Dam Deformation Monitoring Data Analysis Using Space-Time Kalman Filter
Noise filtering, data predicting, and unmonitored data interpolating are important to dam deformation data analysis. However, traditional methods generally process single point monitoring data separately, without considering the spatial correlation between points. In this paper, the Space-Time Kalma...
Saved in:
| Published in: | ISPRS international journal of geo-information Vol. 5; no. 12; p. 236 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.12.2016
|
| Subjects: | |
| ISSN: | 2220-9964, 2220-9964 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Noise filtering, data predicting, and unmonitored data interpolating are important to dam deformation data analysis. However, traditional methods generally process single point monitoring data separately, without considering the spatial correlation between points. In this paper, the Space-Time Kalman Filter (STKF), a dynamic spatio-temporal filtering model, is used as a spatio-temporal data analysis method for dam deformation. There were three main steps in the method applied in this paper. The first step was to determine the Kriging spatial fields based on the characteristics of dam deformation. Next, the observation noise covariance, system noise covariance, the initial mean vector state, and its covariance were estimated using the Expectation Maximization algorithm (EM algorithm) in the second step. In the third step, we filtered the observation noise, interpolated the whole dam unmonitored data in space and time domains, and predicted the deformation for the whole dam using the Kalman filter recursion algorithm. The simulation data and Wuqiangxi dam deformation monitoring data were used to verify the STKF method. The results show that the STKF not only can filter the deformation data noise in both the temporal and spatial domain effectively, but also can interpolate and predict the deformation for the whole dam. |
|---|---|
| AbstractList | Noise filtering, data predicting, and unmonitored data interpolating are important to dam deformation data analysis. However, traditional methods generally process single point monitoring data separately, without considering the spatial correlation between points. In this paper, the Space-Time Kalman Filter (STKF), a dynamic spatio-temporal filtering model, is used as a spatio-temporal data analysis method for dam deformation. There were three main steps in the method applied in this paper. The first step was to determine the Kriging spatial fields based on the characteristics of dam deformation. Next, the observation noise covariance, system noise covariance, the initial mean vector state, and its covariance were estimated using the Expectation Maximization algorithm (EM algorithm) in the second step. In the third step, we filtered the observation noise, interpolated the whole dam unmonitored data in space and time domains, and predicted the deformation for the whole dam using the Kalman filter recursion algorithm. The simulation data and Wuqiangxi dam deformation monitoring data were used to verify the STKF method. The results show that the STKF not only can filter the deformation data noise in both the temporal and spatial domain effectively, but also can interpolate and predict the deformation for the whole dam. |
| Author | Liu, Ning Dai, Wujiao Santerre, Rock Pan, Jiabao |
| Author_xml | – sequence: 1 givenname: Wujiao surname: Dai fullname: Dai, Wujiao – sequence: 2 givenname: Ning orcidid: 0000-0002-1038-5659 surname: Liu fullname: Liu, Ning – sequence: 3 givenname: Rock surname: Santerre fullname: Santerre, Rock – sequence: 4 givenname: Jiabao orcidid: 0000-0003-0151-3089 surname: Pan fullname: Pan, Jiabao |
| BookMark | eNqFkctKLDEQhoMoeF35Ag1uhEN7cut0eimON47iQl2HSjoZMnR3xiSzmLc34yiIHLA2VRRf_VTVf4h2pzBZhE4JvmCsw3_9Yu4bQjFlYgcdUEpx3XWC736r99FJSgtcoiNMcnyAbmcwVjPrQhwh-zBVj2HyOUQ_zasZZKguJxjWyafqNW16z0swtn7xo63-wTDCVN34Idt4jPYcDMmefOYj9Hpz_XJ1Vz883d5fXT7UhjOca0ep4QL3tm0JUCe5kT1zshe6ZUTKXpdwVFjZaKmZ1kxq3PSucUCNk13HjtD9VrcPsFDL6EeIaxXAq49GiHMFMXszWOUM5qQBLjQI3krQne6kcKxveQ9amqJ1vtVaxvC2simr0SdjhwEmG1ZJUYYbInBZ_Fe07I4xbSWjBT37gS7CKpYvbqhGFjHGZaHIljIxpBStU8bnDwdyBD8ogtXGVPXN1DLz58fM1_3_o98BI0ijOg |
| CitedBy_id | crossref_primary_10_1038_s41598_023_31182_x crossref_primary_10_1016_j_engstruct_2024_118845 crossref_primary_10_1080_00396265_2021_1935578 crossref_primary_10_3390_infrastructures9090144 crossref_primary_10_1088_1361_665X_acf970 crossref_primary_10_1016_j_ymssp_2024_112217 crossref_primary_10_1016_j_eswa_2022_119439 crossref_primary_10_1007_s12665_019_8458_y crossref_primary_10_1007_s40098_025_01336_x crossref_primary_10_1155_2022_3567808 crossref_primary_10_1155_2021_5595277 crossref_primary_10_3390_app122312296 crossref_primary_10_3390_app15084368 crossref_primary_10_1177_14759217241271055 crossref_primary_10_3846_gac_2024_18892 crossref_primary_10_1016_j_rio_2025_100857 crossref_primary_10_1117_1_JRS_17_034507 crossref_primary_10_1007_s10291_017_0689_3 crossref_primary_10_3390_ijgi7010004 |
| Cites_doi | 10.1109/34.24792 10.1111/j.1467-9876.2005.00480.x 10.1007/s001900000157 10.1179/1752270611Y.0000000022 10.1007/BF02565111 10.1002/9781119115151 10.1002/9780470974391 10.1093/biomet/86.4.815 10.1186/BF03352291 10.1016/j.enggeo.2004.10.014 10.1111/j.1467-9892.1982.tb00349.x 10.1007/s10651-012-0192-5 10.1109/TAC.2009.2034192 10.1179/1752270614Y.0000000112 10.1179/1752270614Y.0000000139 10.1016/j.catena.2013.09.006 10.1016/0167-9473(95)00047-X |
| ContentType | Journal Article |
| Copyright | Copyright MDPI AG 2016 |
| Copyright_xml | – notice: Copyright MDPI AG 2016 |
| DBID | AAYXX CITATION 7SC 7UA 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 H96 HCIFZ JQ2 KR7 L.G L6V L7M L~C L~D M7S P5Z P62 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
| DOI | 10.3390/ijgi5120236 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection ProQuest Computer Science Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef Civil Engineering Abstracts AGRICOLA |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Visual Arts |
| EISSN | 2220-9964 |
| EndPage | 236 |
| ExternalDocumentID | oai_doaj_org_article_fc0415a46ba6478ab9b986f3d74dab8c 4301240961 10_3390_ijgi5120236 |
| GroupedDBID | 5VS 8FE 8FG 8FH AADQD AAFWJ AAHBH AAYXX ABJCF ADBBV ADMLS AENEX AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION GROUPED_DOAJ HCIFZ IPNFZ KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS RIG ZBA 7SC 7UA 8FD ABUWG AZQEC C1K DWQXO F1W FR3 H96 JQ2 KR7 L.G L7M L~C L~D PKEHL PQEST PQQKQ PQUKI PRINS PUEGO 7S9 L.6 |
| ID | FETCH-LOGICAL-c430t-f22c460de771a2f84c8d3f8d6b73188dbbbbf26e85b8b3bb38b05df5fa2cf8993 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000392493200018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2220-9964 |
| IngestDate | Fri Oct 03 12:53:05 EDT 2025 Thu Sep 04 17:05:38 EDT 2025 Thu Oct 02 03:43:08 EDT 2025 Fri Jul 25 11:43:38 EDT 2025 Sat Nov 29 07:16:22 EST 2025 Tue Nov 18 21:26:46 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c430t-f22c460de771a2f84c8d3f8d6b73188dbbbbf26e85b8b3bb38b05df5fa2cf8993 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-0151-3089 0000-0002-1038-5659 |
| OpenAccessLink | https://doaj.org/article/fc0415a46ba6478ab9b986f3d74dab8c |
| PQID | 1858303348 |
| PQPubID | 2032387 |
| PageCount | 1 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_fc0415a46ba6478ab9b986f3d74dab8c proquest_miscellaneous_2305160430 proquest_miscellaneous_1880027832 proquest_journals_1858303348 crossref_citationtrail_10_3390_ijgi5120236 crossref_primary_10_3390_ijgi5120236 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-12-01 |
| PublicationDateYYYYMMDD | 2016-12-01 |
| PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | ISPRS international journal of geo-information |
| PublicationYear | 2016 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Alhajraf (ref_18) 2012; 19 Dai (ref_8) 2014; 46 Wikle (ref_13) 1999; 86 ref_11 Sahu (ref_16) 2005; 54 Huang (ref_10) 1996; 22 Li (ref_4) 2012; 44 Bookstein (ref_22) 1989; 11 ref_17 Dai (ref_25) 2015; 47 Chrzanowski (ref_7) 2005; 79 Wang (ref_3) 2009; 6 Piegorsch (ref_14) 2002; Volume 4 Qing (ref_19) 2012; 32 ref_21 ref_20 Oliver (ref_24) 2014; 113 Ince (ref_2) 2000; 52 ref_1 Yang (ref_5) 2001; 75 Shumway (ref_23) 1982; 3 Cressie (ref_9) 1994; 89 ref_6 Mardia (ref_12) 1998; 7 (ref_15) 2009; 54 |
| References_xml | – volume: 11 start-page: 567 year: 1989 ident: ref_22 article-title: Principal warps: Thin-plate splines and the decomposition of deformations publication-title: IEEE Trans. Patt. Anal. doi: 10.1109/34.24792 – volume: 6 start-page: 658 year: 2009 ident: ref_3 article-title: Application of Kalman filter analysis method in the deformation monitoring data procession publication-title: Chin. J. Eng. Geophys. – ident: ref_11 – volume: 54 start-page: 223 year: 2005 ident: ref_16 article-title: A Bayesian kriged Kalman model for short-term forecasting of air pollution levels publication-title: J. R. Stat. Soc. C doi: 10.1111/j.1467-9876.2005.00480.x – volume: 75 start-page: 109 year: 2001 ident: ref_5 article-title: Adaptively robust filtering for kinematic geodetic positioning publication-title: J. Geodesy doi: 10.1007/s001900000157 – volume: Volume 4 start-page: 2045 year: 2002 ident: ref_14 article-title: Space-time Kalman filter publication-title: Encyclopedia of Environmetrics – volume: 89 start-page: 379 year: 1994 ident: ref_9 article-title: Comment on ‘An approach to statistical spatial-temporal modeling of meteorological fields’ by MS Handcock and JR Wallis publication-title: J. Am. Stat. Assoc. – ident: ref_1 – volume: 44 start-page: 189 year: 2012 ident: ref_4 article-title: Real-time deformation measurements using time series of GPS coordinates processed by Kalman filter with shaping filter publication-title: Surv. Rev. doi: 10.1179/1752270611Y.0000000022 – ident: ref_6 – volume: 7 start-page: 217 year: 1998 ident: ref_12 article-title: The Kriged Kalman filter publication-title: Test doi: 10.1007/BF02565111 – ident: ref_20 doi: 10.1002/9781119115151 – ident: ref_21 doi: 10.1002/9780470974391 – volume: 86 start-page: 815 year: 1999 ident: ref_13 article-title: A dimension-reduced approach to space-time Kalman filtering publication-title: Biometrika doi: 10.1093/biomet/86.4.815 – volume: 52 start-page: 837 year: 2000 ident: ref_2 article-title: Real-time deformation monitoring with GPS and Kalman Filter publication-title: Earth Planets Space doi: 10.1186/BF03352291 – volume: 79 start-page: 3 year: 2005 ident: ref_7 article-title: Use of deformation monitoring results in solving geomechanical problems—Case studies publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2004.10.014 – volume: 3 start-page: 253 year: 1982 ident: ref_23 article-title: An approach to time series smoothing and forecasting using the EM algorithm publication-title: J. Time Ser. Anal. doi: 10.1111/j.1467-9892.1982.tb00349.x – volume: 19 start-page: 393 year: 2012 ident: ref_18 article-title: Prediction of non-methane hydrocarbons in Kuwait using regression and Bayesian Kriged Kalman model publication-title: Env. Ecol. Stat. doi: 10.1007/s10651-012-0192-5 – volume: 54 start-page: 2816 year: 2009 ident: ref_15 article-title: Distributed Kriged Kalman filter for spatial estimation publication-title: IEEE Trans. Auto. Control doi: 10.1109/TAC.2009.2034192 – volume: 46 start-page: 437 year: 2014 ident: ref_8 article-title: Spatio-temporal modelling of dam deformation using independent component analysis publication-title: Surv. Rev. doi: 10.1179/1752270614Y.0000000112 – volume: 47 start-page: 387 year: 2015 ident: ref_25 article-title: A phase space reconstruction based single channel ICA algorithm and its application in dam deformation analysis publication-title: Surv. Rev. doi: 10.1179/1752270614Y.0000000139 – volume: 113 start-page: 56 year: 2014 ident: ref_24 article-title: A tutorial guide to geostatistics: Computing and modelling variograms and kriging publication-title: Catena doi: 10.1016/j.catena.2013.09.006 – ident: ref_17 – volume: 32 start-page: 107 year: 2012 ident: ref_19 article-title: Short-term wind speed forecasting for multiple wind farms using Bayesian Kriged-Kalman mode publication-title: Proc. Chin. Soc. Electr. Eng. – volume: 22 start-page: 159 year: 1996 ident: ref_10 article-title: Spatio-temporal prediction of snow water equivalent using the Kalman filter publication-title: Comput. Stat. Data Anal. doi: 10.1016/0167-9473(95)00047-X |
| SSID | ssj0000913840 |
| Score | 2.1446583 |
| Snippet | Noise filtering, data predicting, and unmonitored data interpolating are important to dam deformation data analysis. However, traditional methods generally... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 236 |
| SubjectTerms | Algorithms Covariance dam deformation Data analysis Deformation Kalman filters kriging Kriging interpolation Monitoring Noise Noise prediction prediction space and time Space-Time Kalman filter spatio-temporal interpolation and prediction |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB-0FdQHP6rSs1VW6JOwNJfd7G6epPV6CsJR_KJvYT_bSJtrL3dC__vuJHtR8ePFPCYDCZmd75nfAOxpZR3LPafGjC3lPGS0jH4zVWWuhej2Mdpu2YSczdTJSXmcEm5taqtc68ROUbu5xRz5frQrKqpbxtWbyyuKW6OwuppWaNyGTUQqi-d88_BodvxxyLIg6mUMYfrBPBbj-_3622kdjRwCp_9iijrE_t8Ucmdlpg__9_sewYPkX5KD_kA8hlu-2YK7adX52fUW3P9at6ueon0C7yb6gkz8MMJIehnHZB-Z6KUma9AS0vUWkE8xxPYU50bIB31-oRsyrbHe_hS-TI8-v31P024FajnLljTkueUic17Ksc6D4lY5FpQTRkYpV87EK-TCq8Iow4xhymSFC0XQuQ0xRmPPYKOZN34bSKaDy6V3vFCCeyNV9EBl9BoKaUWpnRnB6_VvrmwCHsf9F-dVDECQJ9VPPBnB3kB82eNt_JnsEPk1kCBIdndjvjitksxVwSL-gObCaJyo1aY0pRKBOcmdNsqOYHfNyipJblv94OMIXg2Po8xhIUU3fr5CGtVVbFn-d5oY2hVjgYhqz__9mh24F50w0bfI7MLGcrHyL-CO_b6s28XLdKBvANkJAAI priority: 102 providerName: ProQuest |
| Title | Dam Deformation Monitoring Data Analysis Using Space-Time Kalman Filter |
| URI | https://www.proquest.com/docview/1858303348 https://www.proquest.com/docview/1880027832 https://www.proquest.com/docview/2305160430 https://doaj.org/article/fc0415a46ba6478ab9b986f3d74dab8c |
| Volume | 5 |
| WOSCitedRecordID | wos000392493200018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2220-9964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913840 issn: 2220-9964 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2220-9964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913840 issn: 2220-9964 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2220-9964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913840 issn: 2220-9964 databaseCode: P5Z dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2220-9964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913840 issn: 2220-9964 databaseCode: PCBAR dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2220-9964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913840 issn: 2220-9964 databaseCode: M7S dateStart: 20120301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2220-9964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913840 issn: 2220-9964 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2220-9964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913840 issn: 2220-9964 databaseCode: PIMPY dateStart: 20120301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-hDQl4mGCA6BiVkfaEFC21Hdt5ZLQFhKgiBmjwEvlzBG3ZtLaT9sLfztlJqyJAvJAHP8T3YN3lfHe5u98BHGhlHaOeZ8aMbMZ5yLMS_eZMlVQLkeYx2jRsQs5m6uSkrDZGfcWasA4euGPcYbCxiVxzYXRsi9SmNKUSgTnJnTbKxts3l-VGMJXu4HLEMHTpGvIYxvWHzffTBo1bBEz_xQQlpP7fLuJkXab3Yad3C8nL7jgP4JZvd-FOP6H8280u3PvczJcdxfwhvB7rczL2685D0qlm_EdHxnqhyQprhKSSAHKMkbHPYrsHeafPznVLpk1Mkz-CT9PJx1dvsn4kQmY5yxdZoNRykTsv5UjToLhVjgXlhJGonMoZfAIVXhVGGWYMUyYvXCiCpjZgaMUew1Z70fonQHIdHJXe8UIJ7o1U6DhKNPaFtKLUzgzgxYpLte3xwuPYirMa44bI0nqDpQM4WBNfdjAZfyY7iuxek0Rs6_QCJV73Eq__JfEB7K-EVfcKN6_R7VBojRlXA3i-3kZVifkP3fqLZaRRKdHK6N9pMCIrRiICoe39j7M-hbvoYYmu_mUfthZXS_8MbtvrRTO_GsL20WRWfRimb3cYy06P4_pjgmtVfMX96u376stPJyT37A |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VglQ48CigLhQwUrkgRc3ajuMcEAKWpdWWVSUKqnoJfrZBbXbZ7IL6p_iNePJYQDxuPZBjMkqU-Mt4xp75PoAtJY1l1PFI676JOPdxlIW4OZIZVULUeoymFptIx2N5eJjtr8C3rhcGyyo7n1g7ajsxuEa-HeYVGdwt4_L59HOEqlG4u9pJaDSwGLnzryFlq57tDsL4PqF0-Prg1U7UqgpEhrN4HnlKDRexdWnaV9RLbqRlXlqh04BvaXU4PBVOJlpqpjWTOk6sT7yixofshIX7XoLLnNMYFRP2k6Plmg5ybIaEqWkDZCyLt4tPx0WYUpGm_ZeJr9YH-M3913Pa8Mb_9jVuwvU2eiYvGrjfghVXrsNaK-R-cr4O1z4U1aKxqG7Dm4E6IwO3bNAkjQfDpUwyUHNFOkoWUldOkHdTZVyEXTFkpE7PVEmGBVYT3IH3F_JWd2G1nJRuA0isvKWpszyRgjudyhBfpyEmSlIjMmV1D552w5qbllYd1T1O85BeIQbynzDQg62l8bRhE_mz2UvEx9IEKcDrE5PZcd56lNwbZFdQXGiF_cJKZzqTwjObcqu0ND3Y7KCTt36pyn_gpgePl5eDR8FtIlW6yQJtZL0fzejfbULimvQF8sXd-_djHsHazsHbvXxvdzy6D1dDuCmaYqBNWJ3PFu4BXDFf5kU1e1j_SgQ-XjRavwPn6V5a |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFH4qKWI5FCggAgUGqVyQrDgz4_H4UKG2JlAFRRGbenNnLUatE-KEqn-NX8eMt4JYbj2Qo_Nky_bnt8y8930A24IrTbChgZRDFVBqwyBxeXPAEywYq_QYVSU2EU8m_PAwma7B93YWxrdVtj6xctR6pvwa-cDFFe7cLaF8YJu2iGk6ejn_GngFKb_T2spp1BAZm_MzV76VOwepe9fPMR69-rD_JmgUBgJFSbgMLMaKslCbOB4KbDlVXBPLNZOxwzrX0v0sZoZHkksiJeEyjLSNrMDKukqFuPNegXXOWIJ7sD7d39t9163weMZNVz7VQ4GEJOEg_3KcuwDrSdt_CYOVWsBvwaCKcKNb__OzuQ0bTV6NdusP4Q6smWITrjcS75_PN-Hmp7xc1RblXXidilOUmm50E9W-zS9yolQsBWrJWlDVU4Hez4UygZ-XQWNxcioKNMp9n8E9-Hgpd3UfesWsMA8AhcJqHBtNI86okTF3mXfssqUoViwRWvbhRfuKM9UQrnvdj5PMFV4eD9lPeOjDdmc8r3lG_my257HSmXhy8OrAbHGcNb4ms8rzLgjKpPCTxEImMuHMEh1TLSRXfdhqYZQ1HqvMLjDUh2fd387X-A0kUZjZytvwaqea4L_buJI2GjLPJPfw35d5CtccSLO3B5PxI7jh8lBWdwltQW-5WJnHcFV9W-bl4knzXSE4umy4_gCPHmhB |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dam+Deformation+Monitoring+Data+Analysis+Using+Space-Time+Kalman+Filter&rft.jtitle=ISPRS+international+journal+of+geo-information&rft.au=Wujiao+Dai&rft.au=Ning+Liu&rft.au=Rock+Santerre&rft.au=Jiabao+Pan&rft.date=2016-12-01&rft.pub=MDPI+AG&rft.eissn=2220-9964&rft.volume=5&rft.issue=12&rft.spage=236&rft_id=info:doi/10.3390%2Fijgi5120236&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_fc0415a46ba6478ab9b986f3d74dab8c |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2220-9964&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2220-9964&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2220-9964&client=summon |