  year: 2016
  end-page: 3632
  article-title: Development of high‐resolution (250 m) historical daily gridded air temperature data using reanalysis and distributed sensor networks for the US Northern Rocky Mountains
  publication-title: International Journal of Climatology
– volume: 1
  year: 2018
  end-page: 17
  article-title: Switching on the big burn of 2017
  publication-title: Fire
– volume: 108
  start-page: 13165
  year: 2011
  end-page: 13170
  article-title: Continued warming could transform Greater Yellowstone fire regimes by mid‐21st century
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 96
  start-page: 3023
  year: 2015
  end-page: 3032
  article-title: Disentangling legacy effects from environmental filters of postfire assembly of boreal tree assemblages
  publication-title: Ecology
– volume: 110
  start-page: D13101
  year: 2005
  article-title: Changes in the surface energy budget after fire in boreal ecosystems of interior Alaska: an annual perspective
  publication-title: Journal of Geophysical Research
– volume: 35
  start-page: 771
  year: 2015
  end-page: 782
  article-title: Linking carbon and water relations to drought‐induced mortality in seedlings
  publication-title: Tree Physiology
– volume: 30
  start-page: 448
  year: 2019
  end-page: 458
  article-title: Short‐ and long‐term effects of fire in subtropical cloud forests on an oceanic island
  publication-title: Land Degradation & Development
– volume: 32
  start-page: 1729
  year: 2018
  end-page: 1745
  article-title: Anticipating fire‐mediated impacts of climate change using a demographic framework
  publication-title: Functional Ecology
– volume: 120
  start-page: 1
  year: 2011
  end-page: 8
  article-title: Habitat microclimates drive fine‐scale variation in extreme temperatures
  publication-title: Oikos
– volume: 54
  start-page: 661
  year: 2004
  end-page: 676
  article-title: The interaction of fire, fuels, and climate across Rocky Mountain Forests
  publication-title: BioScience
– volume: 8
  start-page: 6749
  year: 2018
  article-title: Disequilibrium of fire‐prone forests sets the stage for a rapid decline in conifer dominance during the 21st century
  publication-title: Scientific Reports
– volume: 19
  start-page: 2001
  year: 2013
  end-page: 2021
  article-title: Altered dynamics of forest recovery under a changing climate
  publication-title: Global Change Biology
– volume: 72
  start-page: 227
  year: 1999
  end-page: 237
  article-title: Effects of burning on prairie aspen grove microclimate
  publication-title: Agriculture, Ecosystems and Environment
– volume: 110
  start-page: D09106
  year: 2005
  article-title: Fire effects on net radiation and energy partitioning: contrasting responses of tundra and boreal forest ecosystems
  publication-title: Journal of Geophysical Research
– volume: 89
  year: 2019
  article-title: Origins of abrupt change? Postfire subalpine conifer regeneration declines nonlinearly with warming and drying
  publication-title: Ecological Monographs
– volume: 10
  year: 2019
  article-title: Climate will increasingly determine post‐fire tree regeneration success in low‐elevation forests, Northern Rockies, USA
  publication-title: Ecosphere
– volume: 10
  start-page: 214
  year: 2019
  article-title: Biophysical feedback of global forest fires on surface temperature
  publication-title: Nature Communications
– volume: 234–235
  start-page: 11
  year: 2017
  end-page: 21
  article-title: Stand structural drivers of microclimate in mature temperate mixed forests
  publication-title: Agricultural and Forest Meteorology
– volume: 189
  start-page: 806
  year: 2011
  end-page: 817
  article-title: Whole‐system responses of experimental plant communities to climate extremes imposed in different seasons
  publication-title: New Phytologist
– start-page: 65
  year: 2011
  end-page: 87
– volume: 2
  year: 2016
  article-title: Spatial models reveal the microclimatic buffering capacity of old‐growth forests
  publication-title: Science Advances
– volume: 143
  start-page: 1
  year: 2005
  end-page: 10
  article-title: Effects of fire on properties of forest soils: a review
  publication-title: Oecologia
– volume: 72
  start-page: 1
  year: 2005
  end-page: 16
  article-title: Future area burned in Canada
  publication-title: Climatic Change
– volume: 99
  start-page: 567
  year: 2018
  end-page: 575
  article-title: Moisture availability limits subalpine tree establishment
  publication-title: Ecology
– volume: 7
  year: 2016
  article-title: Regeneration of montane forests 24 years after the 1988 Yellowstone fires: A fire‐catalyzed shift in lower treelines?
