Optimal Deep Stacked Sparse Autoencoder Based Osteosarcoma Detection and Classification Model

Osteosarcoma is a kind of bone cancer which generally starts to develop in the lengthy bones in the legs and arms. Because of an increase in occurrence of cancer and patient-specific treatment options, the detection and classification of cancer becomes a difficult process. The manual recognition of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Healthcare (Basel) Ročník 10; číslo 6; s. 1040
Hlavní autoři: Fakieh, Bahjat, AL-Ghamdi, Abdullah S. AL-Malaise, Ragab, Mahmoud
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 02.06.2022
MDPI
Témata:
ISSN:2227-9032, 2227-9032
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Osteosarcoma is a kind of bone cancer which generally starts to develop in the lengthy bones in the legs and arms. Because of an increase in occurrence of cancer and patient-specific treatment options, the detection and classification of cancer becomes a difficult process. The manual recognition of osteosarcoma necessitates expert knowledge and is time consuming. An earlier identification of osteosarcoma can reduce the death rate. With the development of new technologies, automated detection models can be exploited for medical image classification, thereby decreasing the expert’s reliance and resulting in timely identification. In recent times, an amount of Computer-Aided Detection (CAD) systems are available in the literature for the segmentation and detection of osteosarcoma using medicinal images. In this view, this research work develops a wind driven optimization with deep transfer learning enabled osteosarcoma detection and classification (WDODTL-ODC) method. The presented WDODTL-ODC model intends to determine the presence of osteosarcoma in the biomedical images. To accomplish this, the osteosarcoma model involves Gaussian filtering (GF) based on pre-processing and contrast enhancement techniques. In addition, deep transfer learning using a SqueezNet model is utilized as a featured extractor. At last, the Wind Driven Optimization (WDO) algorithm with a deep-stacked sparse auto-encoder (DSSAE) is employed for the classification process. The simulation outcome demonstrated that the WDODTL-ODC technique outperformed the existing models in the detection of osteosarcoma on biomedical images.
AbstractList Osteosarcoma is a kind of bone cancer which generally starts to develop in the lengthy bones in the legs and arms. Because of an increase in occurrence of cancer and patient-specific treatment options, the detection and classification of cancer becomes a difficult process. The manual recognition of osteosarcoma necessitates expert knowledge and is time consuming. An earlier identification of osteosarcoma can reduce the death rate. With the development of new technologies, automated detection models can be exploited for medical image classification, thereby decreasing the expert's reliance and resulting in timely identification. In recent times, an amount of Computer-Aided Detection (CAD) systems are available in the literature for the segmentation and detection of osteosarcoma using medicinal images. In this view, this research work develops a wind driven optimization with deep transfer learning enabled osteosarcoma detection and classification (WDODTL-ODC) method. The presented WDODTL-ODC model intends to determine the presence of osteosarcoma in the biomedical images. To accomplish this, the osteosarcoma model involves Gaussian filtering (GF) based on pre-processing and contrast enhancement techniques. In addition, deep transfer learning using a SqueezNet model is utilized as a featured extractor. At last, the Wind Driven Optimization (WDO) algorithm with a deep-stacked sparse auto-encoder (DSSAE) is employed for the classification process. The simulation outcome demonstrated that the WDODTL-ODC technique outperformed the existing models in the detection of osteosarcoma on biomedical images.Osteosarcoma is a kind of bone cancer which generally starts to develop in the lengthy bones in the legs and arms. Because of an increase in occurrence of cancer and patient-specific treatment options, the detection and classification of cancer becomes a difficult process. The manual recognition of osteosarcoma necessitates expert knowledge and is time consuming. An earlier identification of osteosarcoma can reduce the death rate. With the development of new technologies, automated detection models can be exploited for medical image classification, thereby decreasing the expert's reliance and resulting in timely identification. In recent times, an amount of Computer-Aided Detection (CAD) systems are available in the literature for the segmentation and detection of osteosarcoma using medicinal images. In this view, this research work develops a wind driven optimization with deep transfer learning enabled osteosarcoma detection and classification (WDODTL-ODC) method. The presented WDODTL-ODC model intends to determine the presence of osteosarcoma in the biomedical images. To accomplish this, the osteosarcoma model involves Gaussian filtering (GF) based on pre-processing and contrast enhancement techniques. In addition, deep transfer learning using a SqueezNet model is utilized as a featured extractor. At last, the Wind Driven Optimization (WDO) algorithm with a deep-stacked sparse auto-encoder (DSSAE) is employed for the classification process. The simulation outcome demonstrated that the WDODTL-ODC technique outperformed the existing models in the detection of osteosarcoma on biomedical images.
