Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery
Plant density is useful variable that determines the fate of the wheat crop. The most commonly used method for plant density quantification is based on visual counting from ground level. The objective of this study is to develop and evaluate a method for estimating wheat plant density at the emergen...
Saved in:
| Published in: | Remote sensing of environment Vol. 198; pp. 105 - 114 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Inc
01.09.2017
Elsevier |
| Subjects: | |
| ISSN: | 0034-4257, 1879-0704 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Plant density is useful variable that determines the fate of the wheat crop. The most commonly used method for plant density quantification is based on visual counting from ground level. The objective of this study is to develop and evaluate a method for estimating wheat plant density at the emergence stage based on high resolution imagery taken from UAV at very low altitude with application to high throughput phenotyping in field conditions. A Sony ILCE α5100L RGB camera with 24Mpixels and equipped with a 60mm focal length lens was flying aboard an hexacopter at 3 to 7m altitude at about 1m/s speed. This allows getting ground resolution between 0.20mm to 0.45mm, while providing 59–77% overlap between images. The camera was looking with 45° zenith angle in a compass direction perpendicular to the row direction to maximize the cross section viewed of the plants and minimize the effect of the wind created by the rotors. Agisoft photoscan software was then used to derive the position of the cameras for each image. Images were then projected on the ground surface to finally extract subsamples used to estimate the plant density. The extracted images were first classified to separate the green pixels from the background and the rows were then identified and extracted. Finally, image object (group of connected green pixels) was identified on each row and the number of plants they contain was estimated using a Support Vector Machine whose training was optimized using a Particle Swarm Optimization.
Three experiments were conducted in Gréoux, Avignon and Clermont sites with some variability in the sowing dates, densities, genotypes, flight altitude, and growth stage at the time of the image acquisition. The application of the method on the 270 samples available over the three sites provides a RMSE and relative RMSE on estimates of 34.05 plants/m2 and 14.31% with a bias of 9.01 plants/m2. However, differences in performances were observed between the three sites, mostly related to the growth stage at the time of the flight. Plants should have between one to two leaves when images are taken. Further, a specific sensitivity analysis shows that the ground resolution of the images should be better than 0.40mm. Finally, the repeatability of the method is good especially when images are taken from similar observational geometries. The current limits and possible improvements of the method proposed are finally discussed.
•A method is presented to estimate wheat plant density from UAV RGB images.•Results show a RMSE is 34.05plants/m2 with a bias of 9.01plants/m2.•Plants should have between one to two leaves when images are taken.•The ground resolution of the images should be better than 0.40mm. |
|---|---|
| AbstractList | Plant density is useful variable that determines the fate of the wheat crop. The most commonly used method for plant density quantification is based on visual counting from ground level. The objective of this study is to develop and evaluate a method for estimating wheat plant density at the emergence stage based on high resolution imagery taken from UAV at very low altitude with application to high throughput phenotyping in field conditions. A Sony ILCE α5100L RGB camera with 24Mpixels and equipped with a 60mm focal length lens was flying aboard an hexacopter at 3 to 7m altitude at about 1m/s speed. This allows getting ground resolution between 0.20mm to 0.45mm, while providing 59–77% overlap between images. The camera was looking with 45° zenith angle in a compass direction perpendicular to the row direction to maximize the cross section viewed of the plants and minimize the effect of the wind created by the rotors. Agisoft photoscan software was then used to derive the position of the cameras for each image. Images were then projected on the ground surface to finally extract subsamples used to estimate the plant density. The extracted images were first classified to separate the green pixels from the background and the rows were then identified and extracted. Finally, image object (group of connected green pixels) was identified on each row and the number of plants they contain was estimated using a Support Vector Machine whose training was optimized using a Particle Swarm Optimization.Three experiments were conducted in Gréoux, Avignon and Clermont sites with some variability in the sowing dates, densities, genotypes, flight altitude, and growth stage at the time of the image acquisition. The application of the method on the 270 samples available over the three sites provides a RMSE and relative RMSE on estimates of 34.05 plants/m² and 14.31% with a bias of 9.01 plants/m². However, differences in performances were observed between the three sites, mostly related to the growth stage at the time of the flight. Plants should have between one to two leaves when images are taken. Further, a specific sensitivity analysis shows that the ground resolution of the images should be better than 0.40mm. Finally, the repeatability of the method is good especially when images are taken from similar observational geometries. The current limits and possible improvements of the method proposed are finally discussed. Plant density is useful variable that determines the fate of the wheat crop. The most commonly used method for plant density quantification is based on visual counting from ground level. The objective of this study is to develop and evaluate a method for estimating wheat plant density at the emergence stage based on high resolution imagery taken from UAV at very low altitude with application to high throughput phenotyping in field conditions. A Sony ILCE alpha 5100L RGB camera with 24 Mpixels and equipped with a 60 mm focal length lens was flying aboard an hexacopter at 3 to 7 m altitude at about 1 m/s speed. This allows getting ground resolution between 0.20 mm to 0.45 mm, while providing 59-77% overlap between images. The camera was looking with 45 degrees zenith angle in a compass direction perpendicular to the row direction to maximize the cross section viewed