  publication-title: Ecosphere
– volume: 27
  start-page: 26
  year: 2017
  end-page: 36
  article-title: Climate change and the eco‐hydrology of fire: Will area burned increase in a warming western USA
  publication-title: Ecological Applications
– volume: 149
  start-page: 491
  year: 2009
  end-page: 500
  article-title: Persistent effects of fire‐induced vegetation change on energy partitioning and evapotranspiration in ponderosa pine forests
  publication-title: Agricultural and Forest Meteorology
– volume: 340
  start-page: 621
  year: 2008
  end-page: 628
  article-title: Research frontiers in climate change: effects of extreme meteorological events on ecosystems
  publication-title: Comptes Rendus ‐ Geoscience
– volume: 101
  start-page: 1201
  year: 2013
  end-page: 1213
  article-title: Microclimate in forests with varying leaf area index and soil moisture: potential implications for seedling establishment in a changing climate
  publication-title: Journal of Ecology
– volume: 259
  start-page: 904
  year: 2010
  end-page: 915
  article-title: Spatial variability in microclimate in a mixed‐conifer forest before and after thinning and burning treatments
  publication-title: Forest Ecology and Management
– year: 2013
– ident: e_1_2_6_4_1
  doi: 10.1111/gcb.12194
– ident: e_1_2_6_64_1
  doi: 10.1111/1365-2745.12121
– ident: e_1_2_6_35_1
  doi: 10.1002/ecs2.2568
– ident: e_1_2_6_18_1
  doi: 10.1111/1365-2435.13132
– ident: e_1_2_6_55_1
  doi: 10.1016/S0167-8809(98)00182-0
– ident: e_1_2_6_44_1
  doi: 10.1111/j.1654-1103.2002.tb02087.x
– ident: e_1_2_6_43_1
  doi: 10.1139/x84-161
– ident: e_1_2_6_22_1
  doi: 10.1007/s10584-005-5935-y
– ident: e_1_2_6_67_1
  doi: 10.1111/ecog.02205
– ident: e_1_2_6_27_1
  doi: 10.1139/X09-120
– ident: e_1_2_6_58_1
  doi: 10.5194/bg-11-3739-2014
– ident: e_1_2_6_59_1
  doi: 10.1038/s41598-018-24642-2
– ident: e_1_2_6_23_1
  doi: 10.1093/forestry/cpq030
– ident: e_1_2_6_30_1
  doi: 10.1016/j.agrformet.2013.06.011
– ident: e_1_2_6_21_1
  doi: 10.1002/ecs2.1410
– ident: e_1_2_6_63_1
  doi: 10.1073/pnas.1902841116
– ident: e_1_2_6_40_1
  doi: 10.1029/2004JD005158
– ident: e_1_2_6_39_1
  doi: 10.18637/jss.v082.i13
– ident: e_1_2_6_9_1
  doi: 10.3996/072013-JFWM-051
– ident: e_1_2_6_24_1
  doi: 10.1126/sciadv.1501392
– ident: e_1_2_6_26_1
  doi: 10.1002/ecm.1340
– ident: e_1_2_6_62_1
  doi: 10.1007/s10584-008-9505-y
– ident: e_1_2_6_31_1
  doi: 10.1002/joc.4580
– ident: e_1_2_6_45_1
  doi: 10.1002/eap.1420
– ident: e_1_2_6_50_1
– ident: e_1_2_6_6_1
  doi: 10.3390/fire1010017
– ident: e_1_2_6_19_1
  doi: 10.1111/j.1469-8137.2010.03515.x
– ident: e_1_2_6_57_1
  doi: 10.1641/0006-3568(2004)054[0661:TIOFFA]2.0.CO;2
– ident: e_1_2_6_32_1
  doi: 10.1073/pnas.1802316115
– ident: e_1_2_6_20_1
  doi: 10.1038/s41559-019-0842-1
– ident: e_1_2_6_52_1
  doi: 10.1111/1365-2435.13193
– ident: e_1_2_6_28_1
  doi: 10.1111/gcb.15388
– ident: e_1_2_6_15_1
  doi: 10.1016/j.foreco.2012.09.022
– ident: e_1_2_6_14_1
  doi: 10.1002/ecs2.2809
– ident: e_1_2_6_37_1
  doi: 10.1016/j.agrformet.2016.11.268
– ident: e_1_2_6_49_1
  doi: 10.1029/2020GL089858
– ident: e_1_2_6_36_1
  doi: 10.1093/treephys/16.8.665
– ident: e_1_2_6_48_1
– ident: e_1_2_6_7_1
  doi: 10.1002/ldr.3237
– ident: e_1_2_6_11_1
  doi: 10.1007/s00442-004-1788-8
– volume-title: Principles of Environmental Physics: plants, Animals, and the Atmosphere. Page Principles of Environmental Physics: plants, Animals, and the Atmosphere
  year: 2013
  ident: e_1_2_6_46_1
– ident: e_1_2_6_8_1
  doi: 10.1890/14-2302.1
– ident: e_1_2_6_66_1
  doi: 10.1073/pnas.1110199108
– ident: e_1_2_6_33_1
  doi: 10.1016/j.crte.2008.07.002
– ident: e_1_2_6_5_1
  doi: 10.1002/ecy.2134
– ident: e_1_2_6_13_1
  doi: 10.1093/biosci/biaa061
– ident: e_1_2_6_34_1
  doi: 10.1007/978-94-007-1242-3_3
– ident: e_1_2_6_51_1
  doi: 10.1016/j.foreco.2008.09.029
– ident: e_1_2_6_25_1
  doi: 10.1029/2004GL020876
– ident: e_1_2_6_10_1
  doi: 10.1016/j.jhydrol.2014.07.016
– ident: e_1_2_6_65_1
  doi: 10.1098/rstb.2015.0178
– ident: e_1_2_6_42_1
  doi: 10.1016/j.foreco.2009.11.030
– ident: e_1_2_6_53_1
  doi: 10.1093/treephys/tpv045
– ident: e_1_2_6_56_1
  doi: 10.1139/cjfr-2015-0033
– ident: e_1_2_6_54_1
  doi: 10.1111/gcb.12023
– ident: e_1_2_6_12_1
  doi: 10.1029/2004JD005299
– ident: e_1_2_6_16_1
  doi: 10.1073/pnas.1815107116
– ident: e_1_2_6_38_1
  doi: 10.1002/ecs2.1632
– ident: e_1_2_6_61_1
  doi: 10.1111/j.1600-0706.2010.18270.x
– ident: e_1_2_6_2_1
  doi: 10.1002/joc.3413
– ident: e_1_2_6_17_1
  doi: 10.1111/ecog.03836
– ident: e_1_2_6_3_1
  doi: 10.1073/pnas.1607171113
– ident: e_1_2_6_47_1
  doi: 10.1016/j.agrformet.2008.09.011
– ident: e_1_2_6_60_1
  doi: 10.1111/1365-2745.12426
– ident: e_1_2_6_41_1
  doi: 10.1038/s41467-018-08237-z
– ident: e_1_2_6_29_1
  doi: 10.1016/j.foreco.2020.118523
SSID ssj0000547843
Score 2.495029
Snippet Increasing wildfire activity in western North America has the potential to remove forest canopy cover over large areas, increasing the vulnerability of...
Abstract Increasing wildfire activity in western North America has the potential to remove forest canopy cover over large areas, increasing the vulnerability...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Animal behavior
biophysical gradient
Canopies
conifer forest
Environmental changes
fire season
fire severity
Forest & brush fires
forest canopy
Forest ecosystems
Forest fires
juveniles
Microclimate
microclimatic buffering
Montana
mountains
Rocky Mountains
Seedlings
Sensors
surface temperature
topography
trees
Trends
Understory
Vapor pressure
vapor pressure deficit
Vegetation
Vegetation changes
Water availability
Water deficit
wildfire
Wildfires
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF5EFLyIT6xWWcWDl2iyu8lujiotHqQIKnhb9gkFTUtThf57ZzdpraB48ZKEZAjDTGbnm2TyDULnwnLtMk8T4aHSYcKQRGW5ShSkF-WpZ85GEtd7PhiIl5fyYWnUV-gJa-iBG8NdFYB4fZkxkwJQ4YBnGOwLADVpqXPvIzRKeblUTDWs3owLRudUQim5cqYml7SZJ_-VgCJP_zdwuQxRY47pb6HNFhzi60apbbTiqh203ovE0rNd1IMQth7WKNz821jjUYUBdMId8VtorDOvQwCgDn-oyQyHN6xYD0fj1hM4dKXDUryHnvu9p9u7pB2DkJiQ3WGbU8upK1mg5zKWOUdTlimdecIzb4UpoBTMlSt1xrQ2zgtjdOq14EznRNN9tFqNKneAsCq8zRV3zijLCkGUT5lmhFhLtFJeddDF3DbStBzhYVTFq2zYjYkMZpTBjB10thAdN8QYPwndBAMvBAKXdTwBHpath-VfHu6g7tw9sg2wWpLQFQvoqsg66HRxGUIjfO9QlRu9B5mIZikFPS6iW3_XVPZuH0k4OPwPlY_QBgm9L7ExsotWp5N3d4zWzMd0WE9O4qP6CQwL7E4
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9VAEB9qVfBi_cSnrazioZfY7EeSDZ5secWDlIIKvS37KQ9qUl7agv-9M5u8aEFB6CUJyYQddnZmf7s7-1uAdzo0LvIkC51wpKO0F4XllS0sdi82yaRiyCSun5uTE3121p5uwYfNXpiRH2KecCPPyPGaHNy64eA3aWj0g3gv0c_vwF3OZUNNWqjTeYKlJKaqnDWHxZaFbkW1YRYqxcH8943-KNP238CafyLW3OUc79xK2UfwcEKa7OPYNB7DVuyewP1lZqn--RSWGA9CwoDHxo2SA-s7hggW9WE_KEvPn68QzUZ2jaUymq5lbtVfTGZllOKOcf0ZfDtefj36VExnKhSeoAJeKxkaGVtFXF8-qBhlqbh1PImGp6B9jePKysbWceWcj0l778rkdKNcJZx8Dttd38UXwGydQmWbGL0NqtbCplI5JUQIwlmb7AL2NzVr_EQ4TudenJuRKlkYqhVDtbKAt7Poxciy8TehQzLPLEDE2PlFv_5uJj8zNQ6QUsuVLxHXNgh_Fd5rxMBl66pESu1ujGsmbx2MoBRbhGo1X8Cb-TP6GS2e2C72VySTobGUqMd-NvW_NTXLoy-CHl7-v-greCAoXSbnUu7C9uX6Ku7BPX99uRrWr3PT_gWmRPtF
  priority: 102
  providerName: Wiley-Blackwell
Title Wildfire impacts on forest microclimate vary with biophysical context
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fecs2.3467
https://www.proquest.com/docview/2533063961
https://www.proquest.com/docview/2561533337
https://doaj.org/article/6597f914c077470994774691609b5ffa
Volume 12
WOSCitedRecordID wos000655473800030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2150-8925
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000547843
  issn: 2150-8925
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2150-8925
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000547843
  issn: 2150-8925
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2150-8925
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000547843
  issn: 2150-8925
  databaseCode: PCBAR
  dateStart: 20100701
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2150-8925
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000547843
  issn: 2150-8925
  databaseCode: BENPR
  dateStart: 20100701
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2150-8925
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000547843
  issn: 2150-8925
  databaseCode: PIMPY
  dateStart: 20100701
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2150-8925
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000547843
  issn: 2150-8925
  databaseCode: WIN
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2150-8925
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000547843
  issn: 2150-8925
  databaseCode: 24P
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoCxIX3hVbysogDr2EJrbzOiFapaISXUU8RDlZfqKVSrLdtJV64bcz43i3IAEXLk7iWPIoY48_jyffEPKqsqV2medJ5WGnIyrDEpXlKlGwvCjPvXA2kLi-L2ez6vS0bqPDbYhhlSubGAy17Q36yPcZhkHCclpkbxbnCWaNwtPVmEJjg2whUxmM862DZtZ-WHtZUqSrEnxFKZSyfWcG9pqPeeVvFqLA1_8byPwVqoa15uj-_0r5gNyLKJO-HYfFQ3LLdY_InSYwVF8_Jg3YAuvB2NHxJ8mB9h0F9Ar90O8YoWfO5oBkHb1Sy2uKrlqq5_0iqpRieDvY9Cfk81Hz6fBdEvMpJAZhApQ5tyV3tUCeL2OFczwVmdKZZ2XmbWUK2FPmytU6E1ob5ytjdOp1VQqdM823yWbXd-4poarwNlelc0ZZUVRM-VRowZi1TCvl1YTsrT6uNJFsHHNenMmRJplJ1INEPUzIy3XTxciw8adGB6ihdQMkxQ4V_fKbjHNMFrA58nUmTAqYtgToK-BaAP5Na517FGp3pTQZZ-ogbzQ2IS_Wr2GO4cGJ6lx_iW0CLOYc5NgL4-Lvksrm8CPDm51_9_aM3GUYHhNiJ3fJ5sXy0j0nt83VxXxYTskGE-00juZpcBRAefKjgbr2-KT9Ck9fjmc_AcB7A04
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFFQuvBGBAgsCqRdTe71-HRCCkqpR0ygSRWpPyz6rSMUOSVuUP8VvZMaPFCTg1gMX27JX9tr7eeab9fgbgFe5zbSLfBzkHiMdkRseqChRgUL3onzshbO1iOsoG4_zo6NisgY_un9hKK2ys4m1obaVoTnybU5pkOhO0-jd7FtAVaPo62pXQqOBxb5bfseQbfF2-BHH9zXnu4PDnb2grSoQGHKWuExim8WuEKR2ZaxwDkP6SOnI8yzyNjcpRlaJcoWOhNbG-dwYHXqdZ0InXMd43muwLgjsPVifDA8mx6tZnZDksUTcSRiFfNuZBX8TN3XsLx1fXR_gN1L7KzWufdvu7f_tqdyBWy2LZu8b2N-FNVfegxuDWoF7eR8GaOusR2POmp9AF6wqGbJzvC_2lTIQzekUmbpjF2q-ZDQVzfS0mrWQZZS-jz7rAXy-knt4CL2yKt0jYCr1NlGZc0ZZkeZc-VBowbm1XCvlVR-2usGUphVTp5oep7KRgeaSxl3SuPfh5arprFEQ-VOjD4SIVQMS_a53VPMT2doQmWLw54tImBA5e4bUXuA6RX4fFjrx1KnNDiSytUQLeYmQPrxYHUYbQh-GVOmqc2pT0_44xn5s1Tj8e0_lYOcTp43H_77ac9jYOzwYydFwvP8EbnJKBarzRDehdzY_d0_hurk4my7mz9p3iMGXqwboT2DTW9M
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCouvBGBAgsCqRcTe71-HRCCNhFRSxQJkNrTss8qUolD3Bblr_HrmPEjBQm49cDFtuyVvWt_nvlmPf4G4EVuM-0iHwe5x0hH5IYHKkpUoNC9KB974Wwt4nqQTSb54WEx3YAf3b8wlFbZ2cTaUNvS0Bz5gFMaJLrTNBr4Ni1iujd6s_gWUAUp-tLaldNoILLvVt8xfKtej_fwWb_kfDT8tPs-aCsMBIYcJy6T2GaxKwQpXxkrnMPwPlI68jyLvM1NilFWolyhI6G1cT43Rode55nQCdcxnvcKbCIlF7wHm9Pxh-nReoYnJKksEXdyRiEfOFPxV3FT0_7CCda1An4juL_S5NrPjW7-z3foFtxo2TV727wOt2HDze_AtWGtzL26C0O0gdajkWfNz6EVK-cMWTuOkX2lzERzMkMG79i5Wq4YTVEzPSsXLZQZpfXjcO_B50sZw33ozcu5ewBMpd4mKnPOKCvSnCsfCi04t5Zrpbzqw073YKVpRdap1seJbOShuSQMSMJAH56vmy4aZZE_NXpH6Fg3IDHweke5PJatbZEpBoW-iIQJkctnSPkFrlPk_WGhE0-d2u4AI1sLVckLtPTh2fow2hb6YKTmrjyjNnU4EMfYj50ak3_vqRzufuS08fDfV3sKW4hKeTCe7D-C65wyhOr00W3onS7P3GO4as5PZ9XySfs6Mfhy2fj8CTOOZJM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wildfire+impacts+on+forest+microclimate+vary+with+biophysical+context&rft.jtitle=Ecosphere+%28Washington%2C+D.C%29&rft.au=Wolf%2C+Kyra+D.&rft.au=Higuera%2C+Philip+E.&rft.au=Davis%2C+Kimberley+T.&rft.au=Dobrowski%2C+Solomon+Z.&rft.date=2021-05-01&rft.issn=2150-8925&rft.eissn=2150-8925&rft.volume=12&rft.issue=5&rft_id=info:doi/10.1002%2Fecs2.3467&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ecs2_3467
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2150-8925&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2150-8925&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2150-8925&client=summon