Osteosarcoma is a kind of bone cancer which generally starts to develop in the lengthy bones in the legs and arms. Because of an increase in occurrence of cancer and patient-specific treatment options, the detection and classification of cancer becomes a difficult process. The manual recognition of osteosarcoma necessitates expert knowledge and is time consuming. An earlier identification of osteosarcoma can reduce the death rate. With the development of new technologies, automated detection models can be exploited for medical image classification, thereby decreasing the expert's reliance and resulting in timely identification. In recent times, an amount of Computer-Aided Detection (CAD) systems are available in the literature for the segmentation and detection of osteosarcoma using medicinal images. In this view, this research work develops a wind driven optimization with deep transfer learning enabled osteosarcoma detection and classification (WDODTL-ODC) method. The presented WDODTL-ODC model intends to determine the presence of osteosarcoma in the biomedical images. To accomplish this, the osteosarcoma model involves Gaussian filtering (GF) based on pre-processing and contrast enhancement techniques. In addition, deep transfer learning using a SqueezNet model is utilized as a featured extractor. At last, the Wind Driven Optimization (WDO) algorithm with a deep-stacked sparse auto-encoder (DSSAE) is employed for the classification process. The simulation outcome demonstrated that the WDODTL-ODC technique outperformed the existing models in the detection of osteosarcoma on biomedical images.
Author AL-Ghamdi, Abdullah S. AL-Malaise
Ragab, Mahmoud
Fakieh, Bahjat
AuthorAffiliation 5 Department of Mathematics, Faculty of Science, Al-Azhar University, Naser City, Cairo 11884, Egypt
6 Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
2 Information Systems Department, HECI School, Dar Alhekma University, Jeddah 22246, Saudi Arabia
3 Center of Excellence in Smart Environment Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
1 Information Systems Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia; bfakieh@kau.edu.sa (B.F.); aalmalaise@kau.edu.sa (A.S.A.-M.A.-G.)
4 Information Technology Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
AuthorAffiliation_xml – name: 5 Department of Mathematics, Faculty of Science, Al-Azhar University, Naser City, Cairo 11884, Egypt
– name: 6 Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
– name: 3 Center of Excellence in Smart Environment Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
– name: 4 Information Technology Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
– name: 2 Information Systems Department, HECI School, Dar Alhekma University, Jeddah 22246, Saudi Arabia
– name: 1 Information Systems Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia; bfakieh@kau.edu.sa (B.F.); aalmalaise@kau.edu.sa (A.S.A.-M.A.-G.)
Author_xml – sequence: 1
  givenname: Bahjat
  orcidid: 0000-0003-2793-1238
  surname: Fakieh
  fullname: Fakieh, Bahjat
– sequence: 2
  givenname: Abdullah S. AL-Malaise
  orcidid: 0000-0001-9259-4536
  surname: AL-Ghamdi
  fullname: AL-Ghamdi, Abdullah S. AL-Malaise
– sequence: 3
  givenname: Mahmoud
  orcidid: 0000-0002-4427-0016
  surname: Ragab
  fullname: Ragab, Mahmoud
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35742091$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1vFDEMhiNUREvpH-CARuLCZSEfszPJBaksn1LRHgpHFHkSD5symwxJBol_j2lLVYpELonj57Xs1w_ZQUwRGXss-HOlDH-xQ5jqzkFGwXkneMvvsSMpZb8yXMmDW-9DdlLKBadjhNJq_YAdqnXfSgqP2JftXMMepuY14tycV3Df0DfnM-SCzelSE0aXPObmFRRKbEvFVCC7tAeSVHQ1pNhA9M1mglLCGBxcfn0k1fSI3R9hKnhyfR-zz2_ffNq8X51t333YnJ6tXKt4XaGUI0A7aDS8G0fjTC-9BzFoIbVRXd9J1Oi96HzvJY6O63EQmmtowcHg1DF7eVV3XoY9eoexZpjsnGm0_NMmCPbvTAw7-zX9sIZcWouWCjy7LpDT9wVLtftQHE4TRExLsbLTgqw0ek3o0zvoRVpypPGI6qlzQnuintzu6KaVP84TIK8Al1MpGccbRHD7e8P23w2TSN8RuVAv_aapwvQ_6S_znK_y
CitedBy_id crossref_primary_10_1080_0954898X_2024_2357660
crossref_primary_10_3389_fonc_2023_1207175
crossref_primary_10_1038_s41598_025_06784_2
crossref_primary_10_3390_cancers14246066
crossref_primary_10_3389_fmed_2025_1555907
crossref_primary_10_3390_diagnostics13020223
crossref_primary_10_3390_cancers15051492
Cites_doi 10.1038/s41374-021-00655-w
10.1145/3489088.3489093
10.1007/s42835-021-00859-6
10.1109/SPIN52536.2021.9566061
10.1155/2021/7433186
10.21528/CBIC2021-16
10.1039/D1AN01163D
10.1016/j.phrs.2021.105684
10.1109/ACCAI53970.2022.9752602
10.1002/int.22539
10.3390/s22030926
10.3390/ai3010011
10.1259/bjr.20201391
10.1016/j.eswa.2021.116003
10.1109/APS.2010.5562213
10.3390/jimaging8010002
10.1016/j.bspc.2022.103824
10.1016/j.bspc.2021.102931
10.3390/math10071090
10.1007/s11042-022-11949-6
10.4103/jpi.jpi_78_20
10.1007/s10723-021-09596-6
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
3V.
7RV
7XB
8C1
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
KB0
M2O
MBDVC
NAPCQ
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.3390/healthcare10061040
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
ProQuest Central (purchase pre-March 2016)
Public Health Database
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
Nursing & Allied Health Database (Alumni Edition)
Research Library
Research Library (Corporate)
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
Health Research Premium Collection
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Public Health
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7RV
  name: Nursing & Allied Health Database
  url: https://search.proquest.com/nahs
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 2227-9032
ExternalDocumentID PMC9222514
35742091
10_3390_healthcare10061040
Genre Journal Article
GrantInformation_xml – fundername: King Abdulaziz University
  grantid: G: 148-611-1441
– fundername: Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, Saudi Arabia
  grantid: G: 148-611-1441
GroupedDBID 53G
5VS
7RV
8C1
8FI
8FJ
8G5
AAFWJ
AAHBH
AAYXX
ABUWG
ADBBV
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
CCPQU
CITATION
DIK
DWQXO
FYUFA
GNUQQ
GUQSH
GX1
HYE
IAO
IHR
ITC
KQ8
M2O
M48
MODMG
M~E
NAPCQ
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
RNS
RPM
UKHRP
ALIPV
NPM
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c430t-e22faa4b8e906ff9c972dda1b8128936762e8edd16d7d2efc08fb1808a4acabc3
IEDL.DBID 7RV
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000817449200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2227-9032
IngestDate Tue Nov 04 02:01:21 EST 2025
Sun Nov 09 11:07:48 EST 2025
Sat Jul 26 00:19:22 EDT 2025
Mon Jul 21 05:58:22 EDT 2025
Sat Nov 29 07:14:08 EST 2025
Tue Nov 18 21:03:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords image processing
medical images
computer aided diagnosis
osteosarcoma
deep transfer learning
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c430t-e22faa4b8e906ff9c972dda1b8128936762e8edd16d7d2efc08fb1808a4acabc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9259-4536
0000-0002-4427-0016
0000-0003-2793-1238
OpenAccessLink https://www.proquest.com/docview/2679726817?pq-origsite=%requestingapplication%
PMID 35742091
PQID 2679726817
PQPubID 2032390
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9222514
proquest_miscellaneous_2681032985
proquest_journals_2679726817
pubmed_primary_35742091
crossref_primary_10_3390_healthcare10061040
crossref_citationtrail_10_3390_healthcare10061040
PublicationCentury 2000
PublicationDate 20220602
PublicationDateYYYYMMDD 2022-06-02
PublicationDate_xml – month: 6
  year: 2022
  text: 20220602
  day: 2
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Healthcare (Basel)
PublicationTitleAlternate Healthcare (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Huang (ref_19) 2022; 3
Sharma (ref_16) 2021; 2021
Chen (ref_8) 2021; 169
ref_14
Badashah (ref_5) 2021; 36
ref_12
ref_11
Ramli (ref_22) 2022; 17
ref_18
Pan (ref_7) 2022; 77
ref_17
ref_15
Wu (ref_10) 2022; 2022
Han (ref_2) 2021; 146
Anisuzzaman (ref_1) 2021; 69
Tang (ref_4) 2021; 12
ref_25
ref_23
Makielski (ref_3) 2021; 101
ref_21
Wang (ref_20) 2022; 20
Pereira (ref_9) 2021; 94
Barzekar (ref_13) 2022; 187
ref_6
Bansal (ref_24) 2022; 81
References_xml – volume: 101
  start-page: 1585
  year: 2021
  ident: ref_3
  article-title: Development of an exosomal gene signature to detect residual disease in dogs with osteosarcoma using a novel xenograft platform and machine learning
  publication-title: Lab. Investig.
  doi: 10.1038/s41374-021-00655-w
– ident: ref_15
  doi: 10.1145/3489088.3489093
– volume: 17
  start-page: 85
  year: 2022
  ident: ref_22
  article-title: A Non-Convex Economic Dispatch Problem with Point-Valve Effect Using a Wind-Driven Optimisation Approach
  publication-title: J. Electr. Eng. Technol.
  doi: 10.1007/s42835-021-00859-6
– ident: ref_6
  doi: 10.1109/SPIN52536.2021.9566061
– volume: 2021
  start-page: 7433186
  year: 2021
  ident: ref_16
  article-title: Bone Cancer Detection Using Feature Extraction Based Machine Learning Model
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2021/7433186
– ident: ref_23
– ident: ref_14
  doi: 10.21528/CBIC2021-16
– volume: 146
  start-page: 6496
  year: 2021
  ident: ref_2
  article-title: SERS and MALDI-TOF MS based plasma exosome profiling for rapid detection of osteosarcoma
  publication-title: Analyst
  doi: 10.1039/D1AN01163D
– volume: 169
  start-page: 105684
  year: 2021
  ident: ref_8
  article-title: Advances in targeted therapy for osteosarcoma based on molecular classification
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2021.105684
– ident: ref_12
  doi: 10.1109/ACCAI53970.2022.9752602
– volume: 36
  start-page: 6007
  year: 2021
  ident: ref_5
  article-title: Fractional-Harris hawks optimization-based generative adversarial network for osteosarcoma detection using Renyi entropy-hybrid fusion
  publication-title: Int. J. Intell. Syst.
  doi: 10.1002/int.22539
– ident: ref_18
  doi: 10.3390/s22030926
– volume: 3
  start-page: 180
  year: 2022
  ident: ref_19
  article-title: Weight-Quantized SqueezeNet for Resource-Constrained Robot Vacuums for Indoor Obstacle Classification
  publication-title: AI
  doi: 10.3390/ai3010011
– volume: 94
  start-page: 20201391
  year: 2021
  ident: ref_9
  article-title: Machine learning-based CT radiomics features for the prediction of pulmonary metastasis in osteosarcoma
  publication-title: Br. J. Radiol.
  doi: 10.1259/bjr.20201391
– volume: 187
  start-page: 116003
  year: 2022
  ident: ref_13
  article-title: C-Net: A reliable convolutional neural network for biomedical image classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116003
– ident: ref_21
  doi: 10.1109/APS.2010.5562213
– ident: ref_25
  doi: 10.3390/jimaging8010002
– volume: 77
  start-page: 103824
  year: 2022
  ident: ref_7
  article-title: Noise-reducing attention cross fusion learning transformer for histological image classification of osteosarcoma
  publication-title: Biomed. Signal Processing Control.
  doi: 10.1016/j.bspc.2022.103824
– volume: 69
  start-page: 102931
  year: 2021
  ident: ref_1
  article-title: A deep learning study on osteosarcoma detection from histological images
  publication-title: Biomed. Signal Processing Control.
  doi: 10.1016/j.bspc.2021.102931
– volume: 2022
  start-page: 7703583
  year: 2022
  ident: ref_10
  article-title: Intelligent Segmentation Medical Assistance System for MRI Images of Osteosarcoma in Developing Countries
  publication-title: Comput. Math. Methods Med.
– ident: ref_17
– ident: ref_11
  doi: 10.3390/math10071090
– volume: 81
  start-page: 8807
  year: 2022
  ident: ref_24
  article-title: Automatic Detection of Osteosarcoma Based on Integrated Features and Feature Selection Using Binary Arithmetic Optimization Algorithm
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-022-11949-6
– volume: 12
  start-page: 30
  year: 2021
  ident: ref_4
  article-title: Improving generalization of deep learning models for diagnostic pathology by increasing variability in training data: Experiments on osteosarcoma subtypes
  publication-title: J. Pathol. Inform.
  doi: 10.4103/jpi.jpi_78_20
– volume: 20
  start-page: 1
  year: 2022
  ident: ref_20
  article-title: Secondary Pulmonary Tuberculosis Identification Via pseudo-Zernike Moment and Deep Stacked Sparse Autoencoder
  publication-title: J. Grid Comput.
  doi: 10.1007/s10723-021-09596-6
SSID ssj0000913835
Score 2.2388728
Snippet Osteosarcoma is a kind of bone cancer which generally starts to develop in the lengthy bones in the legs and arms. Because of an increase in occurrence of...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1040
SubjectTerms Algorithms
Bone cancer
Classification
Histology
Medical diagnosis
Medical prognosis
Sarcoma
Semantics
Tumors
Title Optimal Deep Stacked Sparse Autoencoder Based Osteosarcoma Detection and Classification Model
URI https://www.ncbi.nlm.nih.gov/pubmed/35742091
https://www.proquest.com/docview/2679726817
https://www.proquest.com/docview/2681032985
https://pubmed.ncbi.nlm.nih.gov/PMC9222514
Volume 10
WOSCitedRecordID wos000817449200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-9032
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913835
  issn: 2227-9032
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 2227-9032
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913835
  issn: 2227-9032
  databaseCode: 7RV
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2227-9032
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913835
  issn: 2227-9032
  databaseCode: BENPR
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2227-9032
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913835
  issn: 2227-9032
  databaseCode: PIMPY
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 2227-9032
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913835
  issn: 2227-9032
  databaseCode: 8C1
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 2227-9032
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913835
  issn: 2227-9032
  databaseCode: M2O
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7apIdCSfqumzSo0FsxsWTZkk8lT1podpf0wfZQjCzJJJDYm11vf39nbK-TNJBLLwKhh2Xmk-ah0QzAB-Q6LuGxDKVKfCgdwrjI4ihE1i4Tk5Q66kLmf1WjkZ5Os0lvcFv0bpWrM7E9qF1tyUa-K1KVKZFqrj7NrkLKGkW3q30KjYewzkk2Rjyr05-DjYViXqKE0b2ViVG73z0bnKo4Me-IbB43-dEdIfNfX8kbzOd483-X_RQ2erGT7XU4eQYPfPUcnnQ2O9Y9RXoBv8d4flxit0PvZwzFUNzhjn2boe7r2d6yqSnopfNzto-sz7ExAqRe4EapLw0OaVqnroqZyrE21SY5IbV0Z5Rw7eIl_Dg--n7wOezTL4RWxlETeiFKY2ShfRalZZlZ_BHnDC9QJkApJ8Vj1GvvHE-dcsKXNtJlwZG4RhprChu_grWqrvwbYMLy2BqpdFZmUkiFU6SIA4kzG-5lGQBfESG3fWxySpFxkaOOQoTL7xIugI_DmFkXmePe3tsr-uT9Ll3k18QJ4P3QjPuLLk1M5esl9dEUczDTSQCvOygMn4sTJQWCLAB1CyRDB4rdfbulOj9rY3hnpGdz-fb-ZW3BY0HPLcjqI7ZhrZkv_Tt4ZP8054v5Tgt2KqcaS33Ad2B9_2g0OcXaiRhjbfLlZPLrL-b4EmY
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJIiPcjUMBIcEJRY8eJkwNChVJ11e12JYrUHlBwbEet1CbLPkD8KX4jM3nRUqm3Hjjbntjx55nxeB4Ar1Hq2IiH0pcqcr60COM8DQMfRbuMdFQkQZMyf6TG4-TgIJ2swO8uFobcKjueWDNqWxmyka-LWKVKxAlX76fffaoaRa-rXQmNBhY77tdPvLLN3w03cX_fCLH1af_jtt9WFfCNDIOF74QotJZ54tIgLorUIFlrNc9R1KHwjpE7uMRZy2OrrHCFCZIi5zhnLbXRuQmR7jVYlQT2AaxOhruTw96qQ1k2UadponPCMA3Wj3o3Lk7qQkBWlrMS8IJa-6935hlxt3Xnf_tRd-F2q1izjeYk3IMVV96HW41VkjXBVg_g6x5yyFPstunclKGijTzMss9TvN07trFcVJTW07oZ-4DC3bI9PALVHJdSnWocsqjd1kqmS8vqYqLkZlUjm1FJuZOH8OVKVvgIBmVVuifAhOGh0VIlaZFKIRWSiBHpEilr7mThAe82PTNt9nUqAnKS4S2MgJJdBIoHb_sx0yb3yKW91zo8ZC0fmmd_weDBq74ZOQg9C-nSVUvqk1BWxTSJPHjcQK__XBgpKRDUHqhzoOw7UHby8y3l8VGdpTwlSwKXTy-f1ku4sb2_O8pGw_HOM7gpKLiEbFxiDQaL2dI9h-vmx-J4PnvRHjUG364atH8A7jxt3A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Zb9QwEB6VLUJIiPtYKGAkeELRxo5z-AGhwrJi1bJdCZDKAwqO7aiV2mTZzYL4a_w6ZnLRUqlvfeDZ4yv5PDMezwHwHKWODXkgPRmHzpMWYZypwPdQtMtQh3niNynzd-PZLNnfV_MN-N3FwpBbZccTa0ZtS0M28pGIYhWLKOHxKG_dIubjyevFd48qSNFLa1dOo4HIjvv1E69vq1fTMf7rF0JM3n16-95rKwx4RgZ-5Tkhcq1lljjlR3muDE5hreYZij0U5BFyCpc4a3lkYytcbvwkzziuX0ttdGYCHPcSbKJKLsUANufTD_MvvYWHMm6iftNE6gSB8kcHvUsXJ9XBJ4vLSWl4RsX911PzhOib3PifP9pNuN4q3Gy7OSG3YMMVt-FaY61kTRDWHfi6h5zzGMnGzi0YKuDI2yz7uMBbv2Pb66qkdJ_WLdkbFPqW7eHRKFe4lfJYY5eqdmcrmC4sq4uMkvtVjXhGpeaO7sLnC9nhPRgUZeEeABOGB0bLOFG5kkLGOESEJ0DiyJo7mQ-BdwBITZuVnYqDHKV4OyPQpGdBM4SXfZ9Fk5PkXOqtDhtpy59W6V9gDOFZ34ychZ6LdOHKNdEklG1RJeEQ7jcw7KcLQkQ8AnwI8SmA9gSUtfx0S3F4UGcvV2Rh4PLh-ct6ClcQqenudLbzCK4Kijkh05fYgkG1XLvHcNn8qA5XyyftqWPw7aIx-wf83Hac
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Deep+Stacked+Sparse+Autoencoder+Based+Osteosarcoma+Detection+and+Classification+Model&rft.jtitle=Healthcare+%28Basel%29&rft.au=Fakieh%2C+Bahjat&rft.au=Al-Ghamdi%2C+Abdullah+S+Al-Malaise&rft.au=Ragab%2C+Mahmoud&rft.date=2022-06-02&rft.issn=2227-9032&rft.eissn=2227-9032&rft.volume=10&rft.issue=6&rft_id=info:doi/10.3390%2Fhealthcare10061040&rft_id=info%3Apmid%2F35742091&rft.externalDocID=35742091
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9032&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9032&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9032&client=summon