Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery

Plant density is useful variable that determines the fate of the wheat crop. The most commonly used method for plant density quantification is based on visual counting from ground level. The objective of this study is to develop and evaluate a method for estimating wheat plant density at the emergen...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing of environment Vol. 198; pp. 105 - 114
Main Authors: Jin, Xiuliang, Liu, Shouyang, Baret, Frédéric, Hemerlé, Matthieu, Comar, Alexis
Format: Journal Article
Language:English
Published: Elsevier Inc 01.09.2017
Elsevier
Subjects:
ISSN:0034-4257, 1879-0704
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Plant density is useful variable that determines the fate of the wheat crop. The most commonly used method for plant density quantification is based on visual counting from ground level. The objective of this study is to develop and evaluate a method for estimating wheat plant density at the emergence stage based on high resolution imagery taken from UAV at very low altitude with application to high throughput phenotyping in field conditions. A Sony ILCE α5100L RGB camera with 24Mpixels and equipped with a 60mm focal length lens was flying aboard an hexacopter at 3 to 7m altitude at about 1m/s speed. This allows getting ground resolution between 0.20mm to 0.45mm, while providing 59–77% overlap between images. The camera was looking with 45° zenith angle in a compass direction perpendicular to the row direction to maximize the cross section viewed of the plants and minimize the effect of the wind created by the rotors. Agisoft photoscan software was then used to derive the position of the cameras for each image. Images were then projected on the ground surface to finally extract subsamples used to estimate the plant density. The extracted images were first classified to separate the green pixels from the background and the rows were then identified and extracted. Finally, image object (group of connected green pixels) was identified on each row and the number of plants they contain was estimated using a Support Vector Machine whose training was optimized using a Particle Swarm Optimization. Three experiments were conducted in Gréoux, Avignon and Clermont sites with some variability in the sowing dates, densities, genotypes, flight altitude, and growth stage at the time of the image acquisition. The application of the method on the 270 samples available over the three sites provides a RMSE and relative RMSE on estimates of 34.05 plants/m2 and 14.31% with a bias of 9.01 plants/m2. However, differences in performances were observed between the three sites, mostly related to the growth stage at the time of the flight. Plants should have between one to two leaves when images are taken. Further, a specific sensitivity analysis shows that the ground resolution of the images should be better than 0.40mm. Finally, the repeatability of the method is good especially when images are taken from similar observational geometries. The current limits and possible improvements of the method proposed are finally discussed. •A method is presented to estimate wheat plant density from UAV RGB images.•Results show a RMSE is 34.05plants/m2 with a bias of 9.01plants/m2.•Plants should have between one to two leaves when images are taken.•The ground resolution of the images should be better than 0.40mm.
AbstractList Plant density is useful variable that determines the fate of the wheat crop. The most commonly used method for plant density quantification is based on visual counting from ground level. The objective of this study is to develop and evaluate a method for estimating wheat plant density at the emergence stage based on high resolution imagery taken from UAV at very low altitude with application to high throughput phenotyping in field conditions. A Sony ILCE α5100L RGB camera with 24Mpixels and equipped with a 60mm focal length lens was flying aboard an hexacopter at 3 to 7m altitude at about 1m/s speed. This allows getting ground resolution between 0.20mm to 0.45mm, while providing 59–77% overlap between images. The camera was looking with 45° zenith angle in a compass direction perpendicular to the row direction to maximize the cross section viewed of the plants and minimize the effect of the wind created by the rotors. Agisoft photoscan software was then used to derive the position of the cameras for each image. Images were then projected on the ground surface to finally extract subsamples used to estimate the plant density. The extracted images were first classified to separate the green pixels from the background and the rows were then identified and extracted. Finally, image object (group of connected green pixels) was identified on each row and the number of plants they contain was estimated using a Support Vector Machine whose training was optimized using a Particle Swarm Optimization.Three experiments were conducted in Gréoux, Avignon and Clermont sites with some variability in the sowing dates, densities, genotypes, flight altitude, and growth stage at the time of the image acquisition. The application of the method on the 270 samples available over the three sites provides a RMSE and relative RMSE on estimates of 34.05 plants/m² and 14.31% with a bias of 9.01 plants/m². However, differences in performances were observed between the three sites, mostly related to the growth stage at the time of the flight. Plants should have between one to two leaves when images are taken. Further, a specific sensitivity analysis shows that the ground resolution of the images should be better than 0.40mm. Finally, the repeatability of the method is good especially when images are taken from similar observational geometries. The current limits and possible improvements of the method proposed are finally discussed.
Plant density is useful variable that determines the fate of the wheat crop. The most commonly used method for plant density quantification is based on visual counting from ground level. The objective of this study is to develop and evaluate a method for estimating wheat plant density at the emergence stage based on high resolution imagery taken from UAV at very low altitude with application to high throughput phenotyping in field conditions. A Sony ILCE alpha 5100L RGB camera with 24 Mpixels and equipped with a 60 mm focal length lens was flying aboard an hexacopter at 3 to 7 m altitude at about 1 m/s speed. This allows getting ground resolution between 0.20 mm to 0.45 mm, while providing 59-77% overlap between images. The camera was looking with 45 degrees zenith angle in a compass direction perpendicular to the row direction to maximize the cross section viewed of the plants and minimize the effect of the wind created by the rotors. Agisoft photoscan software was then used to derive the position of the cameras for each image. Images were then projected on the ground surface to finally extract subsamples used to estimate the plant density. The extracted images were first classified to separate the green pixels from the background and the rows were then identified and extracted. Finally, image object (group of connected green pixels) was identified on each row and the number of plants they contain was estimated using a Support Vector Machine whose training was optimized using a Particle Swarm Optimization. Three experiments were conducted in Greoux, Avignon and Clermont sites with some variability in the sowing dates, densities, genotypes, flight altitude, and growth stage at the time of the image acquisition. The application of the method on the 270 samples available over the three sites provides a RMSE and relative RMSE on estimates of 34.05 plants/m(2) and 14.31% with a bias of 9.01 plants/m(2). However, differences in performances were observed between the three sites, mostly related to the growth stage at the time of the flight. Plants should have between one to two leaves when images are taken. Further, a specific sensitivity analysis shows that the ground resolution of the images should be better than 0.40 mm. Finally, the repeatability of the method is good especially when images are taken from similar observational geometries. The current limits and possible improvements of the method proposed are finally discussed.
Plant density is useful variable that determines the fate of the wheat crop. The most commonly used method for plant density quantification is based on visual counting from ground level. The objective of this study is to develop and evaluate a method for estimating wheat plant density at the emergence stage based on high resolution imagery taken from UAV at very low altitude with application to high throughput phenotyping in field conditions. A Sony ILCE α5100L RGB camera with 24Mpixels and equipped with a 60mm focal length lens was flying aboard an hexacopter at 3 to 7m altitude at about 1m/s speed. This allows getting ground resolution between 0.20mm to 0.45mm, while providing 59–77% overlap between images. The camera was looking with 45° zenith angle in a compass direction perpendicular to the row direction to maximize the cross section viewed of the plants and minimize the effect of the wind created by the rotors. Agisoft photoscan software was then used to derive the position of the cameras for each image. Images were then projected on the ground surface to finally extract subsamples used to estimate the plant density. The extracted images were first classified to separate the green pixels from the background and the rows were then identified and extracted. Finally, image object (group of connected green pixels) was identified on each row and the number of plants they contain was estimated using a Support Vector Machine whose training was optimized using a Particle Swarm Optimization. Three experiments were conducted in Gréoux, Avignon and Clermont sites with some variability in the sowing dates, densities, genotypes, flight altitude, and growth stage at the time of the image acquisition. The application of the method on the 270 samples available over the three sites provides a RMSE and relative RMSE on estimates of 34.05 plants/m2 and 14.31% with a bias of 9.01 plants/m2. However, differences in performances were observed between the three sites, mostly related to the growth stage at the time of the flight. Plants should have between one to two leaves when images are taken. Further, a specific sensitivity analysis shows that the ground resolution of the images should be better than 0.40mm. Finally, the repeatability of the method is good especially when images are taken from similar observational geometries. The current limits and possible improvements of the method proposed are finally discussed. •A method is presented to estimate wheat plant density from UAV RGB images.•Results show a RMSE is 34.05plants/m2 with a bias of 9.01plants/m2.•Plants should have between one to two leaves when images are taken.•The ground resolution of the images should be better than 0.40mm.
Author Hemerlé, Matthieu
Comar, Alexis
Jin, Xiuliang
Liu, Shouyang
Baret, Frédéric
Author_xml – sequence: 1
  givenname: Xiuliang
  surname: Jin
  fullname: Jin, Xiuliang
  email: xiuliang.jin@inra.fr, jinxiuxiuliang@126.com
  organization: UMR EMMAH, INRA, UAPV, 84914 Avignon, France
– sequence: 2
  givenname: Shouyang
  surname: Liu
  fullname: Liu, Shouyang
  organization: UMR EMMAH, INRA, UAPV, 84914 Avignon, France
– sequence: 3
  givenname: Frédéric
  surname: Baret
  fullname: Baret, Frédéric
  organization: UMR EMMAH, INRA, UAPV, 84914 Avignon, France
– sequence: 4
  givenname: Matthieu
  surname: Hemerlé
  fullname: Hemerlé, Matthieu
  organization: HIPHEN, 84914 Avignon, France
– sequence: 5
  givenname: Alexis
  surname: Comar
  fullname: Comar, Alexis
  organization: HIPHEN, 84914 Avignon, France
BackLink https://hal.science/hal-01578842$$DView record in HAL
BookMark eNp9kD9PwzAQxS0EEqXwAdg8wpBwTtzYEVOF-CdVYgEkJst1LsVVGhfbbdVvj6PCwsB0p_N7d36_M3Lcux4JuWSQM2DVzTL3AfMCmMihygHEERkxKeoMBPBjMgIoecaLiTglZyEsAdhECjYiH_ch2pWOGKhr6brTfaQN9sHG_TDYfaKO1Hi3DjQ1uEK_wN4gbb1b0S36Pe3cjuou2rhpkL5N32lat0gP5-Sk1V3Ai586Jm8P9693T9ns5fH5bjrLDC8hZo00NTcN13OsGC_1nLNaI2cMS14hk1LqOWBtRNtWBdMo5xVv9KRFg3VbTppyTK4Pez91p9Y-Xfd75bRVT9OZGmYpqpCSF1uWtFcH7dq7rw2GqFY2GOxSbHSboAoA4AKghiQVB2kKH4LHVhkbdbSuj17bTjFQA3i1VAm8GsArqFQCn5zsj_P3V_95bg8eTKS2Fr0Kxg6gG-vRRNU4-4_7G6tVngs
CitedBy_id crossref_primary_10_3390_agriculture12020124
crossref_primary_10_1080_01431161_2020_1718234
crossref_primary_10_1080_01431161_2017_1410300
crossref_primary_10_3389_fpls_2021_612843
crossref_primary_10_3390_rs12060998
crossref_primary_10_3390_agronomy9070404
crossref_primary_10_3390_rs11030330
crossref_primary_10_1016_j_compag_2021_106380
crossref_primary_10_1016_j_jag_2021_102435
crossref_primary_10_1007_s11119_021_09853_4
crossref_primary_10_3389_fpls_2024_1298791
crossref_primary_10_3390_rs13132548
crossref_primary_10_1016_j_fcr_2022_108708
crossref_primary_10_3389_fpls_2024_1333089
crossref_primary_10_3390_agriculture14081265
crossref_primary_10_3389_fpls_2018_01024
crossref_primary_10_1016_j_eja_2025_127748
crossref_primary_10_1093_jxb_erac294
crossref_primary_10_3390_rs14174158
crossref_primary_10_1002_agj2_21047
crossref_primary_10_3389_fpls_2022_1075856
crossref_primary_10_3389_fpls_2022_935748
crossref_primary_10_3389_fpls_2022_966495
crossref_primary_10_1016_j_isprsjprs_2019_05_008
crossref_primary_10_1016_j_agwat_2024_109059
crossref_primary_10_1016_j_compag_2019_03_038
crossref_primary_10_1016_j_compag_2023_107910
crossref_primary_10_1109_ACCESS_2019_2932609
crossref_primary_10_3390_rs15102525
crossref_primary_10_1016_j_fcr_2021_108419
crossref_primary_10_3390_rs13183682
crossref_primary_10_1016_j_compag_2021_106033
crossref_primary_10_1016_j_compag_2022_107064
crossref_primary_10_3390_agronomy10040469
crossref_primary_10_1093_jxb_erab194
crossref_primary_10_3390_ijgi12030124
crossref_primary_10_3389_fpls_2022_821717
crossref_primary_10_1007_s12524_024_02076_w
crossref_primary_10_1186_s13007_018_0338_z
crossref_primary_10_1155_2020_1360702
crossref_primary_10_3390_drones8110686
crossref_primary_10_3390_drones8040140
crossref_primary_10_1038_s41597_022_01761_0
crossref_primary_10_3390_rs13081562
crossref_primary_10_3390_rs15081979
crossref_primary_10_1016_j_isprsjprs_2019_09_017
crossref_primary_10_1016_j_compag_2023_108458
crossref_primary_10_1016_j_cj_2022_07_005
crossref_primary_10_3389_fpls_2022_957870
crossref_primary_10_3390_plants13131842
crossref_primary_10_1016_j_isprsjprs_2019_01_016
crossref_primary_10_1038_s41598_025_06579_5
crossref_primary_10_3390_rs14215323
crossref_primary_10_1016_j_ocecoaman_2021_105843
crossref_primary_10_3390_rs11070809
crossref_primary_10_3389_fpls_2024_1496801
crossref_primary_10_1016_j_jplph_2025_154542
crossref_primary_10_1016_j_agwat_2021_107298
crossref_primary_10_1016_j_compag_2024_109272
crossref_primary_10_1016_j_cosrev_2020_100345
crossref_primary_10_3390_rs14051096
crossref_primary_10_3390_s19245558
crossref_primary_10_3390_rs9121241
crossref_primary_10_3390_agronomy15092137
crossref_primary_10_3390_ijgi9030151
crossref_primary_10_3390_agriengineering7070230
crossref_primary_10_3390_s23031541
crossref_primary_10_3390_jimaging11010028
crossref_primary_10_1016_j_agwat_2022_107530
crossref_primary_10_1016_j_compag_2024_108867
crossref_primary_10_3390_agriculture14020327
crossref_primary_10_1016_j_compag_2024_108738
crossref_primary_10_3389_fpls_2020_00927
crossref_primary_10_1186_s13007_020_00625_1
crossref_primary_10_1016_j_compag_2024_109706
crossref_primary_10_1016_j_agrformet_2018_01_021
crossref_primary_10_3390_rs15153770
crossref_primary_10_3390_agriculture13030707
crossref_primary_10_1016_j_tplants_2022_12_010
crossref_primary_10_3389_fbioe_2020_623705
crossref_primary_10_1016_j_agwat_2020_106230
crossref_primary_10_1016_j_compag_2020_105903
crossref_primary_10_3390_rs14061338
crossref_primary_10_3390_plants14010039
crossref_primary_10_1109_TGRS_2024_3363651
crossref_primary_10_3389_fpls_2020_00259
crossref_primary_10_1016_j_jia_2023_05_036
crossref_primary_10_1186_s13007_018_0376_6
crossref_primary_10_3389_fenvs_2022_988932
