Advanced Methods for Photovoltaic Output Power Forecasting: A Review

Forecasting is a crucial task for successfully integrating photovoltaic (PV) output power into the grid. The design of accurate photovoltaic output forecasters remains a challenging issue, particularly for multistep-ahead prediction. Accurate PV output power forecasting is critical in a number of ap...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences Vol. 10; no. 2; p. 487
Main Authors: Mellit, Adel, Massi Pavan, Alessandro, Ogliari, Emanuele, Leva, Sonia, Lughi, Vanni
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.01.2020
Subjects:
ISSN:2076-3417, 2076-3417
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Forecasting is a crucial task for successfully integrating photovoltaic (PV) output power into the grid. The design of accurate photovoltaic output forecasters remains a challenging issue, particularly for multistep-ahead prediction. Accurate PV output power forecasting is critical in a number of applications, such as micro-grids (MGs), energy optimization and management, PV integrated in smart buildings, and electrical vehicle chartering. Over the last decade, a vast literature has been produced on this topic, investigating numerical and probabilistic methods, physical models, and artificial intelligence (AI) techniques. This paper aims at providing a complete and critical review on the recent applications of AI techniques; we will focus particularly on machine learning (ML), deep learning (DL), and hybrid methods, as these branches of AI are becoming increasingly attractive. Special attention will be paid to the recent development of the application of DL, as well as to the future trends in this topic.
AbstractList Forecasting is a crucial task for successfully integrating photovoltaic (PV) output power into the grid. The design of accurate photovoltaic output forecasters remains a challenging issue, particularly for multistep-ahead prediction. Accurate PV output power forecasting is critical in a number of applications, such as micro-grids (MGs), energy optimization and management, PV integrated in smart buildings, and electrical vehicle chartering. Over the last decade, a vast literature has been produced on this topic, investigating numerical and probabilistic methods, physical models, and artificial intelligence (AI) techniques. This paper aims at providing a complete and critical review on the recent applications of AI techniques; we will focus particularly on machine learning (ML), deep learning (DL), and hybrid methods, as these branches of AI are becoming increasingly attractive. Special attention will be paid to the recent development of the application of DL, as well as to the future trends in this topic.
Author Mellit, Adel
Leva, Sonia
Massi Pavan, Alessandro
Lughi, Vanni
Ogliari, Emanuele
Author_xml – sequence: 1
  givenname: Adel
  surname: Mellit
  fullname: Mellit, Adel
– sequence: 2
  givenname: Alessandro
  surname: Massi Pavan
  fullname: Massi Pavan, Alessandro
– sequence: 3
  givenname: Emanuele
  orcidid: 0000-0002-2106-0374
  surname: Ogliari
  fullname: Ogliari, Emanuele
– sequence: 4
  givenname: Sonia
  orcidid: 0000-0002-7883-0034
  surname: Leva
  fullname: Leva, Sonia
– sequence: 5
  givenname: Vanni
  surname: Lughi
  fullname: Lughi, Vanni
BookMark eNptUE1LAzEQDVLBWnvyDyx4lGq-drP1VqrVgtIieg7ZZLZNWTdrNtvivzdakSIODDO8ee_NMKeoV7saEDon-IqxMb5WTUMwppjn4gj1KRbZiHEiegf9CRq27QbHGBOWE9xHtxOzVbUGkzxBWDvTJqXzyXLtgtu6Kiirk0UXmi4kS7cDn8ycB63aYOvVTTJJnmFrYXeGjktVtTD8qQP0Ort7mT6MHhf38-nkcaQ5w2EEeUq5KQwGyrChYyAppNQUBeGKMp7jjLISlIpIQakmORVxHEFjhIkqNkDzva9xaiMbb9-U_5BOWfkNOL-SygerK5BYa5IWvOQ6psiywnCeA2eFybTKMxK9LvZejXfvHbRBblzn63i-pDzLRVwt0si63LO0d23rofzdSrD8-ro8-Hpkkz9sbYMK1tXBK1v9q_kEE1eFzA
CitedBy_id crossref_primary_10_3390_en13154017
crossref_primary_10_1016_j_energy_2023_129461
crossref_primary_10_3390_app15179672
crossref_primary_10_1016_j_renene_2021_02_166
crossref_primary_10_1016_j_epsr_2024_110968
crossref_primary_10_1016_j_ijhydene_2024_02_221
crossref_primary_10_4018_IJWSR_353899
crossref_primary_10_1080_15567036_2021_1924316
crossref_primary_10_1007_s11831_024_10125_3
crossref_primary_10_1016_j_seta_2021_101354
crossref_primary_10_1016_j_renene_2024_121692
crossref_primary_10_1016_j_seta_2023_103377
crossref_primary_10_48077_scihor_24_10__2021_9_16
crossref_primary_10_3390_en18092309
crossref_primary_10_3390_en17020438
crossref_primary_10_3390_electronics9111971
crossref_primary_10_1109_ACCESS_2024_3487055
crossref_primary_10_1177_0958305X231164676
crossref_primary_10_3390_app10175975
crossref_primary_10_1016_j_fraope_2025_100329
crossref_primary_10_1016_j_egyr_2024_08_007
crossref_primary_10_1016_j_ijforecast_2021_11_001
crossref_primary_10_1109_ACCESS_2021_3071269
crossref_primary_10_1016_j_asej_2024_102740
crossref_primary_10_1109_ACCESS_2020_3039733
crossref_primary_10_3389_fenrg_2025_1611429
crossref_primary_10_1002_ep_14077
crossref_primary_10_1155_2022_2376353
crossref_primary_10_1016_j_jclepro_2024_144599
crossref_primary_10_1007_s42835_025_02369_1
crossref_primary_10_1016_j_compchemeng_2024_108740
crossref_primary_10_1016_j_heliyon_2024_e26088
crossref_primary_10_3390_en13225951
crossref_primary_10_1016_j_solener_2023_112203
crossref_primary_10_1109_TGRS_2024_3392337
crossref_primary_10_1016_j_engappai_2024_108785
crossref_primary_10_3390_en13112873
crossref_primary_10_1155_2020_8819925
crossref_primary_10_1049_stg2_12146
crossref_primary_10_1007_s12667_022_00513_8
crossref_primary_10_3390_en15124341
crossref_primary_10_1016_j_engappai_2020_104000
crossref_primary_10_1002_admt_202301209
crossref_primary_10_1007_s10489_022_04175_y
crossref_primary_10_3390_en17163877
crossref_primary_10_1016_j_seta_2022_102060
crossref_primary_10_1109_ACCESS_2021_3117004
crossref_primary_10_3390_en18102450
crossref_primary_10_1016_j_energy_2023_127542
crossref_primary_10_1186_s43067_023_00091_4
crossref_primary_10_1016_j_ref_2025_100739
crossref_primary_10_3390_app11156887
crossref_primary_10_1016_j_enbuild_2025_115311
crossref_primary_10_3390_en14133992
crossref_primary_10_1007_s00202_024_02281_3
crossref_primary_10_1016_j_segan_2024_101337
crossref_primary_10_1016_j_solener_2022_05_049
crossref_primary_10_3389_fenrg_2023_1218603
crossref_primary_10_1016_j_rser_2025_115719
crossref_primary_10_3390_en14030789
crossref_primary_10_3390_en14102893
crossref_primary_10_1016_j_rineng_2025_107140
crossref_primary_10_1016_j_eswa_2024_124286
crossref_primary_10_3390_su142417005
crossref_primary_10_1016_j_ref_2024_100607
crossref_primary_10_3390_wevj16010009
crossref_primary_10_1155_2022_4998200
crossref_primary_10_3390_app122111290
crossref_primary_10_3390_en15114171
crossref_primary_10_1016_j_energy_2024_133495
crossref_primary_10_1016_j_energy_2025_135214
crossref_primary_10_1016_j_solener_2020_10_024
crossref_primary_10_1016_j_energy_2025_135213
crossref_primary_10_3390_en16186613
crossref_primary_10_61435_ijred_2025_60547
crossref_primary_10_3390_en15113882
crossref_primary_10_1016_j_scs_2022_104260
crossref_primary_10_1016_j_egyr_2022_12_076
crossref_primary_10_1007_s12559_024_10284_2
crossref_primary_10_3390_en17010097
crossref_primary_10_1016_j_solener_2023_111856
crossref_primary_10_3390_electronics12030730
crossref_primary_10_37394_232016_2025_20_9
crossref_primary_10_1109_ACCESS_2025_3589131
crossref_primary_10_1016_j_esd_2024_101512
crossref_primary_10_3390_en13092166
crossref_primary_10_3390_en16248059
crossref_primary_10_3390_en15010370
crossref_primary_10_1016_j_suscom_2025_101174
crossref_primary_10_3390_en15228755
crossref_primary_10_1016_j_apenergy_2022_119603
crossref_primary_10_1016_j_rser_2022_112224
crossref_primary_10_1155_2022_6983242
crossref_primary_10_3390_en13225978
crossref_primary_10_1016_j_egyr_2023_01_059
crossref_primary_10_1016_j_renene_2022_05_056
crossref_primary_10_1016_j_solener_2024_113044
crossref_primary_10_1007_s10489_024_06090_w
crossref_primary_10_1016_j_ref_2025_100682
crossref_primary_10_1007_s40998_024_00716_y
crossref_primary_10_3390_electronics14050866
crossref_primary_10_1016_j_egyai_2025_100540
crossref_primary_10_1016_j_eneco_2024_107884
crossref_primary_10_1016_j_heliyon_2024_e34807
crossref_primary_10_1016_j_est_2023_107166
crossref_primary_10_3390_app15168868
crossref_primary_10_1007_s40095_022_00530_4
crossref_primary_10_3390_en17174426
crossref_primary_10_1016_j_energy_2024_131071
crossref_primary_10_3390_en17133156
crossref_primary_10_1016_j_egyr_2021_10_125
crossref_primary_10_3390_app11167550
crossref_primary_10_3390_en18185007
crossref_primary_10_1016_j_energy_2022_125592
crossref_primary_10_3390_en16196996
crossref_primary_10_1109_ACCESS_2020_3036140
crossref_primary_10_1016_j_rineng_2024_102817
crossref_primary_10_1109_TIA_2022_3205570
crossref_primary_10_1109_TPWRS_2022_3146982
crossref_primary_10_3390_en15093320
crossref_primary_10_3390_app142210625
crossref_primary_10_3390_forecast5010016
crossref_primary_10_1016_j_energy_2025_134595
crossref_primary_10_1007_s00202_022_01601_9
crossref_primary_10_1016_j_esr_2025_101735
crossref_primary_10_3390_forecast5010012
crossref_primary_10_3390_app14083217
crossref_primary_10_3390_en17030700
crossref_primary_10_3390_en17051124
crossref_primary_10_1016_j_egyr_2024_08_062
crossref_primary_10_3389_fenrg_2023_1164494
crossref_primary_10_1016_j_jclepro_2024_143056
crossref_primary_10_1093_ce_zkae047
crossref_primary_10_3389_fenrg_2024_1447116
crossref_primary_10_1016_j_jclepro_2024_140585
crossref_primary_10_3390_en15239114
crossref_primary_10_1016_j_enconman_2022_115563
crossref_primary_10_3390_en16135029
crossref_primary_10_1016_j_epsr_2023_109881
crossref_primary_10_1016_j_apenergy_2020_116395
crossref_primary_10_1016_j_energy_2024_133072
crossref_primary_10_1016_j_neucom_2022_08_016
crossref_primary_10_1016_j_dib_2023_109260
crossref_primary_10_3390_app10093123
crossref_primary_10_1016_j_solcom_2023_100061
crossref_primary_10_1016_j_solcom_2024_100089
crossref_primary_10_3390_en16031533
crossref_primary_10_1016_j_apenergy_2021_117834
crossref_primary_10_3390_app12020742
crossref_primary_10_3390_en14020310
crossref_primary_10_3390_su14053092
crossref_primary_10_1155_2021_7894849
crossref_primary_10_1016_j_rser_2022_113125
crossref_primary_10_1007_s42835_023_01378_2
crossref_primary_10_1109_ACCESS_2022_3162206
crossref_primary_10_3390_en17235877
crossref_primary_10_1016_j_renene_2024_120507
crossref_primary_10_1109_ACCESS_2020_3031439
crossref_primary_10_3390_en14217340
crossref_primary_10_3390_en14164951
crossref_primary_10_3390_su151813521
crossref_primary_10_3390_forecast3040041
crossref_primary_10_1007_s00202_025_03031_9
Cites_doi 10.1109/IJCNN.2018.8489451
10.1016/j.pecs.2008.01.001
10.1016/j.solener.2019.04.025
10.1063/1.4962412
10.1016/j.solener.2016.06.073
10.3390/en9010055
10.1016/j.rser.2017.08.017
10.1016/j.solener.2010.02.006
10.1049/iet-rpg.2016.1036
10.1016/j.renene.2017.05.063
10.1109/TSG.2015.2397003
10.1109/TSTE.2018.2847558
10.3390/en10070876
10.1007/s00521-016-2310-z
10.1109/TSTE.2018.2832634
10.1016/j.solener.2014.11.017
10.1016/j.enconman.2014.05.090
10.1049/iet-gtd.2015.0175
10.1016/j.solener.2012.04.004
10.1038/nature14539
10.1016/j.renene.2012.10.009
10.1016/j.renene.2019.02.087
10.3390/en12091621
10.1109/TSTE.2016.2610523
10.1016/j.energy.2019.07.168
10.1109/TIA.2012.2190816
10.1016/j.matcom.2015.05.010
10.1002/pip.1152
10.3390/s18082529
10.1016/j.renene.2016.03.075
10.1016/j.enconman.2017.11.019
10.1016/j.solener.2016.04.040
10.1016/j.neucom.2018.10.022
10.3390/en11102725
10.3390/en6041918
10.1016/j.solener.2011.08.027
10.1049/iet-smt.2013.0135
10.3390/en12020215
10.1162/neco.1997.9.8.1735
10.1016/j.renene.2017.11.011
10.1049/iet-gtd.2018.5847
10.1109/TSTE.2013.2246591
10.1016/j.solener.2011.11.013
10.1016/j.enconman.2017.10.008
10.3390/en8099594
10.1016/j.solener.2015.06.017
10.3390/en11061487
10.1016/j.eswa.2012.01.039
10.1002/pip.1180
10.1049/iet-rpg.2018.5649
10.3390/en8021138
10.1016/j.renene.2012.01.108
10.1016/j.solener.2016.05.051
10.1016/j.solener.2018.02.011
10.1049/iet-rpg.2018.5779
10.1016/j.solener.2014.03.018
10.1016/j.renene.2017.02.052
10.1016/j.rser.2016.10.068
10.1016/j.solener.2017.09.068
10.1109/MPE.2015.2461351
10.17775/CSEEJPES.2015.00046
10.1109/TSTE.2016.2535466
10.3115/v1/D14-1179
10.1109/TSTE.2017.2762435
10.3390/en11030528
10.3390/app8020228
10.1016/j.renene.2016.01.039
10.1016/j.renene.2016.04.089
10.1016/j.apenergy.2019.113315
10.1016/j.solener.2013.10.002
10.1109/TPWRS.2016.2616902
10.1109/TSTE.2014.2381224
10.1016/j.solener.2016.06.069
10.1016/j.energy.2017.01.015
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.3390/app10020487
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_0cc15b4f4c4f4766bd448e43bd6ca861
10_3390_app10020487
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c430t-e8524dbd0e230d29e15e52dbb14a23480623feaadbbb22c182752d623dd7dd0e3
IEDL.DBID BENPR
ISICitedReferencesCount 196
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000522540400063&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Tue Oct 14 18:42:51 EDT 2025
Mon Jun 30 11:05:57 EDT 2025
Sat Nov 29 07:12:16 EST 2025
Tue Nov 18 22:13:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c430t-e8524dbd0e230d29e15e52dbb14a23480623feaadbbb22c182752d623dd7dd0e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7883-0034
0000-0002-2106-0374
OpenAccessLink https://www.proquest.com/docview/2468775275?pq-origsite=%requestingapplication%
PQID 2468775275
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_0cc15b4f4c4f4766bd448e43bd6ca861
proquest_journals_2468775275
crossref_primary_10_3390_app10020487
crossref_citationtrail_10_3390_app10020487
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Larson (ref_11) 2016; 91
Chu (ref_73) 2019; 112
Mellit (ref_41) 2010; 84
Pedro (ref_70) 2012; 86
ref_56
Paulescu (ref_57) 2017; 121
Zhang (ref_12) 2018; 10
Tuohy (ref_15) 2015; 13
Nobre (ref_17) 2016; 94
Izgi (ref_45) 2012; 86
Gigoni (ref_51) 2017; 9
Zang (ref_81) 2018; 12
Jang (ref_13) 2016; 7
Taieb (ref_7) 2012; 39
ref_59
Arthur (ref_33) 1959; 3
Dolara (ref_10) 2015; 119
Yang (ref_18) 2018; 166
Shi (ref_43) 2012; 48
Falces (ref_44) 2012; 44
Zeng (ref_47) 2013; 52
Wang (ref_16) 2016; 96
ref_69
ref_67
ref_22
Gao (ref_84) 2019; 187
ref_63
Das (ref_28) 2018; 81
ref_62
Wang (ref_75) 2019; 153
Mahmoud (ref_66) 2017; 31
Yona (ref_72) 2013; 4
Mellit (ref_23) 2008; 34
Sobri (ref_29) 2018; 156
Chen (ref_42) 2011; 85
Wang (ref_68) 2019; 251
Raza (ref_5) 2016; 136
Wolff (ref_9) 2016; 135
Sanjari (ref_21) 2016; 32
Sperati (ref_2) 2015; 8
LeCun (ref_32) 2015; 521
Baharin (ref_54) 2016; 8
Congedo (ref_48) 2014; 8
Pierro (ref_55) 2016; 134
ref_36
Pierro (ref_61) 2017; 158
ref_35
ref_79
ref_34
Agoua (ref_19) 2018; 10
Behera (ref_77) 2019; 21
ref_76
ref_31
Liu (ref_50) 2015; 6
Zhang (ref_52) 2015; 6
Bouzerdoum (ref_25) 2013; 98
Han (ref_65) 2019; 184
ref_39
Cervone (ref_78) 2017; 108
ref_37
Mellit (ref_40) 2014; 105
Liu (ref_58) 2017; 11
Ogliari (ref_27) 2017; 113
Oozeki (ref_46) 2012; 20
Ehsan (ref_53) 2017; 28
Barbieri (ref_26) 2017; 75
Pelland (ref_14) 2013; 21
ref_80
Antonanzas (ref_4) 2016; 136
Wan (ref_6) 2015; 1
Eseye (ref_82) 2019; 118
Akhter (ref_30) 2019; 13
Ospina (ref_85) 2019; 13
Huang (ref_74) 2015; 9
ref_1
ref_3
Dolara (ref_24) 2015; 8
ref_8
Bracale (ref_20) 2016; 8
Leva (ref_60) 2017; 131
Hochreiter (ref_38) 1997; 9
Almonacid (ref_49) 2014; 85
Ogliari (ref_71) 2013; 6
VanDeventer (ref_83) 2019; 140
Yao (ref_64) 2019; 325
References_xml – ident: ref_80
  doi: 10.1109/IJCNN.2018.8489451
– volume: 34
  start-page: 574
  year: 2008
  ident: ref_23
  article-title: Artificial intelligence techniques for photovoltaic applications: A review
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2008.01.001
– volume: 184
  start-page: 515
  year: 2019
  ident: ref_65
  article-title: A PV power interval forecasting based on seasonal model and nonparametric estimation algorithm
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.04.025
– volume: 8
  start-page: 053701
  year: 2016
  ident: ref_54
  article-title: Short-term forecasting of solar photovoltaic output power for tropical climate using ground-based measurement data
  publication-title: J. Renew. Sustain. Energy
  doi: 10.1063/1.4962412
– volume: 136
  start-page: 125
  year: 2016
  ident: ref_5
  article-title: On recent advances in PV output power forecast
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2016.06.073
– ident: ref_56
  doi: 10.3390/en9010055
– volume: 81
  start-page: 912
  year: 2018
  ident: ref_28
  article-title: Forecasting of photovoltaic power generation and model optimization: A review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.08.017
– volume: 84
  start-page: 807
  year: 2010
  ident: ref_41
  article-title: A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2010.02.006
– volume: 11
  start-page: 1281
  year: 2017
  ident: ref_58
  article-title: Takagi–Sugeno fuzzy model-based approach considering multiple weather factors for the photovoltaic power short-term forecasting
  publication-title: IET Renew. Power Gener.
  doi: 10.1049/iet-rpg.2016.1036
– volume: 113
  start-page: 11
  year: 2017
  ident: ref_27
  article-title: Physical and hybrid methods comparison for the day ahead PV output power forecast
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2017.05.063
– volume: 6
  start-page: 2253
  year: 2015
  ident: ref_52
  article-title: Day-ahead power output forecasting for small-scale solar photovoltaic electricity generators
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2015.2397003
– volume: 21
  start-page: 428
  year: 2019
  ident: ref_77
  article-title: Solar photovoltaic power forecasting using optimized modified extreme learning machine technique
  publication-title: Eng. Sci. Technol. Int. J.
– volume: 10
  start-page: 780
  year: 2018
  ident: ref_19
  article-title: Probabilistic Models for Spatio-Temporal Photovoltaic Power Forecasting
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2018.2847558
– ident: ref_59
  doi: 10.3390/en10070876
– ident: ref_1
– ident: ref_35
– ident: ref_31
– volume: 28
  start-page: 3981
  year: 2017
  ident: ref_53
  article-title: Day-ahead forecasting of solar photovoltaic output power using multilayer perceptron
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2310-z
– volume: 10
  start-page: 268
  year: 2018
  ident: ref_12
  article-title: A solar time based analog ensemble method for regional solar power forecasting
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2018.2832634
– volume: 112
  start-page: 68
  year: 2019
  ident: ref_73
  article-title: Short-term reforecasting of power output from a 48 MWe solar PV plant
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2014.11.017
– volume: 85
  start-page: 389
  year: 2014
  ident: ref_49
  article-title: A methodology based on dynamic artificial neural network for short-term forecasting of the power output of a PV generator
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2014.05.090
– volume: 9
  start-page: 1874
  year: 2015
  ident: ref_74
  article-title: One-day-ahead hourly forecasting for photovoltaic power generation using an intelligent method with weather-based forecasting models
  publication-title: IET Gener. Transm. Distrib.
  doi: 10.1049/iet-gtd.2015.0175
– volume: 86
  start-page: 2017
  year: 2012
  ident: ref_70
  article-title: Assessment of forecasting techniques for solar power production with no exogenous inputs
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2012.04.004
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_32
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 52
  start-page: 118
  year: 2013
  ident: ref_47
  article-title: Short-term solar power prediction using a support vector machine
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2012.10.009
– volume: 140
  start-page: 367
  year: 2019
  ident: ref_83
  article-title: Short-term PV power forecasting using hybrid GASVM technique
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.02.087
– ident: ref_8
  doi: 10.3390/en12091621
– volume: 8
  start-page: 551
  year: 2016
  ident: ref_20
  article-title: A probabilistic competitive ensemble method for short-term photovoltaic power forecasting
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2016.2610523
– volume: 187
  start-page: 115838
  year: 2019
  ident: ref_84
  article-title: Day-ahead power forecasting in a large-scale photovoltaic plant based on weather classification using LSTM
  publication-title: Energy
  doi: 10.1016/j.energy.2019.07.168
– volume: 48
  start-page: 1064
  year: 2012
  ident: ref_43
  article-title: Forecasting power output of photovoltaic systems based on weather classification and support vector machines
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2012.2190816
– volume: 131
  start-page: 88
  year: 2017
  ident: ref_60
  article-title: Analysis and validation of 24 hours ahead neural network forecasting of photovoltaic output power
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2015.05.010
– volume: 20
  start-page: 874
  year: 2012
  ident: ref_46
  article-title: Use of support vector regression and numerically predicted cloudiness to forecast power output of a photovoltaic power plant in Kitakyushu, Japan
  publication-title: Prog. Photovolt. Res. Appl.
  doi: 10.1002/pip.1152
– ident: ref_67
  doi: 10.3390/s18082529
– volume: 94
  start-page: 496
  year: 2016
  ident: ref_17
  article-title: PV power conversion and short-term forecasting in a tropical, densely-built environment in Singapore
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2016.03.075
– volume: 156
  start-page: 459
  year: 2018
  ident: ref_29
  article-title: Solar photovoltaic generation forecasting methods: A review
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.11.019
– volume: 134
  start-page: 132
  year: 2016
  ident: ref_55
  article-title: Multi-Model Ensemble for day ahead prediction of photovoltaic power generation
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2016.04.040
– volume: 325
  start-page: 182
  year: 2019
  ident: ref_64
  article-title: A novel photovoltaic power forecasting model based on echo state network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.10.022
– ident: ref_63
  doi: 10.3390/en11102725
– volume: 6
  start-page: 1918
  year: 2013
  ident: ref_71
  article-title: Hybrid predictive models for accurate forecasting in PV systems
  publication-title: Energies
  doi: 10.3390/en6041918
– volume: 85
  start-page: 2856
  year: 2011
  ident: ref_42
  article-title: Online 24-h solar power forecasting based on weather type classification using artificial neural network
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2011.08.027
– volume: 8
  start-page: 90
  year: 2014
  ident: ref_48
  article-title: Photovoltaic power forecasting using statistical methods: Impact of weather data
  publication-title: IET Sci. Meas. Technol.
  doi: 10.1049/iet-smt.2013.0135
– ident: ref_69
  doi: 10.3390/en12020215
– ident: ref_3
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_38
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref_34
– volume: 118
  start-page: 357
  year: 2019
  ident: ref_82
  article-title: Short-term photovoltaic solar power forecasting using a hybrid Wavelet-PSO-SVM model based on SCADA and Meteorological information
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2017.11.011
– volume: 12
  start-page: 4557
  year: 2018
  ident: ref_81
  article-title: Hybrid method for short-term photovoltaic power forecasting based on deep convolutional neural network
  publication-title: IET Gener. Transm. Distrib.
  doi: 10.1049/iet-gtd.2018.5847
– volume: 4
  start-page: 527
  year: 2013
  ident: ref_72
  article-title: Determination method of insolation prediction with fuzzy and applying neural network for long-term ahead PV power output correction
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2013.2246591
– volume: 86
  start-page: 725
  year: 2012
  ident: ref_45
  article-title: Short–mid-term solar power prediction by using artificial neural networks
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2011.11.013
– volume: 153
  start-page: 409
  year: 2019
  ident: ref_75
  article-title: Deterministic and probabilistic forecasting of photovoltaic power based on deep convolutional neural network
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.10.008
– volume: 8
  start-page: 9594
  year: 2015
  ident: ref_2
  article-title: The Weather Intelligence for Renewable Energies benchmarking exercise on short-term forecasting of wind and solar power generation
  publication-title: Energies
  doi: 10.3390/en8099594
– volume: 119
  start-page: 83
  year: 2015
  ident: ref_10
  article-title: Comparison of different physical models for PV power output prediction
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2015.06.017
– ident: ref_79
  doi: 10.3390/en11061487
– volume: 39
  start-page: 7067
  year: 2012
  ident: ref_7
  article-title: A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.01.039
– volume: 21
  start-page: 284
  year: 2013
  ident: ref_14
  article-title: Solar and photovoltaic forecasting through post-processing of the Global Environmental Multiscale numerical weather prediction model
  publication-title: Prog. Photovolt. Res. Appl.
  doi: 10.1002/pip.1180
– ident: ref_37
– volume: 13
  start-page: 1009
  year: 2019
  ident: ref_30
  article-title: Review on forecasting of photovoltaic power generation based on machine learning and metaheuristic techniques
  publication-title: IET Renew. Power Gener.
  doi: 10.1049/iet-rpg.2018.5649
– volume: 8
  start-page: 1138
  year: 2015
  ident: ref_24
  article-title: A physical hybrid artificial neural network for short term forecasting of PV plant power output
  publication-title: Energies
  doi: 10.3390/en8021138
– volume: 44
  start-page: 311
  year: 2012
  ident: ref_44
  article-title: Short-term power forecasting system for photovoltaic plants
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2012.01.108
– volume: 135
  start-page: 197
  year: 2016
  ident: ref_9
  article-title: Comparing support vector regression for PV power forecasting to a physical modeling approach using measurement, numerical weather prediction, and cloud motion data
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2016.05.051
– volume: 166
  start-page: 529
  year: 2018
  ident: ref_18
  article-title: Operational photovoltaics power forecasting using seasonal time series ensemble
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2018.02.011
– volume: 13
  start-page: 1087
  year: 2019
  ident: ref_85
  article-title: Forecasting of PV plant output using hybrid wavelet-based LSTM-DNN structure model
  publication-title: IET Renew. Power Gener.
  doi: 10.1049/iet-rpg.2018.5779
– volume: 105
  start-page: 401
  year: 2014
  ident: ref_40
  article-title: Short-term forecasting of power production in a large-scale photovoltaic plant
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2014.03.018
– volume: 108
  start-page: 274
  year: 2017
  ident: ref_78
  article-title: Short-term photovoltaic power forecasting using Artificial Neural Networks and an Analog Ensemble
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2017.02.052
– volume: 75
  start-page: 242
  year: 2017
  ident: ref_26
  article-title: Very short-term photovoltaic power forecasting with cloud modeling: A review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.10.068
– volume: 158
  start-page: 1026
  year: 2017
  ident: ref_61
  article-title: Data-driven upscaling methods for regional photovoltaic power estimation and forecast using satellite and numerical weather prediction data
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2017.09.068
– volume: 13
  start-page: 50
  year: 2015
  ident: ref_15
  article-title: Solar forecasting: Methods, challenges, and performance
  publication-title: IEEE Power Energy Mag.
  doi: 10.1109/MPE.2015.2461351
– volume: 1
  start-page: 38
  year: 2015
  ident: ref_6
  article-title: Photovoltaic and solar power forecasting for smart grid energy management
  publication-title: IEEE CSEE J. Power Energy Syst.
  doi: 10.17775/CSEEJPES.2015.00046
– volume: 7
  start-page: 1255
  year: 2016
  ident: ref_13
  article-title: Solar power prediction based on satellite images and support vector machine
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2016.2535466
– ident: ref_39
  doi: 10.3115/v1/D14-1179
– volume: 9
  start-page: 831
  year: 2017
  ident: ref_51
  article-title: Day-ahead hourly forecasting of power generation from photovoltaic plants
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2017.2762435
– ident: ref_62
  doi: 10.3390/en11030528
– volume: 31
  start-page: 2727
  year: 2017
  ident: ref_66
  article-title: Accurate photovoltaic power forecasting models using deep LSTM-RNN
  publication-title: Neural Comput. Appl.
– ident: ref_76
  doi: 10.3390/app8020228
– volume: 91
  start-page: 11
  year: 2016
  ident: ref_11
  article-title: Day-ahead forecasting of solar power output from photovoltaic plants in the American Southwest
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2016.01.039
– volume: 96
  start-page: 469
  year: 2016
  ident: ref_16
  article-title: One-day-ahead daily power forecasting of photovoltaic systems based on partial functional linear regression models
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2016.04.089
– volume: 251
  start-page: 113315
  year: 2019
  ident: ref_68
  article-title: A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.113315
– volume: 98
  start-page: 226
  year: 2013
  ident: ref_25
  article-title: A hybrid model (SARIMA–SVM) for short-term power forecasting of a small-scale grid-connected photovoltaic plant
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2013.10.002
– volume: 32
  start-page: 2942
  year: 2016
  ident: ref_21
  article-title: Probabilistic forecast of PV power generation based on higher order Markov chain
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2016.2616902
– ident: ref_36
– ident: ref_22
– volume: 6
  start-page: 434
  year: 2015
  ident: ref_50
  article-title: An improved photovoltaic power forecasting model with the assistance of aerosol index data
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2014.2381224
– volume: 136
  start-page: 78
  year: 2016
  ident: ref_4
  article-title: Review of photovoltaic power forecasting
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2016.06.069
– volume: 3
  start-page: 211
  year: 1959
  ident: ref_33
  article-title: Some Studies in Machine Learning Using the Game of Checkers
  publication-title: IBM J.
– volume: 121
  start-page: 792
  year: 2017
  ident: ref_57
  article-title: Structured, physically inspired (gray box) models versus black box modeling for forecasting the output power of photovoltaic plants
  publication-title: Energy
  doi: 10.1016/j.energy.2017.01.015
SSID ssj0000913810
Score 2.575624
SecondaryResourceType review_article
Snippet Forecasting is a crucial task for successfully integrating photovoltaic (PV) output power into the grid. The design of accurate photovoltaic output forecasters...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 487
SubjectTerms Accuracy
Algorithms
Artificial intelligence
artificial intelligence techniques
Computers
Deep learning
Logic programming
Machine learning
Neural networks
photovoltaic plant
power forecasting
Support vector machines
Time series
Weather forecasting
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFH6IeNCDuKk4nZLDDioU2zRtWm_zx_Di3EHBW0mTDAXZxtr59_teGkdBwYvQXtKUpu81yfv6ku8DGGTEwaIp9a9zBCg4AQeqLKMgEZxHJrZ0OLEJOR5nr6_5pCX1RWvCGnrgxnBXodZRUoqp0HjKNC0NAgor4tKkWmUN8All3gJTbgzOI6KuajbkxYjrKR8cuZ2gtHiuNQU5pv4fA7GbXUZ7sOvDQjZsmtOBDTvrwk6LLLALHd8NK3buuaIv9uFu6HP47NFJQVcMg1A2eZvXcxx3EPZr9rSqF6uaTUgOjZESp1YVrXW-ZkPWZAYO4GV0_3z7EHhhhECLOKwDmyVcmNKEFgGE4bmNEptwgzYWisciCzGmmVqlsKTkXCOEkHgZC42RBu-KD2FzNp_ZI2AYASEAVJGVVolpmuRxw-huVUrc86YHl9-2KrRnDSfxio8C0QMZtmgZtgeDdeVFQ5bxe7UbMvq6CjFcuwL0e-H9Xvzl9x70v11W-G5XFVykmcR3lcnxfzzjBLY5wWv3x6UPm_VyZU9hS3_W79XyzH1xX7m92X4
  priority: 102
  providerName: Directory of Open Access Journals
Title Advanced Methods for Photovoltaic Output Power Forecasting: A Review
URI https://www.proquest.com/docview/2468775275
https://doaj.org/article/0cc15b4f4c4f4766bd448e43bd6ca861
Volume 10
WOSCitedRecordID wos000522540400063&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB7xOrAHXruILgX5wAGQok0c51EuqEARHCgRAglOkWO7gISabpPu72fGcUslVlyQkkMcR0oy9ni-mfE3AAcpcbAoCv2rDgIUXIA9WRSBFwnOAx0aOmyxiaTfTx8fO5lzuFUurXKqE62i1qUiH_kfLuI0SSKeRKejvx5VjaLoqiuhsQjLxFSG43z5rNfP7mZeFmK9TAO_2ZgXIr6nuHBgd4RSEt3cUmQZ-z8pZLvKXK5_9_02YM3Zl6zbDIhNWDDDLfgxxzq4BZtuPlfs0JFOH_2Ei65LBmA3tqZ0xdCaZdlLWZeowGr5qtjtpB5NapZRXTVGJT2VrChp-oR1WRNi-AUPl7378yvPVVjwlAj92jNpxIUutG8QiWjeMUFkIq5RWELyUKQ-GkcDIyW2FJwrxCL4hRobtU40PhVuw9KwHJodYGhKIZKUgUmMFIM46oQNNbyRMZHY6xYcT392rhz9OFXBeMsRhpBk8jnJtOBg1nnUsG78v9sZSW3WhaiybUM5fs7dzMt9pYKoEAOh8EziuNCISI0ICx0rmcZBC9pTgeZu_lb5hzR_f317F1Y5IXDrlGnDUj2emD1YUf_q12q874bjvkX6eJVd32RP76f76y8
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bT9RAFD7BxUR5UEEMi6jzgImQNLTT6Y2EmFUkbGDXPkCCT3U6M6skZLtsuxD-lL_Rc9rpuonENx5M2pfp9Dpfz2Uu3wewHRMHi6Khf5VggoIO2JF57jmB4NzTvqGtFpuIhsP44iJJl-BXuxaGplW2NrE21LpQ1Ee-x0UYR1HAo-Dj5Noh1SgaXW0lNBpYnJi7W0zZyoP-Ibbve86Pvpx9PnasqoCjhO9WjokDLnSuXYPRt-aJ8QITcI0PKCT3RexiQDAyUmJJzrnC-BvvqrFQ60jjWT5e9xEsCwJ7B5bT_iD9Nu_VIZbN2HObhYC-n7g0Du3VK1Bp0t6C66sVAv5yALVXO3r-v32PF_DMxs-s1wB-FZbMeA1WFlgV12DV2quSfbCk2jsv4bBnJzuwQa2ZXTKM1ln6s6gKNNCVvFTs66yazCqWkm4cI8lSJUuaFL7PeqwZQlmH8wd5t1fQGRdjswEMQ0XMlKVnIiPFKAwSv6G-NzIkkn7dhd22cTNl6dVJ5eMqwzSLkJAtIKEL2_PKk4ZV5P5qnwgl8ypEBV4XFNMfmbUsmauUF-RiJBTuURjmGjNuI_xch0rGodeFrRZAmbVPZfYHPZv_PvwOnhyfDU6z0_7w5DU85dTbUHdAbUGnms7MG3isbqrLcvrW_goMvj802n4D_TVGkg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH_aOoTYAbYBomNsPgxpQ4qWOM4XEkKFrlo11uUA0jgFx3Zh0tR0TQriX-Ov473EKZWYdtthUnJxnMiJX57fl38_gP2YMFgUpf5Vgg4KLsCOzHPPCQTnnvYNHTXZRDQaxRcXSboCf9q9MFRW2erEWlHrQlGM_IiLMI6igEfB0diWRaT9wfvptUMMUpRpbek0GhE5Nb9_oftWvhv2ca5fcz44_vzxxLEMA44Svls5Jg640Ll2DVrimifGC0zANQ5WSO6L2EXjYGykxJacc4W2OI5AY6PWkca7fHzuKqyhSS54B9bS4Vn6dRHhIcTN2HObTYG-n7iUk_bq3ahUwLe0DNZsAf8tBvUKN3hyn7_NBjy2djXrNT_CJqyYyRasL6EtbsGm1WMlO7Bg24dPod-zRRDsrObSLhla8Sz9UVQFKu5KXip2Pq-m84qlxCfHiMpUyZKKxd-yHmtSK8_gy52823PoTIqJeQEMTUj0oKVnIiPFOAwSv4HENzIk8H7dhTftRGfKwq4T-8dVhu4XSUW2JBVd2F90njZoIzd3-0ASs-hCEOF1QzH7nlmNk7lKeUEuxkLhGYVhrtETN8LPdahkHHpd2GmFKbN6q8z-SdL27Zf34CGKWPZpODp9CY84BSHquNQOdKrZ3LyCB-pndVnOdu1fweDbXQvbX9I4T1I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+Methods+for+Photovoltaic+Output+Power+Forecasting%3A+A+Review&rft.jtitle=Applied+sciences&rft.date=2020-01-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=10&rft.issue=2&rft.spage=487&rft_id=info:doi/10.3390%2Fapp10020487&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon