Dam Deformation Monitoring Data Analysis Using Space-Time Kalman Filter

Noise filtering, data predicting, and unmonitored data interpolating are important to dam deformation data analysis. However, traditional methods generally process single point monitoring data separately, without considering the spatial correlation between points. In this paper, the Space-Time Kalma...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:ISPRS international journal of geo-information Ročník 5; číslo 12; s. 236
Hlavní autoři: Dai, Wujiao, Liu, Ning, Santerre, Rock, Pan, Jiabao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.12.2016
Témata:
ISSN:2220-9964, 2220-9964
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Noise filtering, data predicting, and unmonitored data interpolating are important to dam deformation data analysis. However, traditional methods generally process single point monitoring data separately, without considering the spatial correlation between points. In this paper, the Space-Time Kalman Filter (STKF), a dynamic spatio-temporal filtering model, is used as a spatio-temporal data analysis method for dam deformation. There were three main steps in the method applied in this paper. The first step was to determine the Kriging spatial fields based on the characteristics of dam deformation. Next, the observation noise covariance, system noise covariance, the initial mean vector state, and its covariance were estimated using the Expectation Maximization algorithm (EM algorithm) in the second step. In the third step, we filtered the observation noise, interpolated the whole dam unmonitored data in space and time domains, and predicted the deformation for the whole dam using the Kalman filter recursion algorithm. The simulation data and Wuqiangxi dam deformation monitoring data were used to verify the STKF method. The results show that the STKF not only can filter the deformation data noise in both the temporal and spatial domain effectively, but also can interpolate and predict the deformation for the whole dam.
AbstractList Noise filtering, data predicting, and unmonitored data interpolating are important to dam deformation data analysis. However, traditional methods generally process single point monitoring data separately, without considering the spatial correlation between points. In this paper, the Space-Time Kalman Filter (STKF), a dynamic spatio-temporal filtering model, is used as a spatio-temporal data analysis method for dam deformation. There were three main steps in the method applied in this paper. The first step was to determine the Kriging spatial fields based on the characteristics of dam deformation. Next, the observation noise covariance, system noise covariance, the initial mean vector state, and its covariance were estimated using the Expectation Maximization algorithm (EM algorithm) in the second step. In the third step, we filtered the observation noise, interpolated the whole dam unmonitored data in space and time domains, and predicted the deformation for the whole dam using the Kalman filter recursion algorithm. The simulation data and Wuqiangxi dam deformation monitoring data were used to verify the STKF method. The results show that the STKF not only can filter the deformation data noise in both the temporal and spatial domain effectively, but also can interpolate and predict the deformation for the whole dam.
Author Liu, Ning
Dai, Wujiao
Santerre, Rock
Pan, Jiabao
Author_xml – sequence: 1
  givenname: Wujiao
  surname: Dai
  fullname: Dai, Wujiao
– sequence: 2
  givenname: Ning
  orcidid: 0000-0002-1038-5659
  surname: Liu
  fullname: Liu, Ning
– sequence: 3
  givenname: Rock
  surname: Santerre
  fullname: Santerre, Rock
– sequence: 4
  givenname: Jiabao
  orcidid: 0000-0003-0151-3089
  surname: Pan
  fullname: Pan, Jiabao
BookMark eNqFkctKLDEQhoMoeF35Ag1uhEN7cut0eimON47iQl2HSjoZMnR3xiSzmLc34yiIHLA2VRRf_VTVf4h2pzBZhE4JvmCsw3_9Yu4bQjFlYgcdUEpx3XWC736r99FJSgtcoiNMcnyAbmcwVjPrQhwh-zBVj2HyOUQ_zasZZKguJxjWyafqNW16z0swtn7xo63-wTDCVN34Idt4jPYcDMmefOYj9Hpz_XJ1Vz883d5fXT7UhjOca0ep4QL3tm0JUCe5kT1zshe6ZUTKXpdwVFjZaKmZ1kxq3PSucUCNk13HjtD9VrcPsFDL6EeIaxXAq49GiHMFMXszWOUM5qQBLjQI3krQne6kcKxveQ9amqJ1vtVaxvC2simr0SdjhwEmG1ZJUYYbInBZ_Fe07I4xbSWjBT37gS7CKpYvbqhGFjHGZaHIljIxpBStU8bnDwdyBD8ogtXGVPXN1DLz58fM1_3_o98BI0ijOg
CitedBy_id crossref_primary_10_1038_s41598_023_31182_x
crossref_primary_10_1016_j_engstruct_2024_118845
crossref_primary_10_1080_00396265_2021_1935578
crossref_primary_10_3390_infrastructures9090144
crossref_primary_10_1088_1361_665X_acf970
crossref_primary_10_1016_j_ymssp_2024_112217
crossref_primary_10_1016_j_eswa_2022_119439
crossref_primary_10_1007_s12665_019_8458_y
crossref_primary_10_1007_s40098_025_01336_x
crossref_primary_10_1155_2022_3567808
crossref_primary_10_1155_2021_5595277
crossref_primary_10_3390_app122312296
crossref_primary_10_3390_app15084368
crossref_primary_10_1177_14759217241271055
crossref_primary_10_3846_gac_2024_18892
crossref_primary_10_1016_j_rio_2025_100857
crossref_primary_10_1117_1_JRS_17_034507
crossref_primary_10_1007_s10291_017_0689_3
crossref_primary_10_3390_ijgi7010004
Cites_doi 10.1109/34.24792
10.1111/j.1467-9876.2005.00480.x
10.1007/s001900000157
10.1179/1752270611Y.0000000022
10.1007/BF02565111
10.1002/9781119115151
10.1002/9780470974391
10.1093/biomet/86.4.815
10.1186/BF03352291
10.1016/j.enggeo.2004.10.014
10.1111/j.1467-9892.1982.tb00349.x
10.1007/s10651-012-0192-5
10.1109/TAC.2009.2034192
10.1179/1752270614Y.0000000112
10.1179/1752270614Y.0000000139
10.1016/j.catena.2013.09.006
10.1016/0167-9473(95)00047-X
ContentType Journal Article
Copyright Copyright MDPI AG 2016
Copyright_xml – notice: Copyright MDPI AG 2016
DBID AAYXX
CITATION
7SC
7UA
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
H96
HCIFZ
JQ2
KR7
L.G
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/ijgi5120236
DatabaseName CrossRef
Computer and Information Systems Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
ProQuest Computer Science Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Publicly Available Content Database

CrossRef
Civil Engineering Abstracts
AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Visual Arts
EISSN 2220-9964
EndPage 236
ExternalDocumentID oai_doaj_org_article_fc0415a46ba6478ab9b986f3d74dab8c
4301240961
10_3390_ijgi5120236
GroupedDBID 5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IPNFZ
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RIG
ZBA
7SC
7UA
8FD
ABUWG
AZQEC
C1K
DWQXO
F1W
FR3
H96
JQ2
KR7
L.G
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
7S9
L.6
ID FETCH-LOGICAL-c430t-f22c460de771a2f84c8d3f8d6b73188dbbbbf26e85b8b3bb38b05df5fa2cf8993
IEDL.DBID BENPR
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000392493200018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2220-9964
IngestDate Fri Oct 03 12:53:05 EDT 2025
Thu Sep 04 17:05:38 EDT 2025
Thu Oct 02 03:43:08 EDT 2025
Fri Jul 25 11:43:38 EDT 2025
Sat Nov 29 07:16:22 EST 2025
Tue Nov 18 21:26:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c430t-f22c460de771a2f84c8d3f8d6b73188dbbbbf26e85b8b3bb38b05df5fa2cf8993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0151-3089
0000-0002-1038-5659
OpenAccessLink https://www.proquest.com/docview/1858303348?pq-origsite=%requestingapplication%
PQID 1858303348
PQPubID 2032387
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_fc0415a46ba6478ab9b986f3d74dab8c
proquest_miscellaneous_2305160430
proquest_miscellaneous_1880027832
proquest_journals_1858303348
crossref_citationtrail_10_3390_ijgi5120236
crossref_primary_10_3390_ijgi5120236
PublicationCentury 2000
PublicationDate 2016-12-01
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle ISPRS international journal of geo-information
PublicationYear 2016
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Alhajraf (ref_18) 2012; 19
Dai (ref_8) 2014; 46
Wikle (ref_13) 1999; 86
ref_11
Sahu (ref_16) 2005; 54
Huang (ref_10) 1996; 22
Li (ref_4) 2012; 44
Bookstein (ref_22) 1989; 11
ref_17
Dai (ref_25) 2015; 47
Chrzanowski (ref_7) 2005; 79
Wang (ref_3) 2009; 6
Piegorsch (ref_14) 2002; Volume 4
Qing (ref_19) 2012; 32
ref_21
ref_20
Oliver (ref_24) 2014; 113
Ince (ref_2) 2000; 52
ref_1
Yang (ref_5) 2001; 75
Shumway (ref_23) 1982; 3
Cressie (ref_9) 1994; 89
ref_6
Mardia (ref_12) 1998; 7
(ref_15) 2009; 54
References_xml – volume: 11
  start-page: 567
  year: 1989
  ident: ref_22
  article-title: Principal warps: Thin-plate splines and the decomposition of deformations
  publication-title: IEEE Trans. Patt. Anal.
  doi: 10.1109/34.24792
– volume: 6
  start-page: 658
  year: 2009
  ident: ref_3
  article-title: Application of Kalman filter analysis method in the deformation monitoring data procession
  publication-title: Chin. J. Eng. Geophys.
– ident: ref_11
– volume: 54
  start-page: 223
  year: 2005
  ident: ref_16
  article-title: A Bayesian kriged Kalman model for short-term forecasting of air pollution levels
  publication-title: J. R. Stat. Soc. C
  doi: 10.1111/j.1467-9876.2005.00480.x
– volume: 75
  start-page: 109
  year: 2001
  ident: ref_5
  article-title: Adaptively robust filtering for kinematic geodetic positioning
  publication-title: J. Geodesy
  doi: 10.1007/s001900000157
– volume: Volume 4
  start-page: 2045
  year: 2002
  ident: ref_14
  article-title: Space-time Kalman filter
  publication-title: Encyclopedia of Environmetrics
– volume: 89
  start-page: 379
  year: 1994
  ident: ref_9
  article-title: Comment on ‘An approach to statistical spatial-temporal modeling of meteorological fields’ by MS Handcock and JR Wallis
  publication-title: J. Am. Stat. Assoc.
– ident: ref_1
– volume: 44
  start-page: 189
  year: 2012
  ident: ref_4
  article-title: Real-time deformation measurements using time series of GPS coordinates processed by Kalman filter with shaping filter
  publication-title: Surv. Rev.
  doi: 10.1179/1752270611Y.0000000022
– ident: ref_6
– volume: 7
  start-page: 217
  year: 1998
  ident: ref_12
  article-title: The Kriged Kalman filter
  publication-title: Test
  doi: 10.1007/BF02565111
– ident: ref_20
  doi: 10.1002/9781119115151
– ident: ref_21
  doi: 10.1002/9780470974391
– volume: 86
  start-page: 815
  year: 1999
  ident: ref_13
  article-title: A dimension-reduced approach to space-time Kalman filtering
  publication-title: Biometrika
  doi: 10.1093/biomet/86.4.815
– volume: 52
  start-page: 837
  year: 2000
  ident: ref_2
  article-title: Real-time deformation monitoring with GPS and Kalman Filter
  publication-title: Earth Planets Space
  doi: 10.1186/BF03352291
– volume: 79
  start-page: 3
  year: 2005
  ident: ref_7
  article-title: Use of deformation monitoring results in solving geomechanical problems—Case studies
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2004.10.014
– volume: 3
  start-page: 253
  year: 1982
  ident: ref_23
  article-title: An approach to time series smoothing and forecasting using the EM algorithm
  publication-title: J. Time Ser. Anal.
  doi: 10.1111/j.1467-9892.1982.tb00349.x
– volume: 19
  start-page: 393
  year: 2012
  ident: ref_18
  article-title: Prediction of non-methane hydrocarbons in Kuwait using regression and Bayesian Kriged Kalman model
  publication-title: Env. Ecol. Stat.
  doi: 10.1007/s10651-012-0192-5
– volume: 54
  start-page: 2816
  year: 2009
  ident: ref_15
  article-title: Distributed Kriged Kalman filter for spatial estimation
  publication-title: IEEE Trans. Auto. Control
  doi: 10.1109/TAC.2009.2034192
– volume: 46
  start-page: 437
  year: 2014
  ident: ref_8
  article-title: Spatio-temporal modelling of dam deformation using independent component analysis
  publication-title: Surv. Rev.
  doi: 10.1179/1752270614Y.0000000112
– volume: 47
  start-page: 387
  year: 2015
  ident: ref_25
  article-title: A phase space reconstruction based single channel ICA algorithm and its application in dam deformation analysis
  publication-title: Surv. Rev.
  doi: 10.1179/1752270614Y.0000000139
– volume: 113
  start-page: 56
  year: 2014
  ident: ref_24
  article-title: A tutorial guide to geostatistics: Computing and modelling variograms and kriging
  publication-title: Catena
  doi: 10.1016/j.catena.2013.09.006
– ident: ref_17
– volume: 32
  start-page: 107
  year: 2012
  ident: ref_19
  article-title: Short-term wind speed forecasting for multiple wind farms using Bayesian Kriged-Kalman mode
  publication-title: Proc. Chin. Soc. Electr. Eng.
– volume: 22
  start-page: 159
  year: 1996
  ident: ref_10
  article-title: Spatio-temporal prediction of snow water equivalent using the Kalman filter
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/0167-9473(95)00047-X
SSID ssj0000913840
Score 2.1446583
Snippet Noise filtering, data predicting, and unmonitored data interpolating are important to dam deformation data analysis. However, traditional methods generally...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 236
SubjectTerms Algorithms
Covariance
dam deformation
Data analysis
Deformation
Kalman filters
kriging
Kriging interpolation
Monitoring
Noise
Noise prediction
prediction
space and time
Space-Time Kalman filter
spatio-temporal interpolation and prediction
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS9xAEB9EBO1DadXSs6es4JMQzH5ks3lsPa-CIkKr-Bb2I9tGvJzc5Qr-984muXBiS1_MYzIPy8zOzvyyM78BOBLUcCq9jBJNZSRSn0SKxj6SjFHHtPSmYee_vUyvrtTdXXa9Muor1IS19MCt4k68DU3kWkijQ1ukNpnJlPTcpcJpo2w4feM0WwFTzRmcUY7QpW3I44jrT8r7XyUGt0CY_iIENUz9rw7iJrqMP8D7Li0kX9vlfIS1otqGzW5C-e-nbXh3W84XrcR8B76P9ISMir7zkLSuGf7RkZGuNVlyjZCmJID8QGRcRKHdg1zoh4muyLgM1-S7cDM--3l6HnUjESIreFxHnjErZOyKNKWaeSWsctwrJ02KzqmcwcczWajEKMON4crEifOJ18x6hFb8E6xX06r4DEQwSzPvfOayRGDgV5i8JY5qY4T0mKgM4Hippdx2fOFhbMVDjrghqDRfUekAjnrhx5Ym4-9i34K6e5HAbd28QIvnncXz_1l8AMOlsfLO4eY5ph0KozEXagCH_Wd0lXD_oatiuggyqrlo5ezfMojIEioDEdreW6z1C2xhhiXb-pchrNezRbEPG_ZPXc5nB82efQaaJfEK
  priority: 102
  providerName: Directory of Open Access Journals
Title Dam Deformation Monitoring Data Analysis Using Space-Time Kalman Filter
URI https://www.proquest.com/docview/1858303348
https://www.proquest.com/docview/1880027832
https://www.proquest.com/docview/2305160430
https://doaj.org/article/fc0415a46ba6478ab9b986f3d74dab8c
Volume 5
WOSCitedRecordID wos000392493200018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: P5Z
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: PCBAR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: M7S
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: PIMPY
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagRaI98CggFsrKSD0hRd3YjuOcEGV3AQGriEJVuER-xG1Qm203u0hc-O3MJN4A4nEhhxzikRJlPG_PN4TsidjwWHoZJTqWkUh9Eql45CPJWOyYlt606PxHb9LZTB0fZ3lIuDXhWOVaJ7aK2s0t5sj3wa4oULdcqKcXlxFOjcLqahihcZVsIlIZ7PPNg8ksf9dnWRD1EkKYrjGPQ3y_X30-qcDIIXD6L6aoRez_TSG3VmZ683-_7xa5EfxL-qzbELfJlbLeIdfDqPPTrztk-6hqVh1Fc4e8GOtzOi77FkbayTgm--hYLzVdg5bQ9mwBPYQQu4ywb4S-1mfnuqbTCuvtd8mH6eT985dRmK0QWcFHy8gzZoUcuTJNY828ElY57pWTJgUpV87A5ZksVWKU4cZwZUaJ84nXzHqI0fg9slHP6_I-oYLZOPPOZy5LBHgQCrzAxMXaGCE9eDwD8mT9mwsbgMdx_sVZAQEI8qT4iScDstcTX3R4G38mO0B-9SQIkt0-mC9OiiBzhbeIP6CFNBo7arXJTKak5y4VThtlB2R3zcoiSG5T_ODjgDzul0HmsJCi63K-QhrVVmw5-zsNhHZJLBFR7cG_X_OQbIETJrsjMrtkY7lYlY_INftlWTWLYdjQwzZXMMSTqYd4_zaBe558gvX81dv843cQDAVl
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFKnlwKOACBRYpHJBsup9eL0-IERJQ6uEqIJS9ebuw9satU6IE1D_FL-RXb8A8bj1gI_2yJa9n-exM_MNwBbDimJueRBJzAMW2ygQOLQBJwQbIrlVFTv_0TieTMTxcXKwAt_aXhhfVtnqxEpRm6n2e-Tbzq4Ip24pE69mnwM_NcpnV9sRGjUsRtnlVxeylS_3B259nxMy3D18sxc0UwUCzWi4CCwhmvHQZHGMJbGCaWGoFYar2OFbGOUOS3gmIiUUVYoKFUbGRlYSbV10Qt19r8Eqo4xHPVjd2Z0cvO92dTzLpguZ6kZASpNwO_90mjuj6onafzF91YSA3wxAZdWGt_6373Ebbjb-M3pdA_4OrGTFBqw1o9zPLjfgxlFeLmuJ8i68HcgLNMi6Fk1U6zC_mYkGciFRS8qCqtoJ9GEmdRb4vhg0kucXskDD3NcT3IOPV_JW96FXTIvsASBGNE6ssYlJIuY8JOG83MhgqRTj1nl0fXjRLmuqG2J1P9_jPHUBlsdA-hMG-rDVCc9qPpE_i-14fHQingS8OjGdn6aNTkmt9vwKknElfcewVIlKBLfUxMxIJXQfNlvopI1mKtMfuOnDs-6y0yk-USSLbLr0MqLKSFPydxkXukaYe8a4h_9-zFNY2zt8N07H-5PRI1h3Dievy4E2obeYL7PHcF1_WeTl_EnzMyE4uWq8fgchOl8r
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgngceBQQCwWMVC5I0Sa24zgHhIBlodpqtRJQVb0EP-IS1GaXzS6of41fhycvQDxuPZBjMkoU-_M87JlvAHZ4pFkknAhiFYmAJy4OZBS6QFAaWaqE0zU7__5eMp3Kg4N0tgHfuloYTKvsdGKtqO3c4B750NsV6dUt43Lo2rSI2Wj8bPE5wA5SeNLatdNoIDLJT7_68K16ujvyc_2Y0vGrdy_fBG2HgcBwFq4CR6nhIrR5kkSKOsmNtMxJK3TisS6t9pejIpexlpppzaQOY-tip6hxPlJh_r3n4HzChcR0sll82O_vIN-mD56akkDG0nBYfDoqvHlFyvZfjGDdK-A3U1Dbt_G1_3lkrsPV1qsmz5tlcAM28nILLrUN3j-ebsGV_aJaNxLVTXg9UidklPeFm6TRbLjFSUZqpUhH1ULqjArydqFMHmC1DJmo4xNVknGBWQa34P2Z_NVt2CznZX4HCKcmSp11qU1j7v0m6X3f2EZKay6c9_MG8KSb4sy0dOvY9eM482EX4iH7CQ8D2OmFFw3LyJ_FXiBWehGkBq9vzJdHWatpMmeQdUFxoRXWESud6lQKx2zCrdLSDGC7g1HW6qsq-4GhATzqH3tNg8dHqszna5SR9Tk1o3-X8QFtHAnkkbv77888hIsepNne7nRyDy57L1Q0OULbsLlarvP7cMF8WRXV8kG9qgh8OGuwfge0YmbA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dam+Deformation+Monitoring+Data+Analysis+Using+Space-Time+Kalman+Filter&rft.jtitle=ISPRS+international+journal+of+geo-information&rft.au=Dai%2C+Wujiao&rft.au=Liu%2C+Ning&rft.au=Santerre%2C+Rock&rft.au=Pan%2C+Jiabao&rft.date=2016-12-01&rft.issn=2220-9964&rft.eissn=2220-9964&rft.volume=5&rft.issue=12&rft_id=info:doi/10.3390%2Fijgi5120236&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2220-9964&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2220-9964&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2220-9964&client=summon