crossref_primary_10_1016_j_atech_2025_101160
crossref_primary_10_1016_j_compag_2022_106982
crossref_primary_10_1016_j_rse_2018_09_011
crossref_primary_10_34133_2020_9452123
crossref_primary_10_1016_j_compag_2020_105375
crossref_primary_10_3390_rs14153811
crossref_primary_10_1109_JSTARS_2020_3025790
crossref_primary_10_1016_j_fcr_2019_02_022
crossref_primary_10_1088_1755_1315_783_1_012080
crossref_primary_10_3390_rs10060809
crossref_primary_10_1002_ppj2_20018
crossref_primary_10_1016_j_compag_2025_109972
crossref_primary_10_3389_fpls_2022_896408
crossref_primary_10_1016_j_agrformet_2020_108096
crossref_primary_10_1007_s11119_019_09699_x
crossref_primary_10_1093_aob_mcaa097
crossref_primary_10_3390_rs15051280
crossref_primary_10_1016_j_cj_2021_12_011
crossref_primary_10_3389_fpls_2021_609876
crossref_primary_10_4081_jae_2024_1559
crossref_primary_10_1007_s11119_022_09907_1
crossref_primary_10_31548_dopovidi2020_03_007
crossref_primary_10_3390_drones7010043
crossref_primary_10_3390_agronomy12040964
crossref_primary_10_3390_rs11202343
crossref_primary_10_3390_rs15143671
crossref_primary_10_3390_rs15102680
crossref_primary_10_1016_j_compag_2019_105091
crossref_primary_10_3390_agronomy13123001
crossref_primary_10_1016_j_biosystemseng_2020_10_013
crossref_primary_10_3390_s21020507
crossref_primary_10_1016_j_cj_2023_04_005
crossref_primary_10_1007_s00138_019_01051_7
crossref_primary_10_1109_LRA_2019_2929993
crossref_primary_10_3390_s23156662
crossref_primary_10_3390_rs13152918
crossref_primary_10_1016_j_compag_2022_107017
crossref_primary_10_1016_j_eja_2019_03_006
crossref_primary_10_3389_fpls_2021_715184
crossref_primary_10_1007_s00122_021_03795_1
crossref_primary_10_1109_MGRS_2020_3032713
crossref_primary_10_1016_j_agrformet_2018_10_013
crossref_primary_10_3390_rs11182119
crossref_primary_10_1016_j_rsase_2023_101131
crossref_primary_10_3389_fpls_2025_1639533
crossref_primary_10_1016_j_isprsjprs_2019_02_013
crossref_primary_10_1111_jipb_13191
crossref_primary_10_3389_fpls_2025_1672425
crossref_primary_10_3390_agriculture12050595
crossref_primary_10_1016_j_compag_2020_105711
crossref_primary_10_3390_agriculture12101745
crossref_primary_10_1016_j_eja_2017_11_002
crossref_primary_10_3390_rs10060824
crossref_primary_10_1109_MGRS_2020_2998816
crossref_primary_10_3390_rs10071138
crossref_primary_10_3390_rs11202375
crossref_primary_10_1186_s13007_020_00582_9
crossref_primary_10_1016_j_ecolind_2019_105551
crossref_primary_10_1186_s13007_019_0418_8
crossref_primary_10_3390_drones7040254
crossref_primary_10_3390_rs12111764
crossref_primary_10_1002_ppj2_70033
crossref_primary_10_3390_s19204446
crossref_primary_10_1002_ppj2_70039
crossref_primary_10_1016_j_plaphe_2025_100026
crossref_primary_10_3390_agronomy10111762
crossref_primary_10_1038_s41598_021_86480_z
crossref_primary_10_3390_geosciences11080305
crossref_primary_10_1016_j_isprsjprs_2019_02_022
crossref_primary_10_1186_s13007_024_01308_x
crossref_primary_10_1016_j_pbi_2018_05_003
crossref_primary_10_3390_app10103456
crossref_primary_10_1016_j_agwat_2024_108972
crossref_primary_10_1016_j_compag_2022_107008
crossref_primary_10_1016_j_compag_2024_109108
crossref_primary_10_1111_tpj_16272
crossref_primary_10_1016_j_compag_2022_107477
crossref_primary_10_1371_journal_pone_0212057
crossref_primary_10_1016_j_tplants_2021_07_015
crossref_primary_10_1016_j_compag_2019_04_005
crossref_primary_10_3390_agronomy13122861
crossref_primary_10_1016_j_compag_2023_108045
crossref_primary_10_1111_2041_210X_14004
crossref_primary_10_3390_rs10091484
crossref_primary_10_1016_j_compag_2021_106304
crossref_primary_10_3390_rs9121304
crossref_primary_10_3389_fclim_2022_938975
crossref_primary_10_1016_j_plantsci_2018_06_008
crossref_primary_10_1016_j_rsase_2025_101717
crossref_primary_10_1186_s13007_019_0399_7
crossref_primary_10_1016_j_eja_2022_126640
crossref_primary_10_3390_rs10020268
crossref_primary_10_3390_rs14235923
crossref_primary_10_3389_fpls_2024_1411510
crossref_primary_10_1038_s41598_023_43770_y
crossref_primary_10_3390_agronomy13123043
crossref_primary_10_3390_rs15010007
crossref_primary_10_1002_agj2_21333
crossref_primary_10_3390_app12157389
crossref_primary_10_1080_14498596_2019_1627252
crossref_primary_10_1109_TGRS_2025_3578800
crossref_primary_10_1016_j_compag_2024_109523
crossref_primary_10_1016_j_isprsjprs_2019_03_003
crossref_primary_10_1016_j_plantsci_2018_06_015
crossref_primary_10_1186_s42397_025_00219_z
crossref_primary_10_34133_2022_9802585
crossref_primary_10_1007_s11119_022_09899_y
crossref_primary_10_1080_15440478_2022_2159610
crossref_primary_10_1016_j_compag_2018_10_017
crossref_primary_10_1016_j_plantsci_2019_110396
crossref_primary_10_34133_plantphenomics_0043
crossref_primary_10_1016_j_engappai_2025_111206
crossref_primary_10_3390_rs11040436
crossref_primary_10_3390_rs15092322
crossref_primary_10_1109_ACCESS_2024_3397556
crossref_primary_10_3390_plants13141926
crossref_primary_10_3389_fpls_2020_599886
crossref_primary_10_3390_rs14215608
crossref_primary_10_1007_s11119_024_10135_y
crossref_primary_10_1186_s13007_022_00881_3
crossref_primary_10_1088_1755_1315_1111_1_012023
crossref_primary_10_46932_sfjdv6n4_037
crossref_primary_10_3390_rs11020112
crossref_primary_10_3390_rs11070890
crossref_primary_10_1016_j_agrformet_2020_107938
crossref_primary_10_1016_j_agrformet_2025_110381
crossref_primary_10_1016_j_compag_2023_108144
crossref_primary_10_1146_annurev_arplant_042916_041124
crossref_primary_10_1007_s00122_021_03864_5
crossref_primary_10_1371_journal_pone_0224386
crossref_primary_10_34133_2020_3729715
crossref_primary_10_1186_s13007_018_0369_5
crossref_primary_10_1002_csc2_21028
crossref_primary_10_1016_j_compag_2022_107339
crossref_primary_10_3390_rs14102396
crossref_primary_10_1016_j_compag_2021_106214
crossref_primary_10_3390_agronomy11020203
crossref_primary_10_34133_2019_4820305
crossref_primary_10_3389_fpls_2022_1023924
crossref_primary_10_3390_s20051296
crossref_primary_10_3390_s20185130
crossref_primary_10_1016_j_ecoinf_2022_101805
crossref_primary_10_3390_ijgi10120817
crossref_primary_10_1186_s13007_025_01382_9
crossref_primary_10_3389_fpls_2018_01544
crossref_primary_10_3390_rs13142661
crossref_primary_10_3390_agriculture14020175
crossref_primary_10_1186_s13007_019_0507_8
crossref_primary_10_3389_fpls_2019_00685
crossref_primary_10_1080_01431161_2019_1650984
crossref_primary_10_1080_22797254_2017_1422280
crossref_primary_10_1093_jxb_eraa605
crossref_primary_10_3390_rs14102391
crossref_primary_10_1016_j_atech_2025_100938
crossref_primary_10_1051_e3sconf_202346202016
crossref_primary_10_1080_01431161_2023_2240523
crossref_primary_10_1016_j_apacoust_2022_109057
crossref_primary_10_3390_rs12223783
crossref_primary_10_7717_peerj_6926
crossref_primary_10_1016_j_agrformet_2022_109057
crossref_primary_10_3390_horticulturae8121186
crossref_primary_10_3390_rs13091795
crossref_primary_10_1186_s13007_019_0449_1
crossref_primary_10_3390_rs13163095
crossref_primary_10_34133_2021_9840192
crossref_primary_10_5772_acrt_20240030
crossref_primary_10_3390_plants9070817
crossref_primary_10_3390_su13094883
crossref_primary_10_3390_rs12050748
crossref_primary_10_3389_fpls_2023_1101143
crossref_primary_10_3390_agronomy12020301
crossref_primary_10_1007_s11119_022_09949_5
crossref_primary_10_3390_rs10020349
crossref_primary_10_1016_j_agrformet_2020_108231
crossref_primary_10_1016_j_cj_2022_09_001
crossref_primary_10_3390_agriculture10070256
crossref_primary_10_3390_rs10020343
crossref_primary_10_3390_agriengineering3040061
crossref_primary_10_1007_s11430_019_9584_9
crossref_primary_10_1016_j_atech_2025_100921
crossref_primary_10_47134_jpo_v2i4_1952
crossref_primary_10_1038_s41598_023_40128_2
crossref_primary_10_3389_fpls_2021_591587
crossref_primary_10_1007_s10712_021_09638_4
crossref_primary_10_3390_rs11131623
crossref_primary_10_1007_s11119_023_09997_5
crossref_primary_10_1016_j_iot_2020_100187
crossref_primary_10_3389_fpls_2023_1219983
crossref_primary_10_3390_s19122703
crossref_primary_10_1016_j_ophoto_2023_100052
crossref_primary_10_3390_agronomy12010043
crossref_primary_10_3389_fpls_2020_00617
crossref_primary_10_1007_s11119_022_09915_1
crossref_primary_10_3390_rs15143483
crossref_primary_10_3390_s18051611
crossref_primary_10_3390_su11216116
crossref_primary_10_1007_s42106_022_00199_z
crossref_primary_10_3389_fpls_2018_01362
crossref_primary_10_3390_f12091250
crossref_primary_10_1007_s11119_024_10137_w
crossref_primary_10_3390_drones5030079
crossref_primary_10_3390_rs12152445
crossref_primary_10_1093_plphys_kiad577
crossref_primary_10_3390_rs12213521
crossref_primary_10_34133_2021_9824843
crossref_primary_10_1016_j_compag_2023_108349
crossref_primary_10_1016_j_ecolind_2023_110123
crossref_primary_10_3389_fpls_2020_534853
crossref_primary_10_3390_su14116473
crossref_primary_10_3390_s20185055
crossref_primary_10_1038_s41598_022_20299_0
crossref_primary_10_3390_rs14061384
crossref_primary_10_1016_j_compag_2022_107087
crossref_primary_10_3390_rs12182981
crossref_primary_10_1007_s11119_024_10147_8
crossref_primary_10_3390_rs15030646
crossref_primary_10_3390_rs16010132
crossref_primary_10_3390_app142210693
crossref_primary_10_1002_agg2_20247
crossref_primary_10_5194_bg_19_2699_2022
crossref_primary_10_3390_geomatics3010006
crossref_primary_10_3390_s21206826
Cites_doi 10.13031/2013.12945
10.1016/j.tplants.2011.09.005
10.13031/2013.24510
10.1016/j.rse.2011.10.007
10.1016/j.compag.2008.03.009
10.1016/j.compag.2011.12.011
10.1016/j.biosystemseng.2008.10.003
10.1007/s11119-005-2324-5
10.1016/S0022-460X(03)00591-1
10.1016/j.compag.2015.09.001
10.2134/agronj1973.00021962006500010035x
10.3390/rs70404213
10.13031/2013.18144
10.1016/j.agrformet.2012.12.013
10.1186/s13007-015-0056-8
10.13031/2013.25381
10.1029/94JE03364
10.1002/rob.20293
10.13031/2013.24091
10.1109/TSMC.1979.4310076
10.1007/s11119-012-9263-8
10.1007/s11119-013-9335-4
10.1016/j.eja.2015.07.004
10.3390/rs2010290
10.1016/j.biosystemseng.2014.07.001
10.1016/j.isprsjprs.2010.11.001
10.1016/j.compag.2014.11.026
10.2134/agronj1985.00021962007700020009x
10.1111/j.1744-7348.2000.tb00048.x
10.1007/s11119-012-9274-5
10.3389/fpls.2017.00739
10.1016/j.rse.2014.06.006
10.1016/j.tplants.2013.09.008
ContentType Journal Article
Copyright 2017 Elsevier Inc.
Attribution - ShareAlike
Copyright_xml – notice: 2017 Elsevier Inc.
– notice: Attribution - ShareAlike
DBID AAYXX
CITATION
7S9
L.6
1XC
VOOES
DOI 10.1016/j.rse.2017.06.007
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Environmental Sciences
EISSN 1879-0704
EndPage 114
ExternalDocumentID oai:HAL:hal-01578842v1
10_1016_j_rse_2017_06_007
S0034425717302651
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABPPZ
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACPRK
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
TWZ
WH7
ZCA
ZMT
~02
~G-
~KM
29P
41~
6TJ
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABUFD
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
ADXHL
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FA8
FEDTE
FGOYB
G-2
HMA
HMC
HVGLF
HZ~
H~9
OHT
R2-
SEN
SEP
SEW
VOH
WUQ
XOL
~HD
7S9
L.6
1XC
VOOES
ID FETCH-LOGICAL-c430t-d8c94cd4abe6143ab419ae411e346e1888ab0e9c7ff621ae8b64da5fece9f35d3
ISICitedReferencesCount 348
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000406818500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0034-4257
IngestDate Tue Oct 14 20:51:02 EDT 2025
Sun Nov 09 14:43:52 EST 2025
Tue Nov 18 21:18:18 EST 2025
Sat Nov 29 07:28:35 EST 2025
Fri Feb 23 02:30:06 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Computer vision algorithm
Particle swarm optimization (PSO)-support vector machine (SVM)
Unmanned aerial vehicle
Plant density
Winter wheat
densité de végétation
drone
optimisation multi-objectifs par essaim particulaire (mopso)
multi-objective particle swarm optimization (mopso)
biodiversité végétale
imagerie haute resolution
culture agricole
phénotypage
wheat
blé
Language English
License Attribution - ShareAlike: http://creativecommons.org/licenses/by-sa
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c430t-d8c94cd4abe6143ab419ae411e346e1888ab0e9c7ff621ae8b64da5fece9f35d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7655-8997
0000-0002-6919-0469
OpenAccessLink https://hal.science/hal-01578842
PQID 2000470090
PQPubID 24069
PageCount 10
ParticipantIDs hal_primary_oai_HAL_hal_01578842v1
proquest_miscellaneous_2000470090
crossref_citationtrail_10_1016_j_rse_2017_06_007
crossref_primary_10_1016_j_rse_2017_06_007
elsevier_sciencedirect_doi_10_1016_j_rse_2017_06_007
PublicationCentury 2000
PublicationDate 2017-09-01
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Remote sensing of environment
PublicationYear 2017
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Hunt, Hively, Fujikawa, Linden, Daughtry, McCarty (bb0080) 2010; 2
Verger, Vigneau, Chéron, Gilliot, Baret (bb0200) 2014; 152
Haun (bb9100) 1973; 65
Vapnik (bb0190) 2013
Tang, Tian (bb0185) 2008; 51
Agisoft (bb0005) 2016
Shrestha, Steward (bb0170) 2005; 21
Ehsani, Maja (bb0035) 2013; 20
Jia, Krutz, Gibson (bb0085) 1991
Vapnik, Vapnik (bb0195) 1998
Zarco-Tejada, González-Dugo, Berni (bb0230) 2012; 117
Mountrakis, Im, Ogole (bb0125) 2011; 66
Whaley, Sparkes, Foulkes, Spink, Semere, Scott (bb0215) 2000; 137
Saeys, Lenaerts, Craessaerts, De Baerdemaeker (bb0145) 2009; 102
Kenndy, Eberhart (bb0100) 1995
Zarco-Tejada, Guillén-Climent, Hernández-Clemente, Catalinac, Gonzálezc, Martínc (bb0235) 2013; 171
Shrestha, Steward (bb0165) 2003; 46
Sankaran, Khot, Carter (bb0150) 2015; 118
Sullivan, Fulton, Shaw, Bland (bb0175) 2007; 50
Hough, P.V.C., 1962. Method and means for recognizing complex patterns. U.S. Patent 3069654.
Sankaran, Khot, Espinoza, Jarolmasjed, Sathuvalli, Vandemark, Miklase, Carterf, Pumphrey, Knowles (bb0155) 2015; 70
Nakarmi, Tang (bb0130) 2012; 82
Nakarmi, Tang (bb0135) 2014; 125
Ahmed, Abidin, Ali, Wong, Shariff (bb0010) 2008
Furbank, Tester (bb0040) 2011; 16
Meyer, Neto (bb0120) 2008; 63
Hunt, Cavigelli, Daughtry, Mcmurtrey, Walthall (bb0070) 2005; 6
Jin, Tang (bb0090) 2009; 26
Gómez-Candón, De Castro, López-Granados (bb0045) 2014; 15
Tang, Tian (bb0180) 2008; 51
Liu, Baret, Andrieu, Burger, Hemmerlé (bb0110) 2017; 8
Wilson, Sagan (bb0225) 1995; 100
Otsu (bb0140) 1979; 9
Díaz-Varela, de la Rosa, León, Zarco-Tejada (bb0030) 2015; 7
Zhang, Kovacs (bb0240) 2012; 13
Hunt, Hively, Daughtry, McCarty, Fujikawa, Ng, Linden, Yoel (bb0075) 2008
Walter, Liebisch, Hund (bb0210) 2015; 11
Willmott (bb0220) 1982; 11
Bendig, Yu, Aasen, Bolten, Bennertz, Broscheit, Gnyp, Bareth (bb0020) 2015; 39
Joseph, Alley, Brann, Gravelle (bb0095) 1985; 77
Araus, Cairns (bb0015) 2014; 19
Haralick, Shapiro (bb0060) 1992
Guillen-Climent, Zarco-Tejada, Berni, North, Villalobos (bb0050) 2012; 13
Maertens, Reyns, De Clippel, De Baerdemaeker (bb0115) 2003; 266
Shi, Wang, Taylor, Raun (bb0160) 2015; 112
Wilson (10.1016/j.rse.2017.06.007_bb0225) 1995; 100
Bendig (10.1016/j.rse.2017.06.007_bb0020) 2015; 39
Díaz-Varela (10.1016/j.rse.2017.06.007_bb0030) 2015; 7
10.1016/j.rse.2017.06.007_bb0065
Hunt (10.1016/j.rse.2017.06.007_bb0070) 2005; 6
Tang (10.1016/j.rse.2017.06.007_bb0185) 2008; 51
Furbank (10.1016/j.rse.2017.06.007_bb0040) 2011; 16
Otsu (10.1016/j.rse.2017.06.007_bb0140) 1979; 9
Vapnik (10.1016/j.rse.2017.06.007_bb0190) 2013
Zhang (10.1016/j.rse.2017.06.007_bb0240) 2012; 13
Nakarmi (10.1016/j.rse.2017.06.007_bb0135) 2014; 125
Meyer (10.1016/j.rse.2017.06.007_bb0120) 2008; 63
Verger (10.1016/j.rse.2017.06.007_bb0200) 2014; 152
Walter (10.1016/j.rse.2017.06.007_bb0210) 2015; 11
Ahmed (10.1016/j.rse.2017.06.007_bb0010) 2008
Zarco-Tejada (10.1016/j.rse.2017.06.007_bb0230) 2012; 117
Nakarmi (10.1016/j.rse.2017.06.007_bb0130) 2012; 82
Saeys (10.1016/j.rse.2017.06.007_bb0145) 2009; 102
Araus (10.1016/j.rse.2017.06.007_bb0015) 2014; 19
Sankaran (10.1016/j.rse.2017.06.007_bb0150) 2015; 118
Whaley (10.1016/j.rse.2017.06.007_bb0215) 2000; 137
Gómez-Candón (10.1016/j.rse.2017.06.007_bb0045) 2014; 15
Mountrakis (10.1016/j.rse.2017.06.007_bb0125) 2011; 66
Haralick (10.1016/j.rse.2017.06.007_bb0060) 1992
Vapnik (10.1016/j.rse.2017.06.007_bb0195) 1998
Haun (10.1016/j.rse.2017.06.007_bb9100) 1973; 65
Shrestha (10.1016/j.rse.2017.06.007_bb0170) 2005; 21
Sullivan (10.1016/j.rse.2017.06.007_bb0175) 2007; 50
Zarco-Tejada (10.1016/j.rse.2017.06.007_bb0235) 2013; 171
Jia (10.1016/j.rse.2017.06.007_bb0085) 1991
Jin (10.1016/j.rse.2017.06.007_bb0090) 2009; 26
Liu (10.1016/j.rse.2017.06.007_bb0110) 2017; 8
Tang (10.1016/j.rse.2017.06.007_bb0180) 2008; 51
Hunt (10.1016/j.rse.2017.06.007_bb0075) 2008
Joseph (10.1016/j.rse.2017.06.007_bb0095) 1985; 77
Maertens (10.1016/j.rse.2017.06.007_bb0115) 2003; 266
Shrestha (10.1016/j.rse.2017.06.007_bb0165) 2003; 46
Guillen-Climent (10.1016/j.rse.2017.06.007_bb0050) 2012; 13
Hunt (10.1016/j.rse.2017.06.007_bb0080) 2010; 2
Ehsani (10.1016/j.rse.2017.06.007_bb0035) 2013; 20
Willmott (10.1016/j.rse.2017.06.007_bb0220) 1982; 11
Agisoft (10.1016/j.rse.2017.06.007_bb0005) 2016
Sankaran (10.1016/j.rse.2017.06.007_bb0155) 2015; 70
Shi (10.1016/j.rse.2017.06.007_bb0160) 2015; 112
Kenndy (10.1016/j.rse.2017.06.007_bb0100) 1995
References_xml – year: 2016
  ident: bb0005
  article-title: Agisoft Photoscan User Manual Professional Edition, Version 1.2
– volume: 19
  start-page: 52
  year: 2014
  end-page: 61
  ident: bb0015
  article-title: Field high-throughput phenotyping: the new crop breeding frontier
  publication-title: Trends Plant Sci.
– volume: 8
  start-page: 739
  year: 2017
  ident: bb0110
  article-title: Estimation of wheat plant density at early stages using high resolution imagery
  publication-title: Front. Plant Sci.
– volume: 266
  start-page: 655
  year: 2003
  end-page: 665
  ident: bb0115
  article-title: First experiments on ultrasonic crop density measurement
  publication-title: J. Sound Vib.
– volume: 21
  start-page: 295
  year: 2005
  end-page: 303
  ident: bb0170
  article-title: Shape and size analysis of corn plant canopies for plant population and spacing sensing
  publication-title: Appl. Eng. Agric.
– year: 2008
  ident: bb0075
  article-title: Remote sensing of crop leaf area index using unmanned airborne vehicles
  publication-title: Proceedings of the Pecora 17 Symposium, Denver, CO
– volume: 13
  start-page: 473
  year: 2012
  end-page: 500
  ident: bb0050
  article-title: Mapping radiation interception in row-structured orchards using 3D simulation and high-resolution airborne imagery acquired from a UAV
  publication-title: Precis. Agric.
– volume: 20
  start-page: 18
  year: 2013
  end-page: 19
  ident: bb0035
  article-title: The rise of small UAVs in precision agriculture
  publication-title: Resour. Mag.
– volume: 82
  start-page: 23
  year: 2012
  end-page: 31
  ident: bb0130
  article-title: Automatic inter-plant spacing sensing at early growth stages using a 3D vision sensor
  publication-title: Comput. Electron. Agric.
– volume: 125
  start-page: 54
  year: 2014
  end-page: 64
  ident: bb0135
  article-title: Within-row spacing sensing of maize plants using 3D computer vision
  publication-title: Biosyst. Eng.
– volume: 117
  start-page: 322
  year: 2012
  end-page: 337
  ident: bb0230
  article-title: Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera
  publication-title: Remote Sens. Environ.
– start-page: 28
  year: 1992
  end-page: 48
  ident: bb0060
  article-title: Computer and Robot Vision, 1
– volume: 152
  start-page: 654
  year: 2014
  end-page: 664
  ident: bb0200
  article-title: Green area index from unmanned aerial system over wheat and rapeseed crops
  publication-title: Remote Sens. Environ.
– volume: 16
  start-page: 635
  year: 2011
  end-page: 644
  ident: bb0040
  article-title: Phenomics - technologies to relieve the phenotyping bottleneck
  publication-title: Trends Plant Sci.
– volume: 11
  start-page: 1303
  year: 1982
  end-page: 1313
  ident: bb0220
  article-title: Some comments on the evaluation of model performance
  publication-title: Bull. Am. Meteorol. Soc.
– year: 2013
  ident: bb0190
  article-title: The Nature of Statistical Learning Theory
– volume: 50
  start-page: 1963
  year: 2007
  end-page: 1969
  ident: bb0175
  article-title: Evaluating the sensitivity of an unmanned thermal infrared aerial system to detect water stress in a cotton canopy
  publication-title: Trans. ASABE
– volume: 137
  start-page: 165
  year: 2000
  end-page: 177
  ident: bb0215
  article-title: The physiological response of winter wheat to reductions in plant density
  publication-title: Ann. Appl. Biol.
– volume: 6
  start-page: 359
  year: 2005
  end-page: 378
  ident: bb0070
  article-title: Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status
  publication-title: Precis. Agric.
– volume: 77
  start-page: 211
  year: 1985
  end-page: 214
  ident: bb0095
  article-title: Row spacing and seeding rate effects on yield and yield components of soft red winter wheat
  publication-title: Agron. J.
– volume: 112
  start-page: 92
  year: 2015
  end-page: 101
  ident: bb0160
  article-title: Improvement of a ground-LiDAR-based corn plant population and spacing measurement system
  publication-title: Comput. Electron. Agric.
– volume: 102
  start-page: 22
  year: 2009
  end-page: 30
  ident: bb0145
  article-title: Estimation of the crop density of small grains using LiDAR sensors
  publication-title: Biosyst. Eng.
– volume: 39
  start-page: 79
  year: 2015
  end-page: 87
  ident: bb0020
  article-title: Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley
  publication-title: Int. J. Appl. Earth Obs.
– volume: 51
  start-page: 1079
  year: 2008
  end-page: 1087
  ident: bb0185
  article-title: Real-time crop row image reconstruction for automatic emerged corn plant spacing measurement
  publication-title: Trans. ASABE
– volume: 70
  start-page: 112
  year: 2015
  end-page: 123
  ident: bb0155
  article-title: Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: a review
  publication-title: Eur. J. Agron.
– year: 1998
  ident: bb0195
  article-title: Statistical Learning Theory, 1
– volume: 2
  start-page: 290
  year: 2010
  end-page: 305
  ident: bb0080
  article-title: Acquisition of NIR-green-blue digital photographs from unmanned aircraft for crop monitoring
  publication-title: Remote Sens.
– volume: 46
  start-page: 559
  year: 2003
  ident: bb0165
  article-title: Automatic corn plant population measurement using machine vision
  publication-title: Trans. ASAE
– volume: 65
  start-page: 116
  year: 1973
  end-page: 119
  ident: bb9100
  article-title: Visual quantification of wheat development
  publication-title: Agron. J.
– volume: 15
  start-page: 44
  year: 2014
  end-page: 56
  ident: bb0045
  article-title: Assessing the accuracy of mosaics from unmanned aerial vehicle (UAV) imagery for precision agriculture purposes in wheat
  publication-title: Precis. Agric.
– volume: 51
  start-page: 2181
  year: 2008
  end-page: 2191
  ident: bb0180
  article-title: Plant identification in mosaicked crop row images for automatic emerged corn plant spacing measurement
  publication-title: Trans. ASABE
– start-page: 246
  year: 1991
  end-page: 253
  ident: bb0085
  article-title: Corn plant locating by image processing, Fibers' 91, Boston, MA
  publication-title: Int. Soc. Opt. Photon.
– volume: 63
  start-page: 282
  year: 2008
  end-page: 293
  ident: bb0120
  article-title: Verification of color vegetation indices for automated crop imaging applications
  publication-title: Comput. Electron. Agric.
– volume: 100
  start-page: 7531
  year: 1995
  end-page: 7537
  ident: bb0225
  article-title: Spectrophotometry and organic matter on Iapetus: 1. Composition models
  publication-title: J. Geophys. Res. Planets
– volume: 26
  start-page: 591
  year: 2009
  end-page: 608
  ident: bb0090
  article-title: Corn plant sensing using real-time stereo vision
  publication-title: J. Field Robot.
– volume: 11
  start-page: 1
  year: 2015
  end-page: 11
  ident: bb0210
  article-title: Plant phenotyping: from bean weighing to image analysis
  publication-title: Plant Methods
– volume: 9
  start-page: 62
  year: 1979
  end-page: 66
  ident: bb0140
  article-title: A threshold selection method from gray-level histogram
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 13
  start-page: 693
  year: 2012
  end-page: 712
  ident: bb0240
  article-title: The application of small unmanned aerial systems for precision agriculture: a review
  publication-title: Precis. Agric.
– volume: 171
  start-page: 281
  year: 2013
  end-page: 294
  ident: bb0235
  article-title: Estimating leaf carotenoid content in vineyards using high resolution hyperspectral imagery acquired from an unmanned aerial vehicle (UAV)
  publication-title: Agric. For. Meteorol.
– year: 2008
  ident: bb0010
  article-title: Image processing of a banana: area determination via edge detection using MATLAB
  publication-title: 4th International Colloqium on Signal Processing and Its Applications, Kuala Lumpur
– volume: 7
  start-page: 4213
  year: 2015
  end-page: 4232
  ident: bb0030
  article-title: High-resolution airborne UAV imagery to assess olive tree crown parameters using 3D photo reconstruction: application in breeding trials
  publication-title: Remote Sens.
– reference: Hough, P.V.C., 1962. Method and means for recognizing complex patterns. U.S. Patent 3069654.
– volume: 66
  start-page: 247
  year: 2011
  end-page: 259
  ident: bb0125
  article-title: Support vector machines in remote sensing: a review
  publication-title: ISPRS J. Photogramm.
– start-page: 1942
  year: 1995
  end-page: 1948
  ident: bb0100
  article-title: Particle swarm optimization
  publication-title: Proceedings of IEEE International Conference on Neural Networks
– volume: 118
  start-page: 372
  year: 2015
  end-page: 379
  ident: bb0150
  article-title: Field-based crop phenotyping: Multispectral aerial imaging for evaluation of winter wheat emergence and spring stand
  publication-title: Comput. Electron. Agric.
– volume: 46
  start-page: 559
  year: 2003
  ident: 10.1016/j.rse.2017.06.007_bb0165
  article-title: Automatic corn plant population measurement using machine vision
  publication-title: Trans. ASAE
  doi: 10.13031/2013.12945
– volume: 16
  start-page: 635
  year: 2011
  ident: 10.1016/j.rse.2017.06.007_bb0040
  article-title: Phenomics - technologies to relieve the phenotyping bottleneck
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2011.09.005
– volume: 51
  start-page: 1079
  year: 2008
  ident: 10.1016/j.rse.2017.06.007_bb0185
  article-title: Real-time crop row image reconstruction for automatic emerged corn plant spacing measurement
  publication-title: Trans. ASABE
  doi: 10.13031/2013.24510
– volume: 117
  start-page: 322
  year: 2012
  ident: 10.1016/j.rse.2017.06.007_bb0230
  article-title: Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.10.007
– volume: 63
  start-page: 282
  year: 2008
  ident: 10.1016/j.rse.2017.06.007_bb0120
  article-title: Verification of color vegetation indices for automated crop imaging applications
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2008.03.009
– volume: 82
  start-page: 23
  year: 2012
  ident: 10.1016/j.rse.2017.06.007_bb0130
  article-title: Automatic inter-plant spacing sensing at early growth stages using a 3D vision sensor
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2011.12.011
– start-page: 1942
  year: 1995
  ident: 10.1016/j.rse.2017.06.007_bb0100
  article-title: Particle swarm optimization
– volume: 102
  start-page: 22
  year: 2009
  ident: 10.1016/j.rse.2017.06.007_bb0145
  article-title: Estimation of the crop density of small grains using LiDAR sensors
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2008.10.003
– volume: 6
  start-page: 359
  year: 2005
  ident: 10.1016/j.rse.2017.06.007_bb0070
  article-title: Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-005-2324-5
– volume: 266
  start-page: 655
  year: 2003
  ident: 10.1016/j.rse.2017.06.007_bb0115
  article-title: First experiments on ultrasonic crop density measurement
  publication-title: J. Sound Vib.
  doi: 10.1016/S0022-460X(03)00591-1
– volume: 118
  start-page: 372
  year: 2015
  ident: 10.1016/j.rse.2017.06.007_bb0150
  article-title: Field-based crop phenotyping: Multispectral aerial imaging for evaluation of winter wheat emergence and spring stand
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2015.09.001
– volume: 65
  start-page: 116
  year: 1973
  ident: 10.1016/j.rse.2017.06.007_bb9100
  article-title: Visual quantification of wheat development
  publication-title: Agron. J.
  doi: 10.2134/agronj1973.00021962006500010035x
– volume: 7
  start-page: 4213
  year: 2015
  ident: 10.1016/j.rse.2017.06.007_bb0030
  article-title: High-resolution airborne UAV imagery to assess olive tree crown parameters using 3D photo reconstruction: application in breeding trials
  publication-title: Remote Sens.
  doi: 10.3390/rs70404213
– year: 2013
  ident: 10.1016/j.rse.2017.06.007_bb0190
– ident: 10.1016/j.rse.2017.06.007_bb0065
– volume: 21
  start-page: 295
  issue: 2
  year: 2005
  ident: 10.1016/j.rse.2017.06.007_bb0170
  article-title: Shape and size analysis of corn plant canopies for plant population and spacing sensing
  publication-title: Appl. Eng. Agric.
  doi: 10.13031/2013.18144
– start-page: 246
  year: 1991
  ident: 10.1016/j.rse.2017.06.007_bb0085
  article-title: Corn plant locating by image processing, Fibers' 91, Boston, MA
  publication-title: Int. Soc. Opt. Photon.
– volume: 171
  start-page: 281
  year: 2013
  ident: 10.1016/j.rse.2017.06.007_bb0235
  article-title: Estimating leaf carotenoid content in vineyards using high resolution hyperspectral imagery acquired from an unmanned aerial vehicle (UAV)
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2012.12.013
– year: 1998
  ident: 10.1016/j.rse.2017.06.007_bb0195
– volume: 11
  start-page: 1
  year: 2015
  ident: 10.1016/j.rse.2017.06.007_bb0210
  article-title: Plant phenotyping: from bean weighing to image analysis
  publication-title: Plant Methods
  doi: 10.1186/s13007-015-0056-8
– year: 2016
  ident: 10.1016/j.rse.2017.06.007_bb0005
– volume: 51
  start-page: 2181
  year: 2008
  ident: 10.1016/j.rse.2017.06.007_bb0180
  article-title: Plant identification in mosaicked crop row images for automatic emerged corn plant spacing measurement
  publication-title: Trans. ASABE
  doi: 10.13031/2013.25381
– year: 2008
  ident: 10.1016/j.rse.2017.06.007_bb0010
  article-title: Image processing of a banana: area determination via edge detection using MATLAB
– volume: 100
  start-page: 7531
  year: 1995
  ident: 10.1016/j.rse.2017.06.007_bb0225
  article-title: Spectrophotometry and organic matter on Iapetus: 1. Composition models
  publication-title: J. Geophys. Res. Planets
  doi: 10.1029/94JE03364
– volume: 26
  start-page: 591
  year: 2009
  ident: 10.1016/j.rse.2017.06.007_bb0090
  article-title: Corn plant sensing using real-time stereo vision
  publication-title: J. Field Robot.
  doi: 10.1002/rob.20293
– volume: 50
  start-page: 1963
  year: 2007
  ident: 10.1016/j.rse.2017.06.007_bb0175
  article-title: Evaluating the sensitivity of an unmanned thermal infrared aerial system to detect water stress in a cotton canopy
  publication-title: Trans. ASABE
  doi: 10.13031/2013.24091
– volume: 11
  start-page: 1303
  year: 1982
  ident: 10.1016/j.rse.2017.06.007_bb0220
  article-title: Some comments on the evaluation of model performance
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 9
  start-page: 62
  year: 1979
  ident: 10.1016/j.rse.2017.06.007_bb0140
  article-title: A threshold selection method from gray-level histogram
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1979.4310076
– volume: 13
  start-page: 473
  year: 2012
  ident: 10.1016/j.rse.2017.06.007_bb0050
  article-title: Mapping radiation interception in row-structured orchards using 3D simulation and high-resolution airborne imagery acquired from a UAV
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-012-9263-8
– volume: 15
  start-page: 44
  year: 2014
  ident: 10.1016/j.rse.2017.06.007_bb0045
  article-title: Assessing the accuracy of mosaics from unmanned aerial vehicle (UAV) imagery for precision agriculture purposes in wheat
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-013-9335-4
– volume: 70
  start-page: 112
  year: 2015
  ident: 10.1016/j.rse.2017.06.007_bb0155
  article-title: Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: a review
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2015.07.004
– volume: 2
  start-page: 290
  year: 2010
  ident: 10.1016/j.rse.2017.06.007_bb0080
  article-title: Acquisition of NIR-green-blue digital photographs from unmanned aircraft for crop monitoring
  publication-title: Remote Sens.
  doi: 10.3390/rs2010290
– volume: 125
  start-page: 54
  year: 2014
  ident: 10.1016/j.rse.2017.06.007_bb0135
  article-title: Within-row spacing sensing of maize plants using 3D computer vision
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2014.07.001
– volume: 66
  start-page: 247
  year: 2011
  ident: 10.1016/j.rse.2017.06.007_bb0125
  article-title: Support vector machines in remote sensing: a review
  publication-title: ISPRS J. Photogramm.
  doi: 10.1016/j.isprsjprs.2010.11.001
– volume: 39
  start-page: 79
  year: 2015
  ident: 10.1016/j.rse.2017.06.007_bb0020
  article-title: Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley
  publication-title: Int. J. Appl. Earth Obs.
– start-page: 28
  year: 1992
  ident: 10.1016/j.rse.2017.06.007_bb0060
– volume: 112
  start-page: 92
  year: 2015
  ident: 10.1016/j.rse.2017.06.007_bb0160
  article-title: Improvement of a ground-LiDAR-based corn plant population and spacing measurement system
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2014.11.026
– volume: 20
  start-page: 18
  year: 2013
  ident: 10.1016/j.rse.2017.06.007_bb0035
  article-title: The rise of small UAVs in precision agriculture
  publication-title: Resour. Mag.
– volume: 77
  start-page: 211
  year: 1985
  ident: 10.1016/j.rse.2017.06.007_bb0095
  article-title: Row spacing and seeding rate effects on yield and yield components of soft red winter wheat
  publication-title: Agron. J.
  doi: 10.2134/agronj1985.00021962007700020009x
– volume: 137
  start-page: 165
  year: 2000
  ident: 10.1016/j.rse.2017.06.007_bb0215
  article-title: The physiological response of winter wheat to reductions in plant density
  publication-title: Ann. Appl. Biol.
  doi: 10.1111/j.1744-7348.2000.tb00048.x
– year: 2008
  ident: 10.1016/j.rse.2017.06.007_bb0075
  article-title: Remote sensing of crop leaf area index using unmanned airborne vehicles
– volume: 13
  start-page: 693
  year: 2012
  ident: 10.1016/j.rse.2017.06.007_bb0240
  article-title: The application of small unmanned aerial systems for precision agriculture: a review
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-012-9274-5
– volume: 8
  start-page: 739
  year: 2017
  ident: 10.1016/j.rse.2017.06.007_bb0110
  article-title: Estimation of wheat plant density at early stages using high resolution imagery
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.00739
– volume: 152
  start-page: 654
  year: 2014
  ident: 10.1016/j.rse.2017.06.007_bb0200
  article-title: Green area index from unmanned aerial system over wheat and rapeseed crops
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.06.006
– volume: 19
  start-page: 52
  year: 2014
  ident: 10.1016/j.rse.2017.06.007_bb0015
  article-title: Field high-throughput phenotyping: the new crop breeding frontier
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2013.09.008
SSID ssj0015871
Score 2.66361
Snippet Plant density is useful variable that determines the fate of the wheat crop. The most commonly used method for plant density quantification is based on visual...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105
SubjectTerms altitude
cameras
computer software
Computer vision algorithm
crops
developmental stages
Environmental Sciences
flight
genotype
Global Changes
leaves
Particle swarm optimization (PSO)-support vector machine (SVM)
phenotype
Plant density
remote sensing
rotors
sowing date
support vector machines
Unmanned aerial vehicle
wheat
wind
Winter wheat
Title Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery
URI https://dx.doi.org/10.1016/j.rse.2017.06.007
https://www.proquest.com/docview/2000470090
https://hal.science/hal-01578842
Volume 198
WOSCitedRecordID wos000406818500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELa6DgQvCAoT5ZcM4okoKG6cxHmsUNlA04TQQOUpcmyHZirp1CTd-p_w53KOnbQr2sQeeEkjpzk5uS_ns_3dHUJvUwJush_7bsZo6lI_JG5KM-ISDhPsSMaEySa7_nF0csKm0_hLr_e7jYVZzaOiYJeX8fl_VTW0gbJ16Owt1N0JhQY4B6XDEdQOx39S_AQ-2l_ag2zIzHN4c47ULHVDvbjQxtfRdbtKHceobPSlMnEm8LBrZ764cLgOy60l-KTj7w6I2w2d_qpAxcoptWBDm96KmOtYOSY_wTSv9VrKz477k9fNmutsUa-3mnXlhcr40mb3XpqfZS42C7bQ3blpNoFGVTXLVb29dAHDYcvN6syxT11tNK6YY1OV2hpU4gVbYzMxAad_mX2zAnH2flnqzKckalKymmq6V1Ns7wx9HSGx5bqdJSAi0SKShu8X7aH9URTErI_2x58m08_dDlXAIlON0T5Cu2PecAd3-nGdz7M30-TbHR-gcWxOH6IHdkaCxwZJj1BPFQN0MNmoEy7aEaAcoHuHyiY5H6C7h01Z6PVj9KMDHV5kuAEdtqDTDQ3ocAM6DCcd6LAGHdagwwA63IIOA-iwBd0T9O3j5PTDkWuLdriC-l7lSiZiKiTlqQLPz-cpJTFXlBDl01ARxhhPPRWLKMvCEeGKpSGVPMiUUHHmB9I_QP1iUainCHtcwWyCgsObCUqljGWghBfwWIQ8EqE3RF77WhNhM9rrwirz5Fp1DtG77pZzk87lpj_TVleJ9UeNn5kA7m667Q3otROv87cfjY8T3QawiRijoxUZotet2hMw6HqXjhdqUZe6LqxHI5j6eM9u09nn6P7mE3uB-tWyVi_RHbGq8nL5yqL3D5rqwoc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimates+of+plant+density+of+wheat+crops+at+emergence+from+very+low+altitude+UAV+imagery&rft.jtitle=Remote+sensing+of+environment&rft.au=Jin%2C+Xiuliang&rft.au=Liu%2C+Shouyang&rft.au=Baret%2C+Fr%C3%A9d%C3%A9ric&rft.au=Hemerl%C3%A9%2C+Matthieu&rft.date=2017-09-01&rft.issn=0034-4257&rft.volume=198&rft.spage=105&rft.epage=114&rft_id=info:doi/10.1016%2Fj.rse.2017.06.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rse_2017_06_007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon