Comprehensive secondary-structure analysis of disulfide variants of lysozyme by synchrotron-radiation vacuum-ultraviolet circular dichroism

To elucidate the effects of specific disulfide bridges (Cys6‐Cys127, Cys30‐Cys115, Cys64‐Cys80, and Cys76‐Cys94) on the secondary structure of hen lysozyme, the vacuum‐ultraviolet circular dichroism (VUVCD) spectra of 13 species of disulfide‐deficient variants in which Cys residues were replaced wit...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proteins, structure, function, and bioinformatics Ročník 77; číslo 1; s. 191 - 201
Hlavní autoři: Matsuo, Koichi, Watanabe, Hidenori, Tate, Shin-ichi, Tachibana, Hideki, Gekko, Kunihiko
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.10.2009
Témata:
ISSN:0887-3585, 1097-0134, 1097-0134
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract To elucidate the effects of specific disulfide bridges (Cys6‐Cys127, Cys30‐Cys115, Cys64‐Cys80, and Cys76‐Cys94) on the secondary structure of hen lysozyme, the vacuum‐ultraviolet circular dichroism (VUVCD) spectra of 13 species of disulfide‐deficient variants in which Cys residues were replaced with Ala or Ser residues were measured down to 170 nm at pH 2.9 and 25°C using a synchrotron‐radiation VUVCD spectrophotometer. Each variant exhibited a VUVCD spectrum characteristic of a considerable amount of residual secondary structures depending on the positions and numbers of deleted disulfide bridges. The contents of α‐helices, β‐strands, turns, and unordered structures were estimated with the SELCON3 program using the VUVCD spectra and PDB data of 31 reference proteins. The numbers of α‐helix and β‐strand segments were also estimated from the VUVCD data. In general, the secondary structures were more effectively stabilized through entropic forces as the number of disulfide bridges increased and as they were formed over larger distances in the primary structure. The structures of three‐disulfide variants were similar to that of the wild type, but other variants exhibited diminished α‐helices with a border between the ordered and disordered structures around the two‐disulfide variants. The sequences of the secondary structures were predicted for all the variants by combining VUVCD data with a neural‐network method. These results revealed the characteristic role of each disulfide bridge in the formation of secondary structures. Proteins 2009. © 2009 Wiley‐Liss, Inc.
AbstractList To elucidate the effects of specific disulfide bridges (Cys6‐Cys127, Cys30‐Cys115, Cys64‐Cys80, and Cys76‐Cys94) on the secondary structure of hen lysozyme, the vacuum‐ultraviolet circular dichroism (VUVCD) spectra of 13 species of disulfide‐deficient variants in which Cys residues were replaced with Ala or Ser residues were measured down to 170 nm at pH 2.9 and 25°C using a synchrotron‐radiation VUVCD spectrophotometer. Each variant exhibited a VUVCD spectrum characteristic of a considerable amount of residual secondary structures depending on the positions and numbers of deleted disulfide bridges. The contents of α‐helices, β‐strands, turns, and unordered structures were estimated with the SELCON3 program using the VUVCD spectra and PDB data of 31 reference proteins. The numbers of α‐helix and β‐strand segments were also estimated from the VUVCD data. In general, the secondary structures were more effectively stabilized through entropic forces as the number of disulfide bridges increased and as they were formed over larger distances in the primary structure. The structures of three‐disulfide variants were similar to that of the wild type, but other variants exhibited diminished α‐helices with a border between the ordered and disordered structures around the two‐disulfide variants. The sequences of the secondary structures were predicted for all the variants by combining VUVCD data with a neural‐network method. These results revealed the characteristic role of each disulfide bridge in the formation of secondary structures. Proteins 2009. © 2009 Wiley‐Liss, Inc.
To elucidate the effects of specific disulfide bridges (Cys6-Cys127, Cys30-Cys115, Cys64-Cys80, and Cys76-Cys94) on the secondary structure of hen lysozyme, the vacuum-ultraviolet circular dichroism (VUVCD) spectra of 13 species of disulfide-deficient variants in which Cys residues were replaced with Ala or Ser residues were measured down to 170 nm at pH 2.9 and 25 degrees C using a synchrotron-radiation VUVCD spectrophotometer. Each variant exhibited a VUVCD spectrum characteristic of a considerable amount of residual secondary structures depending on the positions and numbers of deleted disulfide bridges. The contents of alpha-helices, beta-strands, turns, and unordered structures were estimated with the SELCON3 program using the VUVCD spectra and PDB data of 31 reference proteins. The numbers of alpha-helix and beta-strand segments were also estimated from the VUVCD data. In general, the secondary structures were more effectively stabilized through entropic forces as the number of disulfide bridges increased and as they were formed over larger distances in the primary structure. The structures of three-disulfide variants were similar to that of the wild type, but other variants exhibited diminished alpha-helices with a border between the ordered and disordered structures around the two-disulfide variants. The sequences of the secondary structures were predicted for all the variants by combining VUVCD data with a neural-network method. These results revealed the characteristic role of each disulfide bridge in the formation of secondary structures.To elucidate the effects of specific disulfide bridges (Cys6-Cys127, Cys30-Cys115, Cys64-Cys80, and Cys76-Cys94) on the secondary structure of hen lysozyme, the vacuum-ultraviolet circular dichroism (VUVCD) spectra of 13 species of disulfide-deficient variants in which Cys residues were replaced with Ala or Ser residues were measured down to 170 nm at pH 2.9 and 25 degrees C using a synchrotron-radiation VUVCD spectrophotometer. Each variant exhibited a VUVCD spectrum characteristic of a considerable amount of residual secondary structures depending on the positions and numbers of deleted disulfide bridges. The contents of alpha-helices, beta-strands, turns, and unordered structures were estimated with the SELCON3 program using the VUVCD spectra and PDB data of 31 reference proteins. The numbers of alpha-helix and beta-strand segments were also estimated from the VUVCD data. In general, the secondary structures were more effectively stabilized through entropic forces as the number of disulfide bridges increased and as they were formed over larger distances in the primary structure. The structures of three-disulfide variants were similar to that of the wild type, but other variants exhibited diminished alpha-helices with a border between the ordered and disordered structures around the two-disulfide variants. The sequences of the secondary structures were predicted for all the variants by combining VUVCD data with a neural-network method. These results revealed the characteristic role of each disulfide bridge in the formation of secondary structures.
To elucidate the effects of specific disulfide bridges (Cys6-Cys127, Cys30-Cys115, Cys64-Cys80, and Cys76-Cys94) on the secondary structure of hen lysozyme, the vacuum-ultraviolet circular dichroism (VUVCD) spectra of 13 species of disulfide-deficient variants in which Cys residues were replaced with Ala or Ser residues were measured down to 170 nm at pH 2.9 and 25 degrees C using a synchrotron-radiation VUVCD spectrophotometer. Each variant exhibited a VUVCD spectrum characteristic of a considerable amount of residual secondary structures depending on the positions and numbers of deleted disulfide bridges. The contents of alpha-helices, beta-strands, turns, and unordered structures were estimated with the SELCON3 program using the VUVCD spectra and PDB data of 31 reference proteins. The numbers of alpha-helix and beta-strand segments were also estimated from the VUVCD data. In general, the secondary structures were more effectively stabilized through entropic forces as the number of disulfide bridges increased and as they were formed over larger distances in the primary structure. The structures of three-disulfide variants were similar to that of the wild type, but other variants exhibited diminished alpha-helices with a border between the ordered and disordered structures around the two-disulfide variants. The sequences of the secondary structures were predicted for all the variants by combining VUVCD data with a neural-network method. These results revealed the characteristic role of each disulfide bridge in the formation of secondary structures.
Author Watanabe, Hidenori
Tachibana, Hideki
Gekko, Kunihiko
Matsuo, Koichi
Tate, Shin-ichi
Author_xml – sequence: 1
  givenname: Koichi
  surname: Matsuo
  fullname: Matsuo, Koichi
  organization: Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima 739-0046, Japan
– sequence: 2
  givenname: Hidenori
  surname: Watanabe
  fullname: Watanabe, Hidenori
  organization: Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
– sequence: 3
  givenname: Shin-ichi
  surname: Tate
  fullname: Tate, Shin-ichi
  organization: Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
– sequence: 4
  givenname: Hideki
  surname: Tachibana
  fullname: Tachibana, Hideki
  organization: Department of Biotechnological Science, School of Biology-Oriented Science and Technology, Kinki University, Kinokawa, Wakayama 649-6493, Japan
– sequence: 5
  givenname: Kunihiko
  surname: Gekko
  fullname: Gekko, Kunihiko
  email: gekko@sci.hiroshima-u.ac.jp
  organization: Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19434752$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhS1URKeFDQ-AsmKBlOKfOE6WMCoFqWpRVQQ7y-PcqAbHHvwzkL5CXxrPTNsFQqwsXX_n6N5zjtCB8w4QeknwCcGYvl0Hn04obRh-ghYE96LGhDUHaIG7TtSMd_wQHcX4HWPc9qx9hg5J37BGcLpAd0s_rQPcgItmA1UE7d2gwlzHFLJOOUClnLJzNLHyYzWYmO1oBqg2Khjl0m5avv3tPEG1mqs4O31TFgre1UENRiXjXaF1zlOdbQpqY7yFVGkTdLYqFM-twMTpOXo6Khvhxf17jL58OL1efqzPL88-Ld-d17phBNd87LigDI-EDIqNXGghgAz9wFa4U5y2rKFs7LSCFaaj3pKarLjooOuHMmXH6PXetwT3M0NMcjJRg7XKgc9RtqLFvOtpAV_dg3k1wSDXwUwlG_kQXwHwHtDBxxhglNqk3cXlTmMlwXLbkNw2JHcNFcmbvySPrv-CyR7-ZSzM_yHl56vL6wdNvdeYmOD3o0aFH-UwJrj8enEmL9r3_BtdYnnF_gAZ2bXa
CitedBy_id crossref_primary_10_1371_journal_pone_0133584
crossref_primary_10_1002_prot_23206
crossref_primary_10_1038_s41598_017_03168_z
crossref_primary_10_1002_prot_26611
crossref_primary_10_1007_s10068_013_0223_5
crossref_primary_10_1016_j_foodchem_2023_137920
crossref_primary_10_1007_s00018_025_05777_8
crossref_primary_10_1073_pnas_2005102117
crossref_primary_10_1016_j_fob_2014_08_006
crossref_primary_10_1016_j_bbapap_2015_02_020
crossref_primary_10_1038_s41598_018_24688_2
crossref_primary_10_1080_10826068_2018_1508035
crossref_primary_10_1021_ja3009506
Cites_doi 10.1021/bi030115q
10.1016/S0022-2836(77)80200-3
10.1093/jb/mvi101
10.1093/oso/9780199633968.003.0005
10.1016/0029-554X(80)90657-6
10.1002/(SICI)1097-0134(19990515)35:3<313::AID-PROT5>3.0.CO;2-1
10.1006/jmbi.1999.3442
10.1073/pnas.90.9.4136
10.1021/bi00254a009
10.1246/cl.2001.522
10.1042/bj2730211
10.2116/analsci.19.129
10.1021/bi00318a019
10.1002/prot.22055
10.1002/prot.20441
10.1021/bi049967w
10.1073/pnas.0305798101
10.1016/0022-2836(80)90335-6
10.1006/jmbi.2001.5121
10.1021/bi0113418
10.1110/ps.8.2.370
10.1002/1097-0134(20010301)42:4<460::AID-PROT50>3.0.CO;2-U
10.1016/0003-2697(92)90473-K
10.1073/pnas.47.9.1309
10.1016/S1367-5931(00)00243-X
10.1006/abio.2000.4880
10.1093/jb/mvh048
10.1016/S0014-5793(00)01904-9
10.1002/prot.21177
10.1002/bip.360221211
10.1006/abio.1998.2960
10.1002/prot.20435
10.1039/fd9949900245
10.1002/bies.950080204
10.1039/b305743g
10.1529/biophysj.106.103515
10.1006/jmbi.1999.3091
10.1016/0003-9861(71)90364-X
10.1016/0014-5793(92)80466-T
ContentType Journal Article
Copyright Copyright © 2009 Wiley‐Liss, Inc.
Copyright_xml – notice: Copyright © 2009 Wiley‐Liss, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/prot.22430
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1097-0134
EndPage 201
ExternalDocumentID 19434752
10_1002_prot_22430
PROT22430
ark_67375_WNG_N6B5X2C0_R
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ministry of Education, Science, Sports, and Culture of Japan
  funderid: 20550153
GroupedDBID -~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AHMBA
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FA8
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RX1
SAMSI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBFHL
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c4310-5f857230f11da3f57c77e1d9d3b08a5263423f8caeb02fc230fc1b578e89dcae3
IEDL.DBID DRFUL
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000269300000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0887-3585
1097-0134
IngestDate Sun Nov 09 12:13:59 EST 2025
Mon Jul 21 05:38:36 EDT 2025
Tue Nov 18 22:28:12 EST 2025
Sat Nov 29 01:47:51 EST 2025
Sun Sep 21 06:19:01 EDT 2025
Sun Sep 21 06:20:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4310-5f857230f11da3f57c77e1d9d3b08a5263423f8caeb02fc230fc1b578e89dcae3
Notes Ministry of Education, Science, Sports, and Culture of Japan - No. 20550153
istex:26E625D905B152FFE23182B48779572F25C4EA14
ark:/67375/WNG-N6B5X2C0-R
ArticleID:PROT22430
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 19434752
PQID 67605892
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_67605892
pubmed_primary_19434752
crossref_citationtrail_10_1002_prot_22430
crossref_primary_10_1002_prot_22430
wiley_primary_10_1002_prot_22430_PROT22430
istex_primary_ark_67375_WNG_N6B5X2C0_R
PublicationCentury 2000
PublicationDate October 2009
PublicationDateYYYYMMDD 2009-10-01
PublicationDate_xml – month: 10
  year: 2009
  text: October 2009
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Proteins, structure, function, and bioinformatics
PublicationTitleAlternate Proteins
PublicationYear 2009
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Radford SE,Woolfson DN,Martin SR,Lowe G,Dobson CM. A three-disulphide derivative of hen lysozyme. Structure, dynamics and stability. Biochem J 1991; 273: 211-217.
Creighton TE. Role of the environment in the refolding of reduced pancreatic trypsin inhibitor. J Mol Biol 1980; 144: 521-550.
Grishina IB,Woody RW. Contributions of tryptophan side chains to the circular dichroism of globular proteins: exciton couplets and coupled oscillators. Faraday Discuss 1994; 99: 245-262.
Matsuo K,Yonehara R,Gekko K. Secondary-structure analysis of proteins by vacuum-ultraviolet circular dichroism spectroscopy. J Biochem (Tokyo) 2004; 135: 405-411.
Toumadje A,Alcorn SW,Johnson WCJr. Extending CD spectra of proteins to 168 nm improves the analysis for secondary structures. Anal Biochem 1992; 200: 321-331.
Matsuo K,Sakai K,Matsushima Y,Fukuyama T,Gekko K. Optical cell with a temperature-control unit for a vacuum-ultraviolet circular dichroism spectrophotometer. Anal Sci 2003; 19: 129-132.
Creighton TE. Disulphide bonds and protein stability. Bioessays 1988; 8: 57-63.
DeLano WL. The PyMOL Molecular Graphics System. Palo Alto, CA, USA: DeLano Scientific; 2002.
Yokota A,Izutani K,Takai M,Kubo Y,Noda Y,Koumoto Y,Tachibana H,Segawa S. The transition state in the folding-unfolding reaction of four species of three-disulfide variant of hen lysozyme: the role of each disulfide bridge. J Mol Biol 2000; 295: 1275-1288.
King SM,Johnson WC. Assigning secondary structure from protein coordinate data. Proteins 1999; 35: 313-320.
Bernstein FC,Koetzle TF,Williams GJB,Meyer EFJr.,Brice MD,Rodgers JR,Kennard O,Shimanouchi T,Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol 1977; 112: 535-542.
Bondugula R,Xu D. MUPRED: a tool for bridging the gap between template based methods and sequence profile based methods for protein secondary structure prediction. Proteins 2007; 66: 664-670.
Lewis PN,Scheraga HA. Prediction of structural homology between bovine α-lactalbumin and hen egg white lysozyme. Arch Biochem Biophys 1971; 144: 584-588.
Adamczak R,Porollo A,Meller J. Combining prediction of secondary structure and solvent accessibility in proteins. Proteins 2005; 59: 467-475.
Tachibana H,Oka T,Akasaka K. Native-like tertiary structure formation in the α-domain of a hen lysozyme two-disulfide variant. J Mol Biol 2001; 314: 311-320.
Jones DT. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 1999; 292: 195-202.
Lin SH,Konishi Y,Denton ME,Scheraga HA. Influence of an extrinsic cross-link on the folding pathway of ribonuclease A. Conformational and thermodynamic analysis of cross-linked (lysine7lysine41)-ribonuclease A. Biochemistry 1984; 23: 5504-5512.
Sreerama N,Venyaminov SY,Woody RW. Estimation of number of α-helical and β-strand segments in proteins using circular dichroism spectroscopy. Protein Sci 1999; 8: 370-380.
Yokota A,Hirai K,Miyauchi H,Iimura S,Noda Y,Inoue K,Akasaka K,Tachibana H,Segawa S. NMR characterization of three-disulfide variants of lysozyme. C64A/C80A, C76A/C94A, and C30A/C115A-a marginally stable state in folded proteins. Biochemistry 2004; 43: 6663-6669.
Ojima N,Sakai K,Matsuo K,Matsui T,Fukazawa T,Namatame H,Taniguchi M,Gekko K, Vacuum-ultraviolet circular dichroism spectrophotometer using synchrotron radiation: optical system and on-line performance. Chem Lett 2001; 30: 522-523.
Anfinsen CB,Haber E,Sela M,White FHJr. The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proc Natl Acad Sci USA. 1961; 47: 1309-1314.
Pancoska P,Janota V,Keiderling TA. Novel matrix descriptor for secondary structure segments in proteins: demonstration of predictability from circular dichroism spectra. Anal Biochem 1999; 267: 72-83.
Gekko K,Kimoto A,Kamiyama T. Effects of disulfide bonds on compactness of protein molecules revealed by volume, compressibility, and expansibility changes during reduction. Biochemistry 2003; 42: 13746-13753.
Tachibana H,Ohta Y,Sawano H,Koumoto Y,Segawa S. Relationship between the optimal temperature for oxidative refolding and the thermal stability of refolded state of hen lysozyme three-disulfide derivatives. Biochemistry 1994; 33: 15008-15016.
Tachibana H. Propensities for the formation of individual disulfide bonds in hen lysozyme and in the size and stability of disulfide-associated submolecular structures. FEBS Lett 2000; 480: 175-178.
Unneberg P,Merelo JJ,Chacón P,Morán F. SOMCD: method for evaluating protein secondary structure from UV circular dichroism spectra. Proteins 2001; 42: 460-470.
Kabsch W,Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983; 22: 2577-2637.
Wallace BA,Janes RW. Synchrotron radiation circular dichroism spectroscopy of proteins: secondary structure, fold recognition and structural genomics. Curr Opin Chem Biol 2001; 5: 567-571.
Sreerama N,Woody RW. Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN. SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem 2000; 287: 252-260.
Snyder PA,Rowe EM. The first use of synchrotron radiation for vacuum ultraviolet circular dichroism measurements. Nucl Instrum Methods Phys Res A 1980; 172: 345-349.
Hill CP,Johnston NL,Cohen RE. Crystal structure of a ubiquitin-dependent degradation substrate: a three-disulfide form of lysozyme. Proc Natl Acad Sci USA 1993; 90: 4136-4140.
Jones GR,Clarke DT. Applications of extended ultra-violet circular dichroism spectroscopy in biology and medicine. Faraday Discuss 2004; 126: 223-236.
Wood MJ,Hirst JD. Protein secondary structure prediction with dihedral angles. Proteins 2005; 59: 476-481.
Matsuo K,Watanabe H,Gekko K. Improved sequence-based prediction of protein secondary structures by combining vacuum-ultraviolet circular dichroism spectroscopy with neural network. Proteins 2008; 73: 104-112.
Sawano H,Kokumoto Y,Ohta K,Sasaki Y,Segawa S,Tachibana H. Efficient in vitro folding of the three-disulfide derivatives of hen lysozyme in the presence of glycerol. FEBS Lett 1992; 303: 11-14.
Matsuo K,Yonehara R,Gekko K. Improved estimation of the secondary structures of proteins by vacuum-ultraviolet circular dichroism spectroscopy. J Biochem (Tokyo) 2005; 138: 79-88.
Matsuo K,Sakurada Y,Yonehara R,Kataoka M,Gekko K. Secondary-structure analysis of denatured proteins by vacuum-ultraviolet circular dichroism spectroscopy. Biophys J 2007; 92: 4088-4096.
Noda Y,Yokota A,Horii D,Tominaga T,Tanisaka Y,Tachibana H,Segawa S. NMR structural study of two-disulfide variant of hen lysozyme: 2SS[6-127, 30-115]-a disulfide intermediate with a partly unfolded structure. Biochemistry 2002; 41: 2130-2139.
Sutherland JC,Emrick A,France LL,Monteleone DC,Trunk J. Circular dichroism user facility at the National Synchrotron Light Source: estimation of protein secondary structure. Biotechniques 1992; 13: 588-590.
Niraula TN,Konno T,Li H,Yamada H,Akasaka K,Tachibana H. Pressure-dissociable reversible assembly of intrinsically denatured lysozyme is a precursor for amyloid fibrils. Proc Natl Acad Sci USA 2004; 101: 4089-4093.
Berova N,Nakanishi K,Woody RW. Circular dichroism: Principles and applications. 2nd ed. New York, NY: Willy-VCH Press; 2000.
2004; 43
2004; 101
1991; 273
2004; 126
1992; 200
1999; 292
1984; 23
2005; 138
1992; 303
2000; 295
2007; 92
1994
1992; 13
1999; 267
1993; 90
1971; 144
2003; 19
1980; 172
2002
1999; 8
2008; 73
2001; 42
2004; 135
2002; 41
2000
2001; 5
1988; 8
1999; 35
1994; 33
2000; 480
1994; 99
2000; 287
2005; 59
1977; 112
2007; 66
1961; 47
1980; 144
2003; 42
2001; 30
1983; 22
2001; 314
e_1_2_8_27_2
e_1_2_8_28_2
e_1_2_8_29_2
e_1_2_8_23_2
e_1_2_8_24_2
e_1_2_8_25_2
Berova N (e_1_2_8_14_2) 2000
e_1_2_8_26_2
e_1_2_8_9_2
e_1_2_8_2_2
Sutherland JC (e_1_2_8_22_2) 1992; 13
e_1_2_8_3_2
e_1_2_8_6_2
e_1_2_8_5_2
e_1_2_8_8_2
e_1_2_8_7_2
e_1_2_8_42_2
e_1_2_8_20_2
e_1_2_8_41_2
Gilbert HF (e_1_2_8_4_2) 1994
e_1_2_8_21_2
DeLano WL (e_1_2_8_43_2) 2002
e_1_2_8_40_2
e_1_2_8_16_2
e_1_2_8_39_2
e_1_2_8_17_2
e_1_2_8_38_2
e_1_2_8_18_2
e_1_2_8_19_2
e_1_2_8_12_2
e_1_2_8_35_2
e_1_2_8_13_2
e_1_2_8_34_2
e_1_2_8_37_2
e_1_2_8_15_2
e_1_2_8_36_2
e_1_2_8_31_2
e_1_2_8_30_2
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_11_2
e_1_2_8_32_2
References_xml – reference: Sawano H,Kokumoto Y,Ohta K,Sasaki Y,Segawa S,Tachibana H. Efficient in vitro folding of the three-disulfide derivatives of hen lysozyme in the presence of glycerol. FEBS Lett 1992; 303: 11-14.
– reference: Tachibana H. Propensities for the formation of individual disulfide bonds in hen lysozyme and in the size and stability of disulfide-associated submolecular structures. FEBS Lett 2000; 480: 175-178.
– reference: Sreerama N,Woody RW. Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN. SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem 2000; 287: 252-260.
– reference: Matsuo K,Sakai K,Matsushima Y,Fukuyama T,Gekko K. Optical cell with a temperature-control unit for a vacuum-ultraviolet circular dichroism spectrophotometer. Anal Sci 2003; 19: 129-132.
– reference: Anfinsen CB,Haber E,Sela M,White FHJr. The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proc Natl Acad Sci USA. 1961; 47: 1309-1314.
– reference: Niraula TN,Konno T,Li H,Yamada H,Akasaka K,Tachibana H. Pressure-dissociable reversible assembly of intrinsically denatured lysozyme is a precursor for amyloid fibrils. Proc Natl Acad Sci USA 2004; 101: 4089-4093.
– reference: Tachibana H,Oka T,Akasaka K. Native-like tertiary structure formation in the α-domain of a hen lysozyme two-disulfide variant. J Mol Biol 2001; 314: 311-320.
– reference: Hill CP,Johnston NL,Cohen RE. Crystal structure of a ubiquitin-dependent degradation substrate: a three-disulfide form of lysozyme. Proc Natl Acad Sci USA 1993; 90: 4136-4140.
– reference: Jones DT. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 1999; 292: 195-202.
– reference: Creighton TE. Role of the environment in the refolding of reduced pancreatic trypsin inhibitor. J Mol Biol 1980; 144: 521-550.
– reference: Wallace BA,Janes RW. Synchrotron radiation circular dichroism spectroscopy of proteins: secondary structure, fold recognition and structural genomics. Curr Opin Chem Biol 2001; 5: 567-571.
– reference: Radford SE,Woolfson DN,Martin SR,Lowe G,Dobson CM. A three-disulphide derivative of hen lysozyme. Structure, dynamics and stability. Biochem J 1991; 273: 211-217.
– reference: Lin SH,Konishi Y,Denton ME,Scheraga HA. Influence of an extrinsic cross-link on the folding pathway of ribonuclease A. Conformational and thermodynamic analysis of cross-linked (lysine7lysine41)-ribonuclease A. Biochemistry 1984; 23: 5504-5512.
– reference: Unneberg P,Merelo JJ,Chacón P,Morán F. SOMCD: method for evaluating protein secondary structure from UV circular dichroism spectra. Proteins 2001; 42: 460-470.
– reference: Matsuo K,Yonehara R,Gekko K. Improved estimation of the secondary structures of proteins by vacuum-ultraviolet circular dichroism spectroscopy. J Biochem (Tokyo) 2005; 138: 79-88.
– reference: DeLano WL. The PyMOL Molecular Graphics System. Palo Alto, CA, USA: DeLano Scientific; 2002.
– reference: Kabsch W,Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983; 22: 2577-2637.
– reference: Yokota A,Hirai K,Miyauchi H,Iimura S,Noda Y,Inoue K,Akasaka K,Tachibana H,Segawa S. NMR characterization of three-disulfide variants of lysozyme. C64A/C80A, C76A/C94A, and C30A/C115A-a marginally stable state in folded proteins. Biochemistry 2004; 43: 6663-6669.
– reference: Gekko K,Kimoto A,Kamiyama T. Effects of disulfide bonds on compactness of protein molecules revealed by volume, compressibility, and expansibility changes during reduction. Biochemistry 2003; 42: 13746-13753.
– reference: Snyder PA,Rowe EM. The first use of synchrotron radiation for vacuum ultraviolet circular dichroism measurements. Nucl Instrum Methods Phys Res A 1980; 172: 345-349.
– reference: Matsuo K,Yonehara R,Gekko K. Secondary-structure analysis of proteins by vacuum-ultraviolet circular dichroism spectroscopy. J Biochem (Tokyo) 2004; 135: 405-411.
– reference: Noda Y,Yokota A,Horii D,Tominaga T,Tanisaka Y,Tachibana H,Segawa S. NMR structural study of two-disulfide variant of hen lysozyme: 2SS[6-127, 30-115]-a disulfide intermediate with a partly unfolded structure. Biochemistry 2002; 41: 2130-2139.
– reference: Berova N,Nakanishi K,Woody RW. Circular dichroism: Principles and applications. 2nd ed. New York, NY: Willy-VCH Press; 2000.
– reference: Bernstein FC,Koetzle TF,Williams GJB,Meyer EFJr.,Brice MD,Rodgers JR,Kennard O,Shimanouchi T,Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol 1977; 112: 535-542.
– reference: Yokota A,Izutani K,Takai M,Kubo Y,Noda Y,Koumoto Y,Tachibana H,Segawa S. The transition state in the folding-unfolding reaction of four species of three-disulfide variant of hen lysozyme: the role of each disulfide bridge. J Mol Biol 2000; 295: 1275-1288.
– reference: Jones GR,Clarke DT. Applications of extended ultra-violet circular dichroism spectroscopy in biology and medicine. Faraday Discuss 2004; 126: 223-236.
– reference: Adamczak R,Porollo A,Meller J. Combining prediction of secondary structure and solvent accessibility in proteins. Proteins 2005; 59: 467-475.
– reference: Pancoska P,Janota V,Keiderling TA. Novel matrix descriptor for secondary structure segments in proteins: demonstration of predictability from circular dichroism spectra. Anal Biochem 1999; 267: 72-83.
– reference: Sreerama N,Venyaminov SY,Woody RW. Estimation of number of α-helical and β-strand segments in proteins using circular dichroism spectroscopy. Protein Sci 1999; 8: 370-380.
– reference: Matsuo K,Watanabe H,Gekko K. Improved sequence-based prediction of protein secondary structures by combining vacuum-ultraviolet circular dichroism spectroscopy with neural network. Proteins 2008; 73: 104-112.
– reference: Tachibana H,Ohta Y,Sawano H,Koumoto Y,Segawa S. Relationship between the optimal temperature for oxidative refolding and the thermal stability of refolded state of hen lysozyme three-disulfide derivatives. Biochemistry 1994; 33: 15008-15016.
– reference: Toumadje A,Alcorn SW,Johnson WCJr. Extending CD spectra of proteins to 168 nm improves the analysis for secondary structures. Anal Biochem 1992; 200: 321-331.
– reference: Bondugula R,Xu D. MUPRED: a tool for bridging the gap between template based methods and sequence profile based methods for protein secondary structure prediction. Proteins 2007; 66: 664-670.
– reference: King SM,Johnson WC. Assigning secondary structure from protein coordinate data. Proteins 1999; 35: 313-320.
– reference: Lewis PN,Scheraga HA. Prediction of structural homology between bovine α-lactalbumin and hen egg white lysozyme. Arch Biochem Biophys 1971; 144: 584-588.
– reference: Creighton TE. Disulphide bonds and protein stability. Bioessays 1988; 8: 57-63.
– reference: Sutherland JC,Emrick A,France LL,Monteleone DC,Trunk J. Circular dichroism user facility at the National Synchrotron Light Source: estimation of protein secondary structure. Biotechniques 1992; 13: 588-590.
– reference: Ojima N,Sakai K,Matsuo K,Matsui T,Fukazawa T,Namatame H,Taniguchi M,Gekko K, Vacuum-ultraviolet circular dichroism spectrophotometer using synchrotron radiation: optical system and on-line performance. Chem Lett 2001; 30: 522-523.
– reference: Matsuo K,Sakurada Y,Yonehara R,Kataoka M,Gekko K. Secondary-structure analysis of denatured proteins by vacuum-ultraviolet circular dichroism spectroscopy. Biophys J 2007; 92: 4088-4096.
– reference: Grishina IB,Woody RW. Contributions of tryptophan side chains to the circular dichroism of globular proteins: exciton couplets and coupled oscillators. Faraday Discuss 1994; 99: 245-262.
– reference: Wood MJ,Hirst JD. Protein secondary structure prediction with dihedral angles. Proteins 2005; 59: 476-481.
– volume: 59
  start-page: 476
  year: 2005
  end-page: 481
  article-title: Protein secondary structure prediction with dihedral angles
  publication-title: Proteins
– volume: 200
  start-page: 321
  year: 1992
  end-page: 331
  article-title: Extending CD spectra of proteins to 168 nm improves the analysis for secondary structures
  publication-title: Anal Biochem
– volume: 112
  start-page: 535
  year: 1977
  end-page: 542
  article-title: The Protein Data Bank: a computer‐based archival file for macromolecular structures
  publication-title: J Mol Biol
– volume: 5
  start-page: 567
  year: 2001
  end-page: 571
  article-title: Synchrotron radiation circular dichroism spectroscopy of proteins: secondary structure, fold recognition and structural genomics
  publication-title: Curr Opin Chem Biol
– volume: 99
  start-page: 245
  year: 1994
  end-page: 262
  article-title: Contributions of tryptophan side chains to the circular dichroism of globular proteins: exciton couplets and coupled oscillators
  publication-title: Faraday Discuss
– volume: 8
  start-page: 57
  year: 1988
  end-page: 63
  article-title: Disulphide bonds and protein stability
  publication-title: Bioessays
– volume: 314
  start-page: 311
  year: 2001
  end-page: 320
  article-title: Native‐like tertiary structure formation in the α‐domain of a hen lysozyme two‐disulfide variant
  publication-title: J Mol Biol
– volume: 33
  start-page: 15008
  year: 1994
  end-page: 15016
  article-title: Relationship between the optimal temperature for oxidative refolding and the thermal stability of refolded state of hen lysozyme three‐disulfide derivatives
  publication-title: Biochemistry
– volume: 138
  start-page: 79
  year: 2005
  end-page: 88
  article-title: Improved estimation of the secondary structures of proteins by vacuum‐ultraviolet circular dichroism spectroscopy
  publication-title: J Biochem
– volume: 267
  start-page: 72
  year: 1999
  end-page: 83
  article-title: Novel matrix descriptor for secondary structure segments in proteins: demonstration of predictability from circular dichroism spectra
  publication-title: Anal Biochem
– volume: 480
  start-page: 175
  year: 2000
  end-page: 178
  article-title: Propensities for the formation of individual disulfide bonds in hen lysozyme and in the size and stability of disulfide‐associated submolecular structures
  publication-title: FEBS Lett
– volume: 273
  start-page: 211
  year: 1991
  end-page: 217
  article-title: A three‐disulphide derivative of hen lysozyme. Structure, dynamics and stability
  publication-title: Biochem J
– volume: 73
  start-page: 104
  year: 2008
  end-page: 112
  article-title: Improved sequence‐based prediction of protein secondary structures by combining vacuum‐ultraviolet circular dichroism spectroscopy with neural network
  publication-title: Proteins
– start-page: 104
  year: 1994
  end-page: 136
– volume: 295
  start-page: 1275
  year: 2000
  end-page: 1288
  article-title: The transition state in the folding‐unfolding reaction of four species of three‐disulfide variant of hen lysozyme: the role of each disulfide bridge
  publication-title: J Mol Biol
– year: 2000
– volume: 90
  start-page: 4136
  year: 1993
  end-page: 4140
  article-title: Crystal structure of a ubiquitin‐dependent degradation substrate: a three‐disulfide form of lysozyme
  publication-title: Proc Natl Acad Sci USA
– volume: 144
  start-page: 584
  year: 1971
  end-page: 588
  article-title: Prediction of structural homology between bovine α‐lactalbumin and hen egg white lysozyme
  publication-title: Arch Biochem Biophys
– volume: 126
  start-page: 223
  year: 2004
  end-page: 236
  article-title: Applications of extended ultra‐violet circular dichroism spectroscopy in biology and medicine
  publication-title: Faraday Discuss
– volume: 66
  start-page: 664
  year: 2007
  end-page: 670
  article-title: MUPRED: a tool for bridging the gap between template based methods and sequence profile based methods for protein secondary structure prediction
  publication-title: Proteins
– volume: 8
  start-page: 370
  year: 1999
  end-page: 380
  article-title: Estimation of number of α‐helical and β‐strand segments in proteins using circular dichroism spectroscopy
  publication-title: Protein Sci
– volume: 303
  start-page: 11
  year: 1992
  end-page: 14
  article-title: Efficient in vitro folding of the three‐disulfide derivatives of hen lysozyme in the presence of glycerol
  publication-title: FEBS Lett
– volume: 41
  start-page: 2130
  year: 2002
  end-page: 2139
  article-title: NMR structural study of two‐disulfide variant of hen lysozyme: 2SS[6–127, 30–115]‐a disulfide intermediate with a partly unfolded structure
  publication-title: Biochemistry
– volume: 101
  start-page: 4089
  year: 2004
  end-page: 4093
  article-title: Pressure‐dissociable reversible assembly of intrinsically denatured lysozyme is a precursor for amyloid fibrils
  publication-title: Proc Natl Acad Sci USA
– volume: 172
  start-page: 345
  year: 1980
  end-page: 349
  article-title: The first use of synchrotron radiation for vacuum ultraviolet circular dichroism measurements
  publication-title: Nucl Instrum Methods Phys Res A
– volume: 92
  start-page: 4088
  year: 2007
  end-page: 4096
  article-title: Secondary‐structure analysis of denatured proteins by vacuum‐ultraviolet circular dichroism spectroscopy
  publication-title: Biophys J
– volume: 30
  start-page: 522
  year: 2001
  end-page: 523
  article-title: Vacuum‐ultraviolet circular dichroism spectrophotometer using synchrotron radiation: optical system and on‐line performance
  publication-title: Chem Lett
– volume: 287
  start-page: 252
  year: 2000
  end-page: 260
  article-title: Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN. SELCON, and CDSSTR methods with an expanded reference set
  publication-title: Anal Biochem
– volume: 42
  start-page: 13746
  year: 2003
  end-page: 13753
  article-title: Effects of disulfide bonds on compactness of protein molecules revealed by volume, compressibility, and expansibility changes during reduction
  publication-title: Biochemistry
– volume: 19
  start-page: 129
  year: 2003
  end-page: 132
  article-title: Optical cell with a temperature‐control unit for a vacuum‐ultraviolet circular dichroism spectrophotometer
  publication-title: Anal Sci
– volume: 135
  start-page: 405
  year: 2004
  end-page: 411
  article-title: Secondary‐structure analysis of proteins by vacuum‐ultraviolet circular dichroism spectroscopy
  publication-title: J Biochem
– volume: 59
  start-page: 467
  year: 2005
  end-page: 475
  article-title: Combining prediction of secondary structure and solvent accessibility in proteins
  publication-title: Proteins
– year: 2002
– volume: 47
  start-page: 1309
  year: 1961
  end-page: 1314
  article-title: The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain
  publication-title: Proc Natl Acad Sci USA
– volume: 292
  start-page: 195
  year: 1999
  end-page: 202
  article-title: Protein secondary structure prediction based on position‐specific scoring matrices
  publication-title: J Mol Biol
– volume: 144
  start-page: 521
  year: 1980
  end-page: 550
  article-title: Role of the environment in the refolding of reduced pancreatic trypsin inhibitor
  publication-title: J Mol Biol
– volume: 35
  start-page: 313
  year: 1999
  end-page: 320
  article-title: Assigning secondary structure from protein coordinate data
  publication-title: Proteins
– volume: 23
  start-page: 5504
  year: 1984
  end-page: 5512
  article-title: Influence of an extrinsic cross‐link on the folding pathway of ribonuclease A. Conformational and thermodynamic analysis of cross‐linked (lysine lysine )‐ribonuclease A
  publication-title: Biochemistry
– volume: 22
  start-page: 2577
  year: 1983
  end-page: 2637
  article-title: Dictionary of protein secondary structure: pattern recognition of hydrogen‐bonded and geometrical features
  publication-title: Biopolymers
– volume: 42
  start-page: 460
  year: 2001
  end-page: 470
  article-title: SOMCD: method for evaluating protein secondary structure from UV circular dichroism spectra
  publication-title: Proteins
– volume: 43
  start-page: 6663
  year: 2004
  end-page: 6669
  article-title: NMR characterization of three‐disulfide variants of lysozyme. C64A/C80A, C76A/C94A, and C30A/C115A‐a marginally stable state in folded proteins
  publication-title: Biochemistry
– volume: 13
  start-page: 588
  year: 1992
  end-page: 590
  article-title: Circular dichroism user facility at the National Synchrotron Light Source: estimation of protein secondary structure
  publication-title: Biotechniques
– ident: e_1_2_8_34_2
  doi: 10.1021/bi030115q
– ident: e_1_2_8_32_2
  doi: 10.1016/S0022-2836(77)80200-3
– ident: e_1_2_8_26_2
  doi: 10.1093/jb/mvi101
– start-page: 104
  volume-title: Mechanism of protein folding
  year: 1994
  ident: e_1_2_8_4_2
  doi: 10.1093/oso/9780199633968.003.0005
– ident: e_1_2_8_21_2
  doi: 10.1016/0029-554X(80)90657-6
– ident: e_1_2_8_16_2
  doi: 10.1002/(SICI)1097-0134(19990515)35:3<313::AID-PROT5>3.0.CO;2-1
– ident: e_1_2_8_10_2
  doi: 10.1006/jmbi.1999.3442
– volume: 13
  start-page: 588
  year: 1992
  ident: e_1_2_8_22_2
  article-title: Circular dichroism user facility at the National Synchrotron Light Source: estimation of protein secondary structure
  publication-title: Biotechniques
– ident: e_1_2_8_41_2
  doi: 10.1073/pnas.90.9.4136
– ident: e_1_2_8_8_2
  doi: 10.1021/bi00254a009
– ident: e_1_2_8_29_2
  doi: 10.1246/cl.2001.522
– ident: e_1_2_8_40_2
  doi: 10.1042/bj2730211
– ident: e_1_2_8_30_2
  doi: 10.2116/analsci.19.129
– ident: e_1_2_8_5_2
  doi: 10.1021/bi00318a019
– ident: e_1_2_8_28_2
  doi: 10.1002/prot.22055
– ident: e_1_2_8_36_2
  doi: 10.1002/prot.20441
– ident: e_1_2_8_13_2
  doi: 10.1021/bi049967w
– ident: e_1_2_8_39_2
  doi: 10.1073/pnas.0305798101
– ident: e_1_2_8_3_2
  doi: 10.1016/0022-2836(80)90335-6
– ident: e_1_2_8_11_2
  doi: 10.1006/jmbi.2001.5121
– ident: e_1_2_8_12_2
  doi: 10.1021/bi0113418
– ident: e_1_2_8_18_2
  doi: 10.1110/ps.8.2.370
– volume-title: Circular dichroism: Principles and applications
  year: 2000
  ident: e_1_2_8_14_2
– ident: e_1_2_8_19_2
  doi: 10.1002/1097-0134(20010301)42:4<460::AID-PROT50>3.0.CO;2-U
– ident: e_1_2_8_20_2
  doi: 10.1016/0003-2697(92)90473-K
– ident: e_1_2_8_2_2
  doi: 10.1073/pnas.47.9.1309
– ident: e_1_2_8_23_2
  doi: 10.1016/S1367-5931(00)00243-X
– ident: e_1_2_8_17_2
  doi: 10.1006/abio.2000.4880
– ident: e_1_2_8_25_2
  doi: 10.1093/jb/mvh048
– ident: e_1_2_8_9_2
  doi: 10.1016/S0014-5793(00)01904-9
– ident: e_1_2_8_38_2
  doi: 10.1002/prot.21177
– ident: e_1_2_8_15_2
  doi: 10.1002/bip.360221211
– ident: e_1_2_8_35_2
  doi: 10.1006/abio.1998.2960
– ident: e_1_2_8_37_2
  doi: 10.1002/prot.20435
– ident: e_1_2_8_33_2
  doi: 10.1039/fd9949900245
– ident: e_1_2_8_6_2
  doi: 10.1002/bies.950080204
– ident: e_1_2_8_24_2
  doi: 10.1039/b305743g
– ident: e_1_2_8_27_2
  doi: 10.1529/biophysj.106.103515
– ident: e_1_2_8_31_2
  doi: 10.1006/jmbi.1999.3091
– ident: e_1_2_8_42_2
  doi: 10.1016/0003-9861(71)90364-X
– volume-title: The PyMOL Molecular Graphics System
  year: 2002
  ident: e_1_2_8_43_2
– ident: e_1_2_8_7_2
  doi: 10.1016/0014-5793(92)80466-T
SSID ssj0006936
Score 2.0589182
Snippet To elucidate the effects of specific disulfide bridges (Cys6‐Cys127, Cys30‐Cys115, Cys64‐Cys80, and Cys76‐Cys94) on the secondary structure of hen lysozyme,...
To elucidate the effects of specific disulfide bridges (Cys6-Cys127, Cys30-Cys115, Cys64-Cys80, and Cys76-Cys94) on the secondary structure of hen lysozyme,...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 191
SubjectTerms Animals
Circular Dichroism - methods
disulfide variants
Disulfides - chemistry
Humans
lysozyme
Muramidase - chemistry
Protein Structure, Secondary
secondary structure
synchrotron radiation
Synchrotrons
vacuum-ultraviolet circular dichroism
Title Comprehensive secondary-structure analysis of disulfide variants of lysozyme by synchrotron-radiation vacuum-ultraviolet circular dichroism
URI https://api.istex.fr/ark:/67375/WNG-N6B5X2C0-R/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fprot.22430
https://www.ncbi.nlm.nih.gov/pubmed/19434752
https://www.proquest.com/docview/67605892
Volume 77
WOSCitedRecordID wos000269300000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1097-0134
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006936
  issn: 0887-3585
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbKLqhceLQ8lkexBKoEUmjeTiQu7cLCoVqqVSv2Zjm2o0bdTVCyqVhO_AT4i_wSZpzHqlKFhLhEkTNxRvE345l48pmQVxCBamEnMdg3HPwoDiwRMc-KpSFrkTpUhl3_mE2n0Xwen2yRd92_MA0_RP_BDS3D-Gs0cJFUBxvSUOQxeAsTkAcJ-9AF4PoDMnw_m5wd9544jM0WgY0hgVY9Pal7sLn7yoQ0xHf77bpo82rwamafyd3_0_seudNGnfSwgcl9sqXzHbJ7mEPGvVzTfWrqQM0H9h1y66g72x53u8Htkl_oOEp93tS70wrzaAVK_P7xs6GgrUtNRctwQouUqqyqF2mmNL2EdByrbbAVLhff10tNkzWt1rk8BzXLIodeSiRJQJSAvKzrJTTVi1UpTOXAisqsNBWz0C_elFXLB-Rs8uF0_Mlqt3OwJEQpthWkUcAg40kdRwkvDZhkTDsqVl5iRyJwQyQjTCMpdGK7qURJ6STgUXQUK2j1HpJBXuT6MaFRqABHLPQdGfqSKQFd-jIBZ6TixPfdEXndjSmXLdc5brmx4A1Ls8txFLgZhRF52ct-bRg-rpXaN9DoRUR5gTVxLOBfph_5NDyCrH9s89mIvOiww2GIcPlF5LqoK5DGJegYlHvUQGrzOCTpYwFceWOQ8xc9-Mns86k5e_Ivwk_JbbMMZqoQn5EBAEM_Jzfl5Sqryj1yg82jvdZ6_gDAByPm
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1tb9MwELZQCxpfeNmAlbdZAk0CKSzNm5OPW6EMUcJUdWLfLMd2tGhtgpJmonziJ8Bf5Jdw56SpJk1IiC9R5FzcU_zc-c6-PibkJUSgWthJBPYNFy-MfEuEzLUiachapA6UYdefsDgOz86ik7Y2B_8L0_BDdAtuaBnGX6OB44L0wYY1FIkM3sAM5ELG3vcAR36P9N9Ox6eTzhUHkTkjsLEkUKvjJ3UONm9fmZH6-HG_XRduXo1ezfQzvvufit8jd9q4kx42QLlPbuh8m-wc5pBzL1Z0n5pKULPEvk1uHa3vtkbr8-B2yC90HaU-byreaYWZtAItfv_42ZDQ1qWmouU4oUVKVVbV8zRTml5CQo71NtgKj4vvq4WmyYpWq1yeg5plkUMvJdIkIE5AXtb1Aprq-bIUpnZgSWVWmppZ6BdfyqrFA3I6fjcbHVvtgQ6WhDjFtvw09BnkPOlwqISb-kwypocqUm5ih8J3AqQjTEMpdGI7qURJOUzAp-gwUtDqPiS9vMj1LqFhoABJLPCGMvAkUwK69GQC7khFiec5A_JqPahctmzneOjGnDc8zQ7HUeBmFAbkRSf7teH4uFZq32CjExHlBVbFMZ9_id_zODiCvH9k8-mA7K3Bw2GIcANG5LqoK5DGTegIlHvUYGrzc0jTx3x48tpA5y968JPp55m5e_wvwntk63j2acInH-KPT8htsylmahKfkh6ARD8jN-XlMqvK560R_QEzsybu
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Za9wwEBYl2-ulR9Jje0XQEmjBjW9Zj8mm25Yu7rIkNG9GlmRiumsHex26fepPaP9if0lnZK-XQCiUvhghjeTBmhnNSONPhLwCD1QLO-Wg3_DwIx5YImKexaUBa5E6VAZdf8LiODo95dMuNwf_hWnxIfoNN9QMY69RwfW5yvY3qKEIZPAWViAPIvaBH_AQ9HJwNBufTHpTHHJzR2CrScBWj0_q7m96X1qRBvhxv13lbl72Xs3yM777n4zfI3c6v5MetIJyn1zTxTbZOSgg5l6s6B41maBmi32b3Dhcl26N1vfB7ZBfaDoqfdZmvNMaI2kFXPz-8bMFoW0qTUWHcULLjKq8buZZrjS9gIAc822wFprL76uFpumK1qtCngGbVVnAKBXCJKCcAL1smgVUNfNlJUzuwJLKvDI5szAudsrrxQNyMn53PPpgdRc6WBL8FNsKsihgEPNkjqOElwVMMqYdxZWX2pEI3BDhCLNICp3abiaRUjop2BQdcQW13kOyVZSFfkxoFCqQJBb6jgx9yZSAIX2ZgjlSPPV9d0heryc1kR3aOV66MU9anGY3wVlIzCwMycue9rzF-LiSas_IRk8iqq-YFceC5Ev8PonDQ4j7R3YyG5LdtfAkMEV4ACMKXTY1UOMhNAfmHrUytXkdwvSxAFreGNH5Cx_JdPb52JSe_AvxLrk5PRonk4_xp6fktjkTMymJz8gWyIh-Tq7Li2VeVy86HfoDidYmaQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comprehensive+secondary-structure+analysis+of+disulfide+variants+of+lysozyme+by+synchrotron-radiation+vacuum-ultraviolet+circular+dichroism&rft.jtitle=Proteins%2C+structure%2C+function%2C+and+bioinformatics&rft.au=Matsuo%2C+Koichi&rft.au=Watanabe%2C+Hidenori&rft.au=Tate%2C+Shin-ichi&rft.au=Tachibana%2C+Hideki&rft.date=2009-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0887-3585&rft.eissn=1097-0134&rft.volume=77&rft.issue=1&rft.spage=191&rft.epage=201&rft_id=info:doi/10.1002%2Fprot.22430&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_N6B5X2C0_R
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-3585&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-3585&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-3585&client=summon