of the plants and minimize the effect of the wind created by the rotors. Agisoft photoscan software was then used to derive the position of the cameras for each image. Images were then projected on the ground surface to finally extract subsamples used to estimate the plant density. The extracted images were first classified to separate the green pixels from the background and the rows were then identified and extracted. Finally, image object (group of connected green pixels) was identified on each row and the number of plants they contain was estimated using a Support Vector Machine whose training was optimized using a Particle Swarm Optimization. Three experiments were conducted in Greoux, Avignon and Clermont sites with some variability in the sowing dates, densities, genotypes, flight altitude, and growth stage at the time of the image acquisition. The application of the method on the 270 samples available over the three sites provides a RMSE and relative RMSE on estimates of 34.05 plants/m(2) and 14.31% with a bias of 9.01 plants/m(2). However, differences in performances were observed between the three sites, mostly related to the growth stage at the time of the flight. Plants should have between one to two leaves when images are taken. Further, a specific sensitivity analysis shows that the ground resolution of the images should be better than 0.40 mm. Finally, the repeatability of the method is good especially when images are taken from similar observational geometries. The current limits and possible improvements of the method proposed are finally discussed. Plant density is useful variable that determines the fate of the wheat crop. The most commonly used method for plant density quantification is based on visual counting from ground level. The objective of this study is to develop and evaluate a method for estimating wheat plant density at the emergence stage based on high resolution imagery taken from UAV at very low altitude with application to high throughput phenotyping in field conditions. A Sony ILCE α5100L RGB camera with 24Mpixels and equipped with a 60mm focal length lens was flying aboard an hexacopter at 3 to 7m altitude at about 1m/s speed. This allows getting ground resolution between 0.20mm to 0.45mm, while providing 59–77% overlap between images. The camera was looking with 45° zenith angle in a compass direction perpendicular to the row direction to maximize the cross section viewed of the plants and minimize the effect of the wind created by the rotors. Agisoft photoscan software was then used to derive the position of the cameras for each image. Images were then projected on the ground surface to finally extract subsamples used to estimate the plant density. The extracted images were first classified to separate the green pixels from the background and the rows were then identified and extracted. Finally, image object (group of connected green pixels) was identified on each row and the number of plants they contain was estimated using a Support Vector Machine whose training was optimized using a Particle Swarm Optimization. Three experiments were conducted in Gréoux, Avignon and Clermont sites with some variability in the sowing dates, densities, genotypes, flight altitude, and growth stage at the time of the image acquisition. The application of the method on the 270 samples available over the three sites provides a RMSE and relative RMSE on estimates of 34.05 plants/m2 and 14.31% with a bias of 9.01 plants/m2. However, differences in performances were observed between the three sites, mostly related to the growth stage at the time of the flight. Plants should have between one to two leaves when images are taken. Further, a specific sensitivity analysis shows that the ground resolution of the images should be better than 0.40mm. Finally, the repeatability of the method is good especially when images are taken from similar observational geometries. The current limits and possible improvements of the method proposed are finally discussed. •A method is presented to estimate wheat plant density from UAV RGB images.•Results show a RMSE is 34.05plants/m2 with a bias of 9.01plants/m2.•Plants should have between one to two leaves when images are taken.•The ground resolution of the images should be better than 0.40mm. |
| Author | Hemerlé, Matthieu Comar, Alexis Jin, Xiuliang Liu, Shouyang Baret, Frédéric |
| Author_xml | – sequence: 1 givenname: Xiuliang surname: Jin fullname: Jin, Xiuliang email: xiuliang.jin@inra.fr, jinxiuxiuliang@126.com organization: UMR EMMAH, INRA, UAPV, 84914 Avignon, France – sequence: 2 givenname: Shouyang surname: Liu fullname: Liu, Shouyang organization: UMR EMMAH, INRA, UAPV, 84914 Avignon, France – sequence: 3 givenname: Frédéric surname: Baret fullname: Baret, Frédéric organization: UMR EMMAH, INRA, UAPV, 84914 Avignon, France – sequence: 4 givenname: Matthieu surname: Hemerlé fullname: Hemerlé, Matthieu organization: HIPHEN, 84914 Avignon, France – sequence: 5 givenname: Alexis surname: Comar fullname: Comar, Alexis organization: HIPHEN, 84914 Avignon, France |
| BackLink | https://hal.science/hal-01578842$$DView record in HAL |
| BookMark | eNp9kD9PwzAQxS0EEqXwAdg8wpBwTtzYEVOF-CdVYgEkJst1LsVVGhfbbdVvj6PCwsB0p_N7d36_M3Lcux4JuWSQM2DVzTL3AfMCmMihygHEERkxKeoMBPBjMgIoecaLiTglZyEsAdhECjYiH_ch2pWOGKhr6brTfaQN9sHG_TDYfaKO1Hi3DjQ1uEK_wN4gbb1b0S36Pe3cjuou2rhpkL5N32lat0gP5-Sk1V3Ai586Jm8P9693T9ns5fH5bjrLDC8hZo00NTcN13OsGC_1nLNaI2cMS14hk1LqOWBtRNtWBdMo5xVv9KRFg3VbTppyTK4Pez91p9Y-Xfd75bRVT9OZGmYpqpCSF1uWtFcH7dq7rw2GqFY2GOxSbHSboAoA4AKghiQVB2kKH4LHVhkbdbSuj17bTjFQA3i1VAm8GsArqFQCn5zsj_P3V_95bg8eTKS2Fr0Kxg6gG-vRRNU4-4_7G6tVngs |
| CitedBy_id | crossref_primary_10_3390_agriculture12020124 crossref_primary_10_1080_01431161_2020_1718234 crossref_primary_10_1080_01431161_2017_1410300 crossref_primary_10_3389_fpls_2021_612843 crossref_primary_10_3390_rs12060998 crossref_primary_10_3390_agronomy9070404 crossref_primary_10_3390_rs11030330 crossref_primary_10_1016_j_compag_2021_106380 crossref_primary_10_1016_j_jag_2021_102435 crossref_primary_10_1007_s11119_021_09853_4 crossref_primary_10_3389_fpls_2024_1298791 crossref_primary_10_3390_rs13132548 crossref_primary_10_1016_j_fcr_2022_108708 crossref_primary_10_3389_fpls_2024_1333089 crossref_primary_10_3390_agriculture14081265 crossref_primary_10_3389_fpls_2018_01024 crossref_primary_10_1016_j_eja_2025_127748 crossref_primary_10_1093_jxb_erac294 crossref_primary_10_3390_rs14174158 crossref_primary_10_1002_agj2_21047 crossref_primary_10_3389_fpls_2022_1075856 crossref_primary_10_3389_fpls_2022_935748 crossref_primary_10_3389_fpls_2022_966495 crossref_primary_10_1016_j_isprsjprs_2019_05_008 crossref_primary_10_1016_j_agwat_2024_109059 crossref_primary_10_1016_j_compag_2019_03_038 crossref_primary_10_1016_j_compag_2023_107910 crossref_primary_10_1109_ACCESS_2019_2932609 crossref_primary_10_3390_rs15102525 crossref_primary_10_1016_j_fcr_2021_108419 crossref_primary_10_3390_rs13183682 crossref_primary_10_1016_j_compag_2021_106033 crossref_primary_10_1016_j_compag_2022_107064 crossref_primary_10_3390_agronomy10040469 crossref_primary_10_1093_jxb_erab194 crossref_primary_10_3390_ijgi12030124 crossref_primary_10_3389_fpls_2022_821717 crossref_primary_10_1007_s12524_024_02076_w crossref_primary_10_1186_s13007_018_0338_z crossref_primary_10_1155_2020_1360702 crossref_primary_10_3390_drones8110686 crossref_primary_10_3390_drones8040140 crossref_primary_10_1038_s41597_022_01761_0 crossref_primary_10_3390_rs13081562 crossref_primary_10_3390_rs15081979 crossref_primary_10_1016_j_isprsjprs_2019_09_017 crossref_primary_10_1016_j_compag_2023_108458 crossref_primary_10_1016_j_cj_2022_07_005 crossref_primary_10_3389_fpls_2022_957870 crossref_primary_10_3390_plants13131842 crossref_primary_10_1016_j_isprsjprs_2019_01_016 crossref_primary_10_1038_s41598_025_06579_5 crossref_primary_10_3390_rs14215323 crossref_primary_10_1016_j_ocecoaman_2021_105843 crossref_primary_10_3390_rs11070809 crossref_primary_10_3389_fpls_2024_1496801 crossref_primary_10_1016_j_jplph_2025_154542 crossref_primary_10_1016_j_agwat_2021_107298 crossref_primary_10_1016_j_compag_2024_109272 crossref_primary_10_1016_j_cosrev_2020_100345 crossref_primary_10_3390_rs14051096 crossref_primary_10_3390_s19245558 crossref_primary_10_3390_rs9121241 crossref_primary_10_3390_agronomy15092137 crossref_primary_10_3390_ijgi9030151 crossref_primary_10_3390_agriengineering7070230 crossref_primary_10_3390_s23031541 crossref_primary_10_3390_jimaging11010028 crossref_primary_10_1016_j_agwat_2022_107530 crossref_primary_10_1016_j_compag_2024_108867 crossref_primary_10_3390_agriculture14020327 crossref_primary_10_1016_j_compag_2024_108738 crossref_primary_10_3389_fpls_2020_00927 crossref_primary_10_1186_s13007_020_00625_1 crossref_primary_10_1016_j_compag_2024_109706 crossref_primary_10_1016_j_agrformet_2018_01_021 crossref_primary_10_3390_rs15153770 crossref_primary_10_3390_agriculture13030707 crossref_primary_10_1016_j_tplants_2022_12_010 crossref_primary_10_3389_fbioe_2020_623705 crossref_primary_10_1016_j_agwat_2020_106230 crossref_primary_10_1016_j_compag_2020_105903 crossref_primary_10_3390_rs14061338 crossref_primary_10_3390_plants14010039 crossref_primary_10_1109_TGRS_2024_3363651 crossref_primary_10_3389_fpls_2020_00259 crossref_primary_10_1016_j_jia_2023_05_036 crossref_primary_10_1186_s13007_018_0376_6 crossref_primary_10_3389_fenvs_2022_988932 crossref_primary_10_1016_j_atech_2025_101160 crossref_primary_10_1016_j_compag_2022_106982 crossref_primary_10_1016_j_rse_2018_09_011 crossref_primary_10_34133_2020_9452123 crossref_primary_10_1016_j_compag_2020_105375 crossref_primary_10_3390_rs14153811 crossref_primary_10_1109_JSTARS_2020_3025790 crossref_primary_10_1016_j_fcr_2019_02_022 crossref_primary_10_1088_1755_1315_783_1_012080 crossref_primary_10_3390_rs10060809 crossref_primary_10_1002_ppj2_20018 crossref_primary_10_1016_j_compag_2025_109972 crossref_primary_10_3389_fpls_2022_896408 crossref_primary_10_1016_j_agrformet_2020_108096 crossref_primary_10_1007_s11119_019_09699_x crossref_primary_10_1093_aob_mcaa097 crossref_primary_10_3390_rs15051280 crossref_primary_10_1016_j_cj_2021_12_011 crossref_primary_10_3389_fpls_2021_609876 crossref_primary_10_4081_jae_2024_1559 crossref_primary_10_1007_s11119_022_09907_1 crossref_primary_10_31548_dopovidi2020_03_007 crossref_primary_10_3390_drones7010043 crossref_primary_10_3390_agronomy12040964 crossref_primary_10_3390_rs11202343 crossref_primary_10_3390_rs15143671 crossref_primary_10_3390_rs15102680 crossref_primary_10_1016_j_compag_2019_105091 crossref_primary_10_3390_agronomy13123001 crossref_primary_10_1016_j_biosystemseng_2020_10_013 crossref_primary_10_3390_s21020507 crossref_primary_10_1016_j_cj_2023_04_005 crossref_primary_10_1007_s00138_019_01051_7 crossref_primary_10_1109_LRA_2019_2929993 crossref_primary_10_3390_s23156662 crossref_primary_10_3390_rs13152918 crossref_primary_10_1016_j_compag_2022_107017 crossref_primary_10_1016_j_eja_2019_03_006 crossref_primary_10_3389_fpls_2021_715184 crossref_primary_10_1007_s00122_021_03795_1 crossref_primary_10_1109_MGRS_2020_3032713 crossref_primary_10_1016_j_agrformet_2018_10_013 crossref_primary_10_3390_rs11182119 crossref_primary_10_1016_j_rsase_2023_101131 crossref_primary_10_3389_fpls_2025_1639533 crossref_primary_10_1016_j_isprsjprs_2019_02_013 crossref_primary_10_1111_jipb_13191 crossref_primary_10_3389_fpls_2025_1672425 crossref_primary_10_3390_agriculture12050595 crossref_primary_10_1016_j_compag_2020_105711 crossref_primary_10_3390_agriculture12101745 crossref_primary_10_1016_j_eja_2017_11_002 crossref_primary_10_3390_rs10060824 crossref_primary_10_1109_MGRS_2020_2998816 crossref_primary_10_3390_rs10071138 crossref_primary_10_3390_rs11202375 crossref_primary_10_1186_s13007_020_00582_9 crossref_primary_10_1016_j_ecolind_2019_105551 crossref_primary_10_1186_s13007_019_0418_8 crossref_primary_10_3390_drones7040254 crossref_primary_10_3390_rs12111764 crossref_primary_10_1002_ppj2_70033 crossref_primary_10_3390_s19204446 crossref_primary_10_1002_ppj2_70039 crossref_primary_10_1016_j_plaphe_2025_100026 crossref_primary_10_3390_agronomy10111762 crossref_primary_10_1038_s41598_021_86480_z crossref_primary_10_3390_geosciences11080305 crossref_primary_10_1016_j_isprsjprs_2019_02_022 crossref_primary_10_1186_s13007_024_01308_x crossref_primary_10_1016_j_pbi_2018_05_003 crossref_primary_10_3390_app10103456 crossref_primary_10_1016_j_agwat_2024_108972 crossref_primary_10_1016_j_compag_2022_107008 crossref_primary_10_1016_j_compag_2024_109108 crossref_primary_10_1111_tpj_16272 crossref_primary_10_1016_j_compag_2022_107477 crossref_primary_10_1371_journal_pone_0212057 crossref_primary_10_1016_j_tplants_2021_07_015 crossref_primary_10_1016_j_compag_2019_04_005 crossref_primary_10_3390_agronomy13122861 crossref_primary_10_1016_j_compag_2023_108045 crossref_primary_10_1111_2041_210X_14004 crossref_primary_10_3390_rs10091484 crossref_primary_10_1016_j_compag_2021_106304 crossref_primary_10_3390_rs9121304 crossref_primary_10_3389_fclim_2022_938975 crossref_primary_10_1016_j_plantsci_2018_06_008 crossref_primary_10_1016_j_rsase_2025_101717 crossref_primary_10_1186_s13007_019_0399_7 crossref_primary_10_1016_j_eja_2022_126640 crossref_primary_10_3390_rs10020268 crossref_primary_10_3390_rs14235923 crossref_primary_10_3389_fpls_2024_1411510 crossref_primary_10_1038_s41598_023_43770_y crossref_primary_10_3390_agronomy13123043 crossref_primary_10_3390_rs15010007 crossref_primary_10_1002_agj2_21333 crossref_primary_10_3390_app12157389 crossref_primary_10_1080_14498596_2019_1627252 crossref_primary_10_1109_TGRS_2025_3578800 crossref_primary_10_1016_j_compag_2024_109523 crossref_primary_10_1016_j_isprsjprs_2019_03_003 crossref_primary_10_1016_j_plantsci_2018_06_015 crossref_primary_10_1186_s42397_025_00219_z crossref_primary_10_34133_2022_9802585 crossref_primary_10_1007_s11119_022_09899_y crossref_primary_10_1080_15440478_2022_2159610 crossref_primary_10_1016_j_compag_2018_10_017 crossref_primary_10_1016_j_plantsci_2019_110396 crossref_primary_10_34133_plantphenomics_0043 crossref_primary_10_1016_j_engappai_2025_111206 crossref_primary_10_3390_rs11040436 crossref_primary_10_3390_rs15092322 crossref_primary_10_1109_ACCESS_2024_3397556 crossref_primary_10_3390_plants13141926 crossref_primary_10_3389_fpls_2020_599886 crossref_primary_10_3390_rs14215608 crossref_primary_10_1007_s11119_024_10135_y crossref_primary_10_1186_s13007_022_00881_3 crossref_primary_10_1088_1755_1315_1111_1_012023 crossref_primary_10_46932_sfjdv6n4_037 crossref_primary_10_3390_rs11020112 crossref_primary_10_3390_rs11070890 crossref_primary_10_1016_j_agrformet_2020_107938 crossref_primary_10_1016_j_agrformet_2025_110381 crossref_primary_10_1016_j_compag_2023_108144 crossref_primary_10_1146_annurev_arplant_042916_041124 crossref_primary_10_1007_s00122_021_03864_5 crossref_primary_10_1371_journal_pone_0224386 crossref_primary_10_34133_2020_3729715 crossref_primary_10_1186_s13007_018_0369_5 crossref_primary_10_1002_csc2_21028 crossref_primary_10_1016_j_compag_2022_107339 crossref_primary_10_3390_rs14102396 crossref_primary_10_1016_j_compag_2021_106214 crossref_primary_10_3390_agronomy11020203 crossref_primary_10_34133_2019_4820305 crossref_primary_10_3389_fpls_2022_1023924 crossref_primary_10_3390_s20051296 crossref_primary_10_3390_s20185130 crossref_primary_10_1016_j_ecoinf_2022_101805 crossref_primary_10_3390_ijgi10120817 crossref_primary_10_1186_s13007_025_01382_9 crossref_primary_10_3389_fpls_2018_01544 crossref_primary_10_3390_rs13142661 crossref_primary_10_3390_agriculture14020175 crossref_primary_10_1186_s13007_019_0507_8 crossref_primary_10_3389_fpls_2019_00685 crossref_primary_10_1080_01431161_2019_1650984 crossref_primary_10_1080_22797254_2017_1422280 crossref_primary_10_1093_jxb_eraa605 crossref_primary_10_3390_rs14102391 crossref_primary_10_1016_j_atech_2025_100938 crossref_primary_10_1051_e3sconf_202346202016 crossref_primary_10_1080_01431161_2023_2240523 crossref_primary_10_1016_j_apacoust_2022_109057 crossref_primary_10_3390_rs12223783 crossref_primary_10_7717_peerj_6926 crossref_primary_10_1016_j_agrformet_2022_109057 crossref_primary_10_3390_horticulturae8121186 crossref_primary_10_3390_rs13091795 crossref_primary_10_1186_s13007_019_0449_1 crossref_primary_10_3390_rs13163095 crossref_primary_10_34133_2021_9840192 crossref_primary_10_5772_acrt_20240030 crossref_primary_10_3390_plants9070817 crossref_primary_10_3390_su13094883 crossref_primary_10_3390_rs12050748 crossref_primary_10_3389_fpls_2023_1101143 crossref_primary_10_3390_agronomy12020301 crossref_primary_10_1007_s11119_022_09949_5 crossref_primary_10_3390_rs10020349 crossref_primary_10_1016_j_agrformet_2020_108231 crossref_primary_10_1016_j_cj_2022_09_001 crossref_primary_10_3390_agriculture10070256 crossref_primary_10_3390_rs10020343 crossref_primary_10_3390_agriengineering3040061 crossref_primary_10_1007_s11430_019_9584_9 crossref_primary_10_1016_j_atech_2025_100921 crossref_primary_10_47134_jpo_v2i4_1952 crossref_primary_10_1038_s41598_023_40128_2 crossref_primary_10_3389_fpls_2021_591587 crossref_primary_10_1007_s10712_021_09638_4 crossref_primary_10_3390_rs11131623 crossref_primary_10_1007_s11119_023_09997_5 crossref_primary_10_1016_j_iot_2020_100187 crossref_primary_10_3389_fpls_2023_1219983 crossref_primary_10_3390_s19122703 crossref_primary_10_1016_j_ophoto_2023_100052 crossref_primary_10_3390_agronomy12010043 crossref_primary_10_3389_fpls_2020_00617 crossref_primary_10_1007_s11119_022_09915_1 crossref_primary_10_3390_rs15143483 crossref_primary_10_3390_s18051611 crossref_primary_10_3390_su11216116 crossref_primary_10_1007_s42106_022_00199_z crossref_primary_10_3389_fpls_2018_01362 crossref_primary_10_3390_f12091250 crossref_primary_10_1007_s11119_024_10137_w crossref_primary_10_3390_drones5030079 crossref_primary_10_3390_rs12152445 crossref_primary_10_1093_plphys_kiad577 crossref_primary_10_3390_rs12213521 crossref_primary_10_34133_2021_9824843 crossref_primary_10_1016_j_compag_2023_108349 crossref_primary_10_1016_j_ecolind_2023_110123 crossref_primary_10_3389_fpls_2020_534853 crossref_primary_10_3390_su14116473 crossref_primary_10_3390_s20185055 crossref_primary_10_1038_s41598_022_20299_0 crossref_primary_10_3390_rs14061384 crossref_primary_10_1016_j_compag_2022_107087 crossref_primary_10_3390_rs12182981 crossref_primary_10_1007_s11119_024_10147_8 crossref_primary_10_3390_rs15030646 crossref_primary_10_3390_rs16010132 crossref_primary_10_3390_app142210693 crossref_primary_10_1002_agg2_20247 crossref_primary_10_5194_bg_19_2699_2022 crossref_primary_10_3390_geomatics3010006 crossref_primary_10_3390_s21206826 |
| Cites_doi | 10.13031/2013.12945 10.1016/j.tplants.2011.09.005 10.13031/2013.24510 10.1016/j.rse.2011.10.007 10.1016/j.compag.2008.03.009 10.1016/j.compag.2011.12.011 10.1016/j.biosystemseng.2008.10.003 10.1007/s11119-005-2324-5 10.1016/S0022-460X(03)00591-1 10.1016/j.compag.2015.09.001 10.2134/agronj1973.00021962006500010035x 10.3390/rs70404213 10.13031/2013.18144 10.1016/j.agrformet.2012.12.013 10.1186/s13007-015-0056-8 10.13031/2013.25381 10.1029/94JE03364 10.1002/rob.20293 10.13031/2013.24091 10.1109/TSMC.1979.4310076 10.1007/s11119-012-9263-8 10.1007/s11119-013-9335-4 10.1016/j.eja.2015.07.004 10.3390/rs2010290 10.1016/j.biosystemseng.2014.07.001 10.1016/j.isprsjprs.2010.11.001 10.1016/j.compag.2014.11.026 10.2134/agronj1985.00021962007700020009x 10.1111/j.1744-7348.2000.tb00048.x 10.1007/s11119-012-9274-5 10.3389/fpls.2017.00739 10.1016/j.rse.2014.06.006 10.1016/j.tplants.2013.09.008 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier Inc. Attribution - ShareAlike |
| Copyright_xml | – notice: 2017 Elsevier Inc. – notice: Attribution - ShareAlike |
| DBID | AAYXX CITATION 7S9 L.6 1XC VOOES |
| DOI | 10.1016/j.rse.2017.06.007 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Geology Environmental Sciences |
| EISSN | 1879-0704 |
| EndPage | 114 |
| ExternalDocumentID | oai:HAL:hal-01578842v1 10_1016_j_rse_2017_06_007 S0034425717302651 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABPPZ ABQEM ABQYD ABYKQ ACDAQ ACGFS ACIWK ACLVX ACPRK ACRLP ACSBN ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSE SSJ SSZ T5K TN5 TWZ WH7 ZCA ZMT ~02 ~G- ~KM 29P 41~ 6TJ 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABUFD ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FA8 FEDTE FGOYB G-2 HMA HMC HVGLF HZ~ H~9 OHT R2- SEN SEP SEW VOH WUQ XOL ~HD 7S9 L.6 1XC VOOES |
| ID | FETCH-LOGICAL-c430t-d8c94cd4abe6143ab419ae411e346e1888ab0e9c7ff621ae8b64da5fece9f35d3 |
| ISICitedReferencesCount | 348 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000406818500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0034-4257 |
| IngestDate | Tue Oct 14 20:51:02 EDT 2025 Sun Nov 09 14:43:52 EST 2025 Tue Nov 18 21:18:18 EST 2025 Sat Nov 29 07:28:35 EST 2025 Fri Feb 23 02:30:06 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Computer vision algorithm Particle swarm optimization (PSO)-support vector machine (SVM) Unmanned aerial vehicle Plant density Winter wheat densité de végétation drone optimisation multi-objectifs par essaim particulaire (mopso) multi-objective particle swarm optimization (mopso) biodiversité végétale imagerie haute resolution culture agricole phénotypage wheat blé |
| Language | English |
| License | Attribution - ShareAlike: http://creativecommons.org/licenses/by-sa |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c430t-d8c94cd4abe6143ab419ae411e346e1888ab0e9c7ff621ae8b64da5fece9f35d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-7655-8997 0000-0002-6919-0469 |
| OpenAccessLink | https://hal.science/hal-01578842 |
| PQID | 2000470090 |
| PQPubID | 24069 |
| PageCount | 10 |
| ParticipantIDs | hal_primary_oai_HAL_hal_01578842v1 proquest_miscellaneous_2000470090 crossref_citationtrail_10_1016_j_rse_2017_06_007 crossref_primary_10_1016_j_rse_2017_06_007 elsevier_sciencedirect_doi_10_1016_j_rse_2017_06_007 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-09-01 |
| PublicationDateYYYYMMDD | 2017-09-01 |
| PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Remote sensing of environment |
| PublicationYear | 2017 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Hunt, Hively, Fujikawa, Linden, Daughtry, McCarty (bb0080) 2010; 2 Verger, Vigneau, Chéron, Gilliot, Baret (bb0200) 2014; 152 Haun (bb9100) 1973; 65 Vapnik (bb0190) 2013 Tang, Tian (bb0185) 2008; 51 Agisoft (bb0005) 2016 Shrestha, Steward (bb0170) 2005; 21 Ehsani, Maja (bb0035) 2013; 20 Jia, Krutz, Gibson (bb0085) 1991 Vapnik, Vapnik (bb0195) 1998 Zarco-Tejada, González-Dugo, Berni (bb0230) 2012; 117 Mountrakis, Im, Ogole (bb0125) 2011; 66 Whaley, Sparkes, Foulkes, Spink, Semere, Scott (bb0215) 2000; 137 Saeys, Lenaerts, Craessaerts, De Baerdemaeker (bb0145) 2009; 102 Kenndy, Eberhart (bb0100) 1995 Zarco-Tejada, Guillén-Climent, Hernández-Clemente, Catalinac, Gonzálezc, Martínc (bb0235) 2013; 171 Shrestha, Steward (bb0165) 2003; 46 Sankaran, Khot, Carter (bb0150) 2015; 118 Sullivan, Fulton, Shaw, Bland (bb0175) 2007; 50 Hough, P.V.C., 1962. Method and means for recognizing complex patterns. U.S. Patent 3069654. Sankaran, Khot, Espinoza, Jarolmasjed, Sathuvalli, Vandemark, Miklase, Carterf, Pumphrey, Knowles (bb0155) 2015; 70 Nakarmi, Tang (bb0130) 2012; 82 Nakarmi, Tang (bb0135) 2014; 125 Ahmed, Abidin, Ali, Wong, Shariff (bb0010) 2008 Furbank, Tester (bb0040) 2011; 16 Meyer, Neto (bb0120) 2008; 63 Hunt, Cavigelli, Daughtry, Mcmurtrey, Walthall (bb0070) 2005; 6 Jin, Tang (bb0090) 2009; 26 Gómez-Candón, De Castro, López-Granados (bb0045) 2014; 15 Tang, Tian (bb0180) 2008; 51 Liu, Baret, Andrieu, Burger, Hemmerlé (bb0110) 2017; 8 Wilson, Sagan (bb0225) 1995; 100 Otsu (bb0140) 1979; 9 Díaz-Varela, de la Rosa, León, Zarco-Tejada (bb0030) 2015; 7 Zhang, Kovacs (bb0240) 2012; 13 Hunt, Hively, Daughtry, McCarty, Fujikawa, Ng, Linden, Yoel (bb0075) 2008 Walter, Liebisch, Hund (bb0210) 2015; 11 Willmott (bb0220) 1982; 11 Bendig, Yu, Aasen, Bolten, Bennertz, Broscheit, Gnyp, Bareth (bb0020) 2015; 39 Joseph, Alley, Brann, Gravelle (bb0095) 1985; 77 Araus, Cairns (bb0015) 2014; 19 Haralick, Shapiro (bb0060) 1992 Guillen-Climent, Zarco-Tejada, Berni, North, Villalobos (bb0050) 2012; 13 Maertens, Reyns, De Clippel, De Baerdemaeker (bb0115) 2003; 266 Shi, Wang, Taylor, Raun (bb0160) 2015; 112 Wilson (10.1016/j.rse.2017.06.007_bb0225) 1995; 100 Bendig (10.1016/j.rse.2017.06.007_bb0020) 2015; 39 Díaz-Varela (10.1016/j.rse.2017.06.007_bb0030) 2015; 7 10.1016/j.rse.2017.06.007_bb0065 Hunt (10.1016/j.rse.2017.06.007_bb0070) 2005; 6 Tang (10.1016/j.rse.2017.06.007_bb0185) 2008; 51 Furbank (10.1016/j.rse.2017.06.007_bb0040) 2011; 16 Otsu (10.1016/j.rse.2017.06.007_bb0140) 1979; 9 Vapnik (10.1016/j.rse.2017.06.007_bb0190) 2013 Zhang (10.1016/j.rse.2017.06.007_bb0240) 2012; 13 Nakarmi (10.1016/j.rse.2017.06.007_bb0135) 2014; 125 Meyer (10.1016/j.rse.2017.06.007_bb0120) 2008; 63 Verger (10.1016/j.rse.2017.06.007_bb0200) 2014; 152 Walter (10.1016/j.rse.2017.06.007_bb0210) 2015; 11 Ahmed (10.1016/j.rse.2017.06.007_bb0010) 2008 Zarco-Tejada (10.1016/j.rse.2017.06.007_bb0230) 2012; 117 Nakarmi (10.1016/j.rse.2017.06.007_bb0130) 2012; 82 Saeys (10.1016/j.rse.2017.06.007_bb0145) 2009; 102 Araus (10.1016/j.rse.2017.06.007_bb0015) 2014; 19 Sankaran (10.1016/j.rse.2017.06.007_bb0150) 2015; 118 Whaley (10.1016/j.rse.2017.06.007_bb0215) 2000; 137 Gómez-Candón (10.1016/j.rse.2017.06.007_bb0045) 2014; 15 Mountrakis (10.1016/j.rse.2017.06.007_bb0125) 2011; 66 Haralick (10.1016/j.rse.2017.06.007_bb0060) 1992 Vapnik (10.1016/j.rse.2017.06.007_bb0195) 1998 Haun (10.1016/j.rse.2017.06.007_bb9100) 1973; 65 Shrestha (10.1016/j.rse.2017.06.007_bb0170) 2005; 21 Sullivan (10.1016/j.rse.2017.06.007_bb0175) 2007; 50 Zarco-Tejada (10.1016/j.rse.2017.06.007_bb0235) 2013; 171 Jia (10.1016/j.rse.2017.06.007_bb0085) 1991 Jin (10.1016/j.rse.2017.06.007_bb0090) 2009; 26 Liu (10.1016/j.rse.2017.06.007_bb0110) 2017; 8 Tang (10.1016/j.rse.2017.06.007_bb0180) 2008; 51 Hunt (10.1016/j.rse.2017.06.007_bb0075) 2008 Joseph (10.1016/j.rse.2017.06.007_bb0095) 1985; 77 Maertens (10.1016/j.rse.2017.06.007_bb0115) 2003; 266 Shrestha (10.1016/j.rse.2017.06.007_bb0165) 2003; 46 Guillen-Climent (10.1016/j.rse.2017.06.007_bb0050) 2012; 13 Hunt (10.1016/j.rse.2017.06.007_bb0080) 2010; 2 Ehsani (10.1016/j.rse.2017.06.007_bb0035) 2013; 20 Willmott (10.1016/j.rse.2017.06.007_bb0220) 1982; 11 Agisoft (10.1016/j.rse.2017.06.007_bb0005) 2016 Sankaran (10.1016/j.rse.2017.06.007_bb0155) 2015; 70 Shi (10.1016/j.rse.2017.06.007_bb0160) 2015; 112 Kenndy (10.1016/j.rse.2017.06.007_bb0100) 1995 |
| References_xml | – year: 2016 ident: bb0005 article-title: Agisoft Photoscan User Manual Professional Edition, Version 1.2 – volume: 19 start-page: 52 year: 2014 end-page: 61 ident: bb0015 article-title: Field high-throughput phenotyping: the new crop breeding frontier publication-title: Trends Plant Sci. – volume: 8 start-page: 739 year: 2017 ident: bb0110 article-title: Estimation of wheat plant density at early stages using high resolution imagery publication-title: Front. Plant Sci. – volume: 266 start-page: 655 year: 2003 end-page: 665 ident: bb0115 article-title: First experiments on ultrasonic crop density measurement publication-title: J. Sound Vib. – volume: 21 start-page: 295 year: 2005 end-page: 303 ident: bb0170 article-title: Shape and size analysis of corn plant canopies for plant population and spacing sensing publication-title: Appl. Eng. Agric. – year: 2008 ident: bb0075 article-title: Remote sensing of crop leaf area index using unmanned airborne vehicles publication-title: Proceedings of the Pecora 17 Symposium, Denver, CO – volume: 13 start-page: 473 year: 2012 end-page: 500 ident: bb0050 article-title: Mapping radiation interception in row-structured orchards using 3D simulation and high-resolution airborne imagery acquired from a UAV publication-title: Precis. Agric. – volume: 20 start-page: 18 year: 2013 end-page: 19 ident: bb0035 article-title: The rise of small UAVs in precision agriculture publication-title: Resour. Mag. – volume: 82 start-page: 23 year: 2012 end-page: 31 ident: bb0130 article-title: Automatic inter-plant spacing sensing at early growth stages using a 3D vision sensor publication-title: Comput. Electron. Agric. – volume: 125 start-page: 54 year: 2014 end-page: 64 ident: bb0135 article-title: Within-row spacing sensing of maize plants using 3D computer vision publication-title: Biosyst. Eng. – volume: 117 start-page: 322 year: 2012 end-page: 337 ident: bb0230 article-title: Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera publication-title: Remote Sens. Environ. – start-page: 28 year: 1992 end-page: 48 ident: bb0060 article-title: Computer and Robot Vision, 1 – volume: 152 start-page: 654 year: 2014 end-page: 664 ident: bb0200 article-title: Green area index from unmanned aerial system over wheat and rapeseed crops publication-title: Remote Sens. Environ. – volume: 16 start-page: 635 year: 2011 end-page: 644 ident: bb0040 article-title: Phenomics - technologies to relieve the phenotyping bottleneck publication-title: Trends Plant Sci. – volume: 11 start-page: 1303 year: 1982 end-page: 1313 ident: bb0220 article-title: Some comments on the evaluation of model performance publication-title: Bull. Am. Meteorol. Soc. – year: 2013 ident: bb0190 article-title: The Nature of Statistical Learning Theory – volume: 50 start-page: 1963 year: 2007 end-page: 1969 ident: bb0175 article-title: Evaluating the sensitivity of an unmanned thermal infrared aerial system to detect water stress in a cotton canopy publication-title: Trans. ASABE – volume: 137 start-page: 165 year: 2000 end-page: 177 ident: bb0215 article-title: The physiological response of winter wheat to reductions in plant density publication-title: Ann. Appl. Biol. – volume: 6 start-page: 359 year: 2005 end-page: 378 ident: bb0070 article-title: Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status publication-title: Precis. Agric. – volume: 77 start-page: 211 year: 1985 end-page: 214 ident: bb0095 article-title: Row spacing and seeding rate effects on yield and yield components of soft red winter wheat publication-title: Agron. J. – volume: 112 start-page: 92 year: 2015 end-page: 101 ident: bb0160 article-title: Improvement of a ground-LiDAR-based corn plant population and spacing measurement system publication-title: Comput. Electron. Agric. – volume: 102 start-page: 22 year: 2009 end-page: 30 ident: bb0145 article-title: Estimation of the crop density of small grains using LiDAR sensors publication-title: Biosyst. Eng. – volume: 39 start-page: 79 year: 2015 end-page: 87 ident: bb0020 article-title: Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley publication-title: Int. J. Appl. Earth Obs. – volume: 51 start-page: 1079 year: 2008 end-page: 1087 ident: bb0185 article-title: Real-time crop row image reconstruction for automatic emerged corn plant spacing measurement publication-title: Trans. ASABE – volume: 70 start-page: 112 year: 2015 end-page: 123 ident: bb0155 article-title: Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: a review publication-title: Eur. J. Agron. – year: 1998 ident: bb0195 article-title: Statistical Learning Theory, 1 – volume: 2 start-page: 290 year: 2010 end-page: 305 ident: bb0080 article-title: Acquisition of NIR-green-blue digital photographs from unmanned aircraft for crop monitoring publication-title: Remote Sens. – volume: 46 start-page: 559 year: 2003 ident: bb0165 article-title: Automatic corn plant population measurement using machine vision publication-title: Trans. ASAE – volume: 65 start-page: 116 year: 1973 end-page: 119 ident: bb9100 article-title: Visual quantification of wheat development publication-title: Agron. J. – volume: 15 start-page: 44 year: 2014 end-page: 56 ident: bb0045 article-title: Assessing the accuracy of mosaics from unmanned aerial vehicle (UAV) imagery for precision agriculture purposes in wheat publication-title: Precis. Agric. – volume: 51 start-page: 2181 year: 2008 end-page: 2191 ident: bb0180 article-title: Plant identification in mosaicked crop row images for automatic emerged corn plant spacing measurement publication-title: Trans. ASABE – start-page: 246 year: 1991 end-page: 253 ident: bb0085 article-title: Corn plant locating by image processing, Fibers' 91, Boston, MA publication-title: Int. Soc. Opt. Photon. – volume: 63 start-page: 282 year: 2008 end-page: 293 ident: bb0120 article-title: Verification of color vegetation indices for automated crop imaging applications publication-title: Comput. Electron. Agric. – volume: 100 start-page: 7531 year: 1995 end-page: 7537 ident: bb0225 article-title: Spectrophotometry and organic matter on Iapetus: 1. Composition models publication-title: J. Geophys. Res. Planets – volume: 26 start-page: 591 year: 2009 end-page: 608 ident: bb0090 article-title: Corn plant sensing using real-time stereo vision publication-title: J. Field Robot. – volume: 11 start-page: 1 year: 2015 end-page: 11 ident: bb0210 article-title: Plant phenotyping: from bean weighing to image analysis publication-title: Plant Methods – volume: 9 start-page: 62 year: 1979 end-page: 66 ident: bb0140 article-title: A threshold selection method from gray-level histogram publication-title: IEEE Trans. Syst. Man Cybern. – volume: 13 start-page: 693 year: 2012 end-page: 712 ident: bb0240 article-title: The application of small unmanned aerial systems for precision agriculture: a review publication-title: Precis. Agric. – volume: 171 start-page: 281 year: 2013 end-page: 294 ident: bb0235 article-title: Estimating leaf carotenoid content in vineyards using high resolution hyperspectral imagery acquired from an unmanned aerial vehicle (UAV) publication-title: Agric. For. Meteorol. – year: 2008 ident: bb0010 article-title: Image processing of a banana: area determination via edge detection using MATLAB publication-title: 4th International Colloqium on Signal Processing and Its Applications, Kuala Lumpur – volume: 7 start-page: 4213 year: 2015 end-page: 4232 ident: bb0030 article-title: High-resolution airborne UAV imagery to assess olive tree crown parameters using 3D photo reconstruction: application in breeding trials publication-title: Remote Sens. – reference: Hough, P.V.C., 1962. Method and means for recognizing complex patterns. U.S. Patent 3069654. – volume: 66 start-page: 247 year: 2011 end-page: 259 ident: bb0125 article-title: Support vector machines in remote sensing: a review publication-title: ISPRS J. Photogramm. – start-page: 1942 year: 1995 end-page: 1948 ident: bb0100 article-title: Particle swarm optimization publication-title: Proceedings of IEEE International Conference on Neural Networks – volume: 118 start-page: 372 year: 2015 end-page: 379 ident: bb0150 article-title: Field-based crop phenotyping: Multispectral aerial imaging for evaluation of winter wheat emergence and spring stand publication-title: Comput. Electron. Agric. – volume: 46 start-page: 559 year: 2003 ident: 10.1016/j.rse.2017.06.007_bb0165 article-title: Automatic corn plant population measurement using machine vision publication-title: Trans. ASAE doi: 10.13031/2013.12945 – volume: 16 start-page: 635 year: 2011 ident: 10.1016/j.rse.2017.06.007_bb0040 article-title: Phenomics - technologies to relieve the phenotyping bottleneck publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2011.09.005 – volume: 51 start-page: 1079 year: 2008 ident: 10.1016/j.rse.2017.06.007_bb0185 article-title: Real-time crop row image reconstruction for automatic emerged corn plant spacing measurement publication-title: Trans. ASABE doi: 10.13031/2013.24510 – volume: 117 start-page: 322 year: 2012 ident: 10.1016/j.rse.2017.06.007_bb0230 article-title: Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.10.007 – volume: 63 start-page: 282 year: 2008 ident: 10.1016/j.rse.2017.06.007_bb0120 article-title: Verification of color vegetation indices for automated crop imaging applications publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2008.03.009 – volume: 82 start-page: 23 year: 2012 ident: 10.1016/j.rse.2017.06.007_bb0130 article-title: Automatic inter-plant spacing sensing at early growth stages using a 3D vision sensor publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2011.12.011 – start-page: 1942 year: 1995 ident: 10.1016/j.rse.2017.06.007_bb0100 article-title: Particle swarm optimization – volume: 102 start-page: 22 year: 2009 ident: 10.1016/j.rse.2017.06.007_bb0145 article-title: Estimation of the crop density of small grains using LiDAR sensors publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2008.10.003 – volume: 6 start-page: 359 year: 2005 ident: 10.1016/j.rse.2017.06.007_bb0070 article-title: Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status publication-title: Precis. Agric. doi: 10.1007/s11119-005-2324-5 – volume: 266 start-page: 655 year: 2003 ident: 10.1016/j.rse.2017.06.007_bb0115 article-title: First experiments on ultrasonic crop density measurement publication-title: J. Sound Vib. doi: 10.1016/S0022-460X(03)00591-1 – volume: 118 start-page: 372 year: 2015 ident: 10.1016/j.rse.2017.06.007_bb0150 article-title: Field-based crop phenotyping: Multispectral aerial imaging for evaluation of winter wheat emergence and spring stand publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2015.09.001 – volume: 65 start-page: 116 year: 1973 ident: 10.1016/j.rse.2017.06.007_bb9100 article-title: Visual quantification of wheat development publication-title: Agron. J. doi: 10.2134/agronj1973.00021962006500010035x – volume: 7 start-page: 4213 year: 2015 ident: 10.1016/j.rse.2017.06.007_bb0030 article-title: High-resolution airborne UAV imagery to assess olive tree crown parameters using 3D photo reconstruction: application in breeding trials publication-title: Remote Sens. doi: 10.3390/rs70404213 – year: 2013 ident: 10.1016/j.rse.2017.06.007_bb0190 – ident: 10.1016/j.rse.2017.06.007_bb0065 – volume: 21 start-page: 295 issue: 2 year: 2005 ident: 10.1016/j.rse.2017.06.007_bb0170 article-title: Shape and size analysis of corn plant canopies for plant population and spacing sensing publication-title: Appl. Eng. Agric. doi: 10.13031/2013.18144 – start-page: 246 year: 1991 ident: 10.1016/j.rse.2017.06.007_bb0085 article-title: Corn plant locating by image processing, Fibers' 91, Boston, MA publication-title: Int. Soc. Opt. Photon. – volume: 171 start-page: 281 year: 2013 ident: 10.1016/j.rse.2017.06.007_bb0235 article-title: Estimating leaf carotenoid content in vineyards using high resolution hyperspectral imagery acquired from an unmanned aerial vehicle (UAV) publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2012.12.013 – year: 1998 ident: 10.1016/j.rse.2017.06.007_bb0195 – volume: 11 start-page: 1 year: 2015 ident: 10.1016/j.rse.2017.06.007_bb0210 article-title: Plant phenotyping: from bean weighing to image analysis publication-title: Plant Methods doi: 10.1186/s13007-015-0056-8 – year: 2016 ident: 10.1016/j.rse.2017.06.007_bb0005 – volume: 51 start-page: 2181 year: 2008 ident: 10.1016/j.rse.2017.06.007_bb0180 article-title: Plant identification in mosaicked crop row images for automatic emerged corn plant spacing measurement publication-title: Trans. ASABE doi: 10.13031/2013.25381 – year: 2008 ident: 10.1016/j.rse.2017.06.007_bb0010 article-title: Image processing of a banana: area determination via edge detection using MATLAB – volume: 100 start-page: 7531 year: 1995 ident: 10.1016/j.rse.2017.06.007_bb0225 article-title: Spectrophotometry and organic matter on Iapetus: 1. Composition models publication-title: J. Geophys. Res. Planets doi: 10.1029/94JE03364 – volume: 26 start-page: 591 year: 2009 ident: 10.1016/j.rse.2017.06.007_bb0090 article-title: Corn plant sensing using real-time stereo vision publication-title: J. Field Robot. doi: 10.1002/rob.20293 – volume: 50 start-page: 1963 year: 2007 ident: 10.1016/j.rse.2017.06.007_bb0175 article-title: Evaluating the sensitivity of an unmanned thermal infrared aerial system to detect water stress in a cotton canopy publication-title: Trans. ASABE doi: 10.13031/2013.24091 – volume: 11 start-page: 1303 year: 1982 ident: 10.1016/j.rse.2017.06.007_bb0220 article-title: Some comments on the evaluation of model performance publication-title: Bull. Am. Meteorol. Soc. – volume: 9 start-page: 62 year: 1979 ident: 10.1016/j.rse.2017.06.007_bb0140 article-title: A threshold selection method from gray-level histogram publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1979.4310076 – volume: 13 start-page: 473 year: 2012 ident: 10.1016/j.rse.2017.06.007_bb0050 article-title: Mapping radiation interception in row-structured orchards using 3D simulation and high-resolution airborne imagery acquired from a UAV publication-title: Precis. Agric. doi: 10.1007/s11119-012-9263-8 – volume: 15 start-page: 44 year: 2014 ident: 10.1016/j.rse.2017.06.007_bb0045 article-title: Assessing the accuracy of mosaics from unmanned aerial vehicle (UAV) imagery for precision agriculture purposes in wheat publication-title: Precis. Agric. doi: 10.1007/s11119-013-9335-4 – volume: 70 start-page: 112 year: 2015 ident: 10.1016/j.rse.2017.06.007_bb0155 article-title: Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: a review publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2015.07.004 – volume: 2 start-page: 290 year: 2010 ident: 10.1016/j.rse.2017.06.007_bb0080 article-title: Acquisition of NIR-green-blue digital photographs from unmanned aircraft for crop monitoring publication-title: Remote Sens. doi: 10.3390/rs2010290 – volume: 125 start-page: 54 year: 2014 ident: 10.1016/j.rse.2017.06.007_bb0135 article-title: Within-row spacing sensing of maize plants using 3D computer vision publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2014.07.001 – volume: 66 start-page: 247 year: 2011 ident: 10.1016/j.rse.2017.06.007_bb0125 article-title: Support vector machines in remote sensing: a review publication-title: ISPRS J. Photogramm. doi: 10.1016/j.isprsjprs.2010.11.001 – volume: 39 start-page: 79 year: 2015 ident: 10.1016/j.rse.2017.06.007_bb0020 article-title: Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley publication-title: Int. J. Appl. Earth Obs. – start-page: 28 year: 1992 ident: 10.1016/j.rse.2017.06.007_bb0060 – volume: 112 start-page: 92 year: 2015 ident: 10.1016/j.rse.2017.06.007_bb0160 article-title: Improvement of a ground-LiDAR-based corn plant population and spacing measurement system publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2014.11.026 – volume: 20 start-page: 18 year: 2013 ident: 10.1016/j.rse.2017.06.007_bb0035 article-title: The rise of small UAVs in precision agriculture publication-title: Resour. Mag. – volume: 77 start-page: 211 year: 1985 ident: 10.1016/j.rse.2017.06.007_bb0095 article-title: Row spacing and seeding rate effects on yield and yield components of soft red winter wheat publication-title: Agron. J. doi: 10.2134/agronj1985.00021962007700020009x – volume: 137 start-page: 165 year: 2000 ident: 10.1016/j.rse.2017.06.007_bb0215 article-title: The physiological response of winter wheat to reductions in plant density publication-title: Ann. Appl. Biol. doi: 10.1111/j.1744-7348.2000.tb00048.x – year: 2008 ident: 10.1016/j.rse.2017.06.007_bb0075 article-title: Remote sensing of crop leaf area index using unmanned airborne vehicles – volume: 13 start-page: 693 year: 2012 ident: 10.1016/j.rse.2017.06.007_bb0240 article-title: The application of small unmanned aerial systems for precision agriculture: a review publication-title: Precis. Agric. doi: 10.1007/s11119-012-9274-5 – volume: 8 start-page: 739 year: 2017 ident: 10.1016/j.rse.2017.06.007_bb0110 article-title: Estimation of wheat plant density at early stages using high resolution imagery publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.00739 – volume: 152 start-page: 654 year: 2014 ident: 10.1016/j.rse.2017.06.007_bb0200 article-title: Green area index from unmanned aerial system over wheat and rapeseed crops publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.06.006 – volume: 19 start-page: 52 year: 2014 ident: 10.1016/j.rse.2017.06.007_bb0015 article-title: Field high-throughput phenotyping: the new crop breeding frontier publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2013.09.008 |
| SSID | ssj0015871 |
| Score | 2.66361 |
| Snippet | Plant density is useful variable that determines the fate of the wheat crop. The most commonly used method for plant density quantification is based on visual... |
| SourceID | hal proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 105 |
| SubjectTerms | altitude cameras computer software Computer vision algorithm crops developmental stages Environmental Sciences flight genotype Global Changes leaves Particle swarm optimization (PSO)-support vector machine (SVM) phenotype Plant density remote sensing rotors sowing date support vector machines Unmanned aerial vehicle wheat wind Winter wheat |
| Title | Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery |
| URI | https://dx.doi.org/10.1016/j.rse.2017.06.007 https://www.proquest.com/docview/2000470090 https://hal.science/hal-01578842 |
| Volume | 198 |
| WOSCitedRecordID | wos000406818500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0704 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELa6DgQvCAoT5ZcM4okoKG6cxHmsUNlA04TQQOUpcmyHZirp1CTd-p_w53KOnbQr2sQeeEkjpzk5uS_ns_3dHUJvUwJush_7bsZo6lI_JG5KM-ISDhPsSMaEySa7_nF0csKm0_hLr_e7jYVZzaOiYJeX8fl_VTW0gbJ16Owt1N0JhQY4B6XDEdQOx39S_AQ-2l_ag2zIzHN4c47ULHVDvbjQxtfRdbtKHceobPSlMnEm8LBrZ764cLgOy60l-KTj7w6I2w2d_qpAxcoptWBDm96KmOtYOSY_wTSv9VrKz477k9fNmutsUa-3mnXlhcr40mb3XpqfZS42C7bQ3blpNoFGVTXLVb29dAHDYcvN6syxT11tNK6YY1OV2hpU4gVbYzMxAad_mX2zAnH2flnqzKckalKymmq6V1Ns7wx9HSGx5bqdJSAi0SKShu8X7aH9URTErI_2x58m08_dDlXAIlON0T5Cu2PecAd3-nGdz7M30-TbHR-gcWxOH6IHdkaCxwZJj1BPFQN0MNmoEy7aEaAcoHuHyiY5H6C7h01Z6PVj9KMDHV5kuAEdtqDTDQ3ocAM6DCcd6LAGHdagwwA63IIOA-iwBd0T9O3j5PTDkWuLdriC-l7lSiZiKiTlqQLPz-cpJTFXlBDl01ARxhhPPRWLKMvCEeGKpSGVPMiUUHHmB9I_QP1iUainCHtcwWyCgsObCUqljGWghBfwWIQ8EqE3RF77WhNhM9rrwirz5Fp1DtG77pZzk87lpj_TVleJ9UeNn5kA7m667Q3otROv87cfjY8T3QawiRijoxUZotet2hMw6HqXjhdqUZe6LqxHI5j6eM9u09nn6P7mE3uB-tWyVi_RHbGq8nL5yqL3D5rqwoc |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimates+of+plant+density+of+wheat+crops+at+emergence+from+very+low+altitude+UAV+imagery&rft.jtitle=Remote+sensing+of+environment&rft.au=Jin%2C+Xiuliang&rft.au=Liu%2C+Shouyang&rft.au=Baret%2C+Fr%C3%A9d%C3%A9ric&rft.au=Hemerl%C3%A9%2C+Matthieu&rft.date=2017-09-01&rft.issn=0034-4257&rft.volume=198&rft.spage=105&rft.epage=114&rft_id=info:doi/10.1016%2Fj.rse.2017.06.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rse_2017_06_007 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon |