Enhancing the performance of hybrid wave-wind energy systems through a fast and adaptive chaotic multi-objective swarm optimisation method

Hybrid offshore renewable energy platforms have been proposed to optimise power production and reduce the levelised cost of energy by integrating or co-locating several renewable technologies. One example is a hybrid wave-wind energy system that combines offshore wind turbines with wave energy conve...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied energy Ročník 362; s. 122955
Hlavní autoři: Neshat, Mehdi, Sergiienko, Nataliia Y., Nezhad, Meysam Majidi, da Silva, Leandro S.P., Amini, Erfan, Marsooli, Reza, Astiaso Garcia, Davide, Mirjalili, Seyedali
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 15.05.2024
Témata:
ISSN:0306-2619, 1872-9118, 1872-9118
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Hybrid offshore renewable energy platforms have been proposed to optimise power production and reduce the levelised cost of energy by integrating or co-locating several renewable technologies. One example is a hybrid wave-wind energy system that combines offshore wind turbines with wave energy converters (WECs) on a single floating foundation. The design of such systems involves multiple parameters and performance measures, making it a complex, multi-modal, and expensive optimisation problem. This paper proposes a novel, robust and effective multi-objective swarm optimisation method (DMOGWA) to provide a design solution that best compromises between maximising WEC power output and minimising the effect on wind turbine nacelle acceleration. The proposed method uses a chaotic adaptive search strategy with a dynamic archive of non-dominated solutions based on diversity to speed up the convergence rate and enhance the Pareto front quality. Furthermore, a modified exploitation technique (Discretisation Strategy) is proposed to handle the large damping and spring coefficient of the Power Take-off (PTO) search space. To evaluate the efficiency of the proposed method, we compare the DMOGWA with four well-known multi-objective swarm intelligence methods (MOPSO, MALO, MODA, and MOGWA) and four popular evolutionary multi-objective algorithms (NSGA-II, MOEA/D, SPEA-II, and PESA-II) based on four potential deployment sites on the South Coast of Australia. The optimisation results demonstrate the dominance of the DMOGWA compared with the other eight methods in terms of convergence speed and quality of solutions proposed. Furthermore, adjusting the hybrid wave-wind model’s parameters (WEC design and PTO parameters) using the proposed method (DMOGWA) leads to a considerably improved power output (average proximate boost of 138.5%) and a notable decline in wind turbine nacelle acceleration (41%) throughout the entire operational spectrum compared with the other methods. This improvement could lead to millions of dollars in additional income per year over the lifespan of hybrid offshore renewable energy platforms. •A new multiobjective optimisation method proposed and enhanced hybrid wave-wind platform.•A new combination of chaotic adaptive exploration and dynamic archive is introduced.•Effective and practical discretisation method improved performance of hybrid platform.•The performance of the proposed optimiser is validated on four real sea studies.
AbstractList Hybrid offshore renewable energy platforms have been proposed to optimise power production and reduce the levelised cost of energy by integrating or co-locating several renewable technologies. One example is a hybrid wave-wind energy system that combines offshore wind turbines with wave energy converters (WECs) on a single floating foundation. The design of such systems involves multiple parameters and performance measures, making it a complex, multi-modal, and expensive optimisation problem. This paper proposes a novel, robust and effective multi-objective swarm optimisation method (DMOGWA) to provide a design solution that best compromises between maximising WEC power output and minimising the effect on wind turbine nacelle acceleration. The proposed method uses a chaotic adaptive search strategy with a dynamic archive of non-dominated solutions based on diversity to speed up the convergence rate and enhance the Pareto front quality. Furthermore, a modified exploitation technique (Discretisation Strategy) is proposed to handle the large damping and spring coefficient of the Power Take-off (PTO) search space. To evaluate the efficiency of the proposed method, we compare the DMOGWA with four well-known multi-objective swarm intelligence methods (MOPSO, MALO, MODA, and MOGWA) and four popular evolutionary multi-objective algorithms (NSGA-II, MOEA/D, SPEA-II, and PESA-II) based on four potential deployment sites on the South Coast of Australia. The optimisation results demonstrate the dominance of the DMOGWA compared with the other eight methods in terms of convergence speed and quality of solutions proposed. Furthermore, adjusting the hybrid wave-wind model’s parameters (WEC design and PTO parameters) using the proposed method (DMOGWA) leads to a considerably improved power output (average proximate boost of 138.5%) and a notable decline in wind turbine nacelle acceleration (41%) throughout the entire operational spectrum compared with the other methods. This improvement could lead to millions of dollars in additional income per year over the lifespan of hybrid offshore renewable energy platforms.
Hybrid offshore renewable energy platforms have been proposed to optimise power production and reduce the levelised cost of energy by integrating or co-locating several renewable technologies. One example is a hybrid wave-wind energy system that combines offshore wind turbines with wave energy converters (WECs) on a single floating foundation. The design of such systems involves multiple parameters and performance measures, making it a complex, multi-modal, and expensive optimisation problem. This paper proposes a novel, robust and effective multi-objective swarm optimisation method (DMOGWA) to provide a design solution that best compromises between maximising WEC power output and minimising the effect on wind turbine nacelle acceleration. The proposed method uses a chaotic adaptive search strategy with a dynamic archive of non-dominated solutions based on diversity to speed up the convergence rate and enhance the Pareto front quality. Furthermore, a modified exploitation technique (Discretisation Strategy) is proposed to handle the large damping and spring coefficient of the Power Take-off (PTO) search space. To evaluate the efficiency of the proposed method, we compare the DMOGWA with four well-known multi-objective swarm intelligence methods (MOPSO, MALO, MODA, and MOGWA) and four popular evolutionary multi-objective algorithms (NSGA-II, MOEA/D, SPEA-II, and PESA-II) based on four potential deployment sites on the South Coast of Australia. The optimisation results demonstrate the dominance of the DMOGWA compared with the other eight methods in terms of convergence speed and quality of solutions proposed. Furthermore, adjusting the hybrid wave-wind model’s parameters (WEC design and PTO parameters) using the proposed method (DMOGWA) leads to a considerably improved power output (average proximate boost of 138.5%) and a notable decline in wind turbine nacelle acceleration (41%) throughout the entire operational spectrum compared with the other methods. This improvement could lead to millions of dollars in additional income per year over the lifespan of hybrid offshore renewable energy platforms. •A new multiobjective optimisation method proposed and enhanced hybrid wave-wind platform.•A new combination of chaotic adaptive exploration and dynamic archive is introduced.•Effective and practical discretisation method improved performance of hybrid platform.•The performance of the proposed optimiser is validated on four real sea studies.
ArticleNumber 122955
Author Marsooli, Reza
Nezhad, Meysam Majidi
Sergiienko, Nataliia Y.
Neshat, Mehdi
Amini, Erfan
da Silva, Leandro S.P.
Astiaso Garcia, Davide
Mirjalili, Seyedali
Author_xml – sequence: 1
  givenname: Mehdi
  orcidid: 0000-0002-9537-9513
  surname: Neshat
  fullname: Neshat, Mehdi
  email: mehdi.neshat@torrens.edu.au, mehdi.neshat@uts.edu.au
  organization: Center for Artificial Intelligence Research and optimisation, Torrens University Australia, Brisbane, QLD, 4006, Australia
– sequence: 2
  givenname: Nataliia Y.
  orcidid: 0000-0002-3418-398X
  surname: Sergiienko
  fullname: Sergiienko, Nataliia Y.
  email: nataliia.sergiienko@adelaide.edu.au
  organization: School of Electrical and Mechanical Engineering, University of Adelaide, Adelaide, SA, 5005, Australia
– sequence: 3
  givenname: Meysam Majidi
  surname: Nezhad
  fullname: Nezhad, Meysam Majidi
  email: meysam.majidi.nezhad@uniroma1.it, meysam.majidi.nezhad@mdu.se
  organization: Department of Sustainable Energy Systems, Mälardalen University, Västerås, SE 72123, Sweden
– sequence: 4
  givenname: Leandro S.P.
  surname: da Silva
  fullname: da Silva, Leandro S.P.
  email: ldasilva@delmarsystems.com
  organization: Delmar Systems, Perth, WA, 6000, Australia
– sequence: 5
  givenname: Erfan
  orcidid: 0000-0001-9002-3203
  surname: Amini
  fullname: Amini, Erfan
  email: eamini@stevens.edu
  organization: Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ, United States
– sequence: 6
  givenname: Reza
  surname: Marsooli
  fullname: Marsooli, Reza
  email: rmarsool@stevens.edu
  organization: Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ, United States
– sequence: 7
  givenname: Davide
  surname: Astiaso Garcia
  fullname: Astiaso Garcia, Davide
  email: davide.astiasogarcia@uniroma1.it
  organization: Department of Planning, Design, and Technology of Architecture, Sapienza University of Rome, Italy
– sequence: 8
  givenname: Seyedali
  surname: Mirjalili
  fullname: Mirjalili, Seyedali
  email: ali.Mirjalili@torrens.edu.au
  organization: Center for Artificial Intelligence Research and optimisation, Torrens University Australia, Brisbane, QLD, 4006, Australia
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-66338$$DView record from Swedish Publication Index (Mälardalens högskola)
BookMark eNqFkc1u1DAUhS1UJKaFV0BesiCDfxLHkVhQteVHqtRNy9Zy7JuJR0kcbGdG8wo8NW4DLLrp6kpX3zn36pxzdDb5CRB6T8mWEio-7bd6hgnC7rRlhJVbylhTVa_QhsqaFQ2l8gxtCCeiYII2b9B5jHtCCKOMbNDvm6nXk3HTDqce8Ayh82HMG8C-w_2pDc7ioz5AcXSTxesdHE8xwRizJPhl12ONOx0T1pnQVs_JHQCbXvvkDB6XIbnCt3swT_t41GHEPkOjizo5P-ERUu_tW_S600OEd3_nBXr4enN_9b24vfv24-rytjAlJ6kwohGGNbIEwQjXlgNIKiw0srYgeQVMlLRsOSGNEUJUXZ7MGNLKstKcW36BPq6-8Qjz0qo5uFGHk_LaqWv381L5sFOj7ZUQnMuMf1jxOfhfC8Sk8t8GhkFP4JeoOK14LeumqjMqVtQEH2OA7r83JeqxK7VX_7pSj12ptass_PxMaFx6yiYF7YaX5V9WOeTYDg6CisZB7tC6kFNX1ruXLP4Am5u6Lg
CitedBy_id crossref_primary_10_1016_j_ref_2024_100624
crossref_primary_10_3390_su16219333
crossref_primary_10_1016_j_energy_2025_136697
crossref_primary_10_1016_j_est_2025_115440
crossref_primary_10_1016_j_energy_2025_138545
crossref_primary_10_1016_j_scitotenv_2024_177675
crossref_primary_10_3390_en17184702
crossref_primary_10_1016_j_enconman_2024_118799
crossref_primary_10_1016_j_enconman_2024_118953
crossref_primary_10_1016_j_energy_2025_137938
crossref_primary_10_1016_j_rser_2025_115896
crossref_primary_10_1016_j_apenergy_2024_124655
crossref_primary_10_1016_j_energy_2025_138284
crossref_primary_10_1016_j_rser_2025_116080
crossref_primary_10_1016_j_apenergy_2025_126669
crossref_primary_10_1016_j_jobe_2025_113244
crossref_primary_10_1007_s10668_025_06615_4
crossref_primary_10_1016_j_enconman_2025_120018
crossref_primary_10_1016_j_energy_2024_134050
Cites_doi 10.1016/j.oceaneng.2023.113824
10.1016/j.eswa.2015.10.039
10.1016/j.renene.2019.08.094
10.1016/j.advengsoft.2013.12.007
10.1109/MCS.2014.2333253
10.1016/S0045-7825(01)00323-1
10.1016/j.engappai.2021.104448
10.1016/j.apenergy.2023.121397
10.1016/j.marstruc.2016.06.005
10.1016/j.swevo.2014.10.005
10.1016/j.apenergy.2020.114998
10.1115/OMAE2008-57056
10.1145/3300148
10.1016/S0167-6105(02)00260-X
10.1016/j.rser.2021.111625
10.1016/j.energy.2023.129619
10.1016/j.apenergy.2022.120388
10.1016/j.apenergy.2023.122186
10.1016/j.asoc.2018.07.022
10.1007/s10489-016-0825-8
10.1016/j.energy.2016.07.069
10.36688/ewtec-2023-590
10.1016/j.energy.2022.124623
10.1109/TEVC.2007.892759
10.1016/j.rser.2023.113428
10.1162/106365600568167
10.1016/j.energy.2023.129109
10.1016/j.joule.2020.09.002
10.1016/j.apenergy.2023.121890
10.1016/j.rser.2012.02.071
10.1007/s11802-023-5242-0
10.1007/s00521-015-1920-1
10.1145/3512290.3528847
10.1088/2516-1083/ac821d
10.1016/j.energy.2023.129148
10.1145/3453474
10.1016/j.apenergy.2022.120389
10.1016/j.apenergy.2021.117257
10.3390/jmse8070508
10.1109/TEVC.2004.826067
10.1016/j.enconman.2020.113324
10.1016/j.apenergy.2023.121512
10.1016/j.apenergy.2022.119713
10.1016/j.neucom.2016.10.014
10.1162/evco.1994.2.3.221
10.1016/j.compeleceng.2017.01.025
10.1016/j.apenergy.2022.120227
10.1016/j.apenergy.2023.121410
10.1016/j.rser.2009.11.003
10.1016/j.energy.2020.119107
10.1016/j.apor.2019.102023
10.1016/j.apor.2017.10.004
10.1016/j.ins.2020.03.112
10.1016/j.renene.2022.05.164
10.1016/j.apenergy.2022.120012
10.1016/j.oceaneng.2022.112033
10.1007/s00521-022-07704-5
10.1016/j.energy.2022.125617
10.1109/4235.996017
10.1109/TEVC.2013.2281535
10.1002/wrcr.20224
10.1016/j.eswa.2019.113134
10.3390/en15228681
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
ABGEM
ADTPV
AOWAS
D8T
DF7
ZZAVC
DOI 10.1016/j.apenergy.2024.122955
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
SWEPUB Mälardalens högskola full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Mälardalens högskola
SwePub Articles full text
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
ExternalDocumentID oai_DiVA_org_mdh_66338
10_1016_j_apenergy_2024_122955
S0306261924003386
GeographicLocations Australia
GeographicLocations_xml – name: Australia
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
LY6
R2-
SAC
WUQ
ZY4
~HD
7S9
L.6
ABGEM
ADTPV
AOWAS
D8T
DF7
ZZAVC
ID FETCH-LOGICAL-c430t-c696c2984e6203ad3ee816de987de835e26414b3009c6665f09c2cc0b845a33d3
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001219088400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
1872-9118
IngestDate Thu Oct 30 11:29:24 EDT 2025
Thu Oct 02 21:43:44 EDT 2025
Tue Nov 18 22:18:54 EST 2025
Sat Nov 29 07:22:28 EST 2025
Sat Apr 13 16:37:53 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Swarm-intelligence algorithms
Offshore wind turbine
Hybrid wave-wind energy systems
Sustainable energy
Wave energy converters
Multi-objective optimisation algorithm
Genetic algorithms
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c430t-c696c2984e6203ad3ee816de987de835e26414b3009c6665f09c2cc0b845a33d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9002-3203
0000-0002-3418-398X
0000-0002-9537-9513
OpenAccessLink https://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-66338
PQID 3153787957
PQPubID 24069
ParticipantIDs swepub_primary_oai_DiVA_org_mdh_66338
proquest_miscellaneous_3153787957
crossref_primary_10_1016_j_apenergy_2024_122955
crossref_citationtrail_10_1016_j_apenergy_2024_122955
elsevier_sciencedirect_doi_10_1016_j_apenergy_2024_122955
PublicationCentury 2000
PublicationDate 2024-05-15
PublicationDateYYYYMMDD 2024-05-15
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-15
  day: 15
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Tian, Si, Zhang, Cheng, He, Tan (b95) 2021; 54
Hu, Yang, Sun, Wei, Zhao (b70) 2017; 222
Shadmani, Nikoo, Etri, Gandomi (b71) 2023; 347
Mirjalili, Saremi, Mirjalili, Coelho (b31) 2016; 47
Østergaard, Duic, Noorollahi, Mikulcic, Kalogirou (b11) 2020; 146
Mirjalili (b47) 2016; 27
Chen, Xiao, Zhou, Li, Zhang (b40) 2022; 10
Mirjalili, Mirjalili, Lewis (b26) 2014; 69
Srinivas, Deb (b78) 1994; 2
Letcher (b32) 2008; 30
Corne, Knowles, Oates (b44) 2000
Prina, Groppi, Nastasi, Garcia (b6) 2021; 152
Luan (b51) 2018
Babarit, Hals, Kurniawan, Muliawan, Moan, Krokstad (b53) 2011
Deng, Zhang, Miao, Zhao, Wang, Zhang (b19) 2023; 22
Deb, Pratap, Agarwal, Meyarivan (b24) 2002; 6
Jonkman JM, Hayman G, Jonkman B, Damiani R, Murray R. AeroDyn v15 user’s guide and theory manual. NREL Draft Report, 2015, p. 46.
Mirjalili, Jangir, Saremi (b46) 2017; 46
Coello, Lechuga (b97) 2002; Vol. 2
Liu, Yang, Li (b84) 2020; 145
Zhang, Li (b48) 2007; 11
(b64) 2019
Guzović, Duić, Piacentino, Markovska, Mathiesen, Lund (b93) 2023; 263
Zou, Gong, Ouyang (b94) 2023; 351
Celesti ML, Paduano B, Peña-Sanchez Y, Pasta E, Faedo N, Ringwood J. Design considerations for a hybrid wind-wave platform under energy-maximising control. In: Proceedings of the European wave and tidal energy conference. Vol. 15, 2023.
Amini, Mehdipour, Faraggiana, Golbaz, Mozaffari, Bracco (b3) 2022; 194
Burton, Sharpe, Jenkins, Bossanyi (b58) 2001
Mirjalili, Lewis (b92) 2015; 21
Lee (b54) 1995
Van Der Tempel, Diepeveen, De Vries, Salzmann (b59) 2011
Jonkman, Butterfield, Musial, Scott (b52) 2009
Coello, Lamont, Van Veldhuizen (b49) 2007
Pulido, Coello Coello (b98) 2004
Guerreiro, Fonseca, Paquete (b91) 2021; 54
Zitzler, Laumanns, Thiele (b45) 2001; 103
Sclavounos P, Tracy C, Lee S. Floating offshore wind turbines: Responses in a seastate Pareto optimal designs and economic assessment. In: International conference on offshore mechanics and arctic engineering. Vol. 48234, 2008, p. 31–41.
Pfeifer, Guzović, Piacentino, Markovska, Duić, Lund (b12) 2023; 284
Nastasi, Markovska, Puksec, Duić, Foley (b21) 2023; 182
de Faria, de Queiroz, DeCarolis (b4) 2022; 326
Li, Yao (b68) 2019; 52
Neshat, Nezhad, Sergiienko, Mirjalili, Piras, Garcia (b23) 2022; 256
Neshat, Alexander, Wagner (b85) 2020; 534
(b67) 1991
Kemp, McCowage, Wang (b13) 2021
Ringwood, Bacelli, Fusco (b28) 2014; 34
Zhang, Li, Hu, Deng, Xiao, Chen (b42) 2022; 15
(b63) 2019
Coello, Pulido, Lechuga (b88) 2004; 8
Liu, Zhai, Hu (b77) 2023; 348
Liu, Hu, Gao, Chen, Zeng, Wei (b37) 2021; 215
Fadaee, Radzi (b25) 2012; 16
Dong, Li, Li, Cao, Jiang, Shi (b7) 2022; 4
Coello, Lamont, Van Veldhuizen (b30) 2007
Cipolletta, Crivellari, Moreno, Cozzani (b5) 2023; 347
Morteza, Sadipour, Fard, Taheri, Ahmadi (b36) 2022
Zhang, Li (b43) 2007; 11
Liu, Li, Duan, Chen (b76) 2020; 224
Zheng W, Doerr B. Better approximation guarantees for the NSGA-II by using the current crowding distance. In: Proceedings of the genetic and evolutionary computation conference. 2022, p. 611–9.
Zhang, Yang, Zhao, Han, Zhou, Zhang (b16) 2024; 287
Guzovi, Duić, Piacentino, Markovska, Mathiesen, Lund (b15) 2023; 284
Robertson, Jonkman, Masciola, Song, Goupee, Coulling (b18) 2014
Teegavarapu, Ferreira, Simonovic (b39) 2013; 49
Coello (b73) 2018
Deb, Jain (b79) 2013; 18
Michailides, Gao, Moan (b27) 2016; 50
Medhane, Sangaiah (b75) 2017; 58
Chen, Huang, Shahabi (b82) 2021; 298
Qian, Sun, Zhong, Zeng, Xu, Zhou (b74) 2024; 355
Karimirad (b2) 2014
Astariz, Iglesias (b34) 2016; 113
Tian, Wang, Shi, Michailides, Wan, Chen (b41) 2023; 272
Niveditha, Singaravel (b80) 2022; 324
Kluger, Haji, Slocum (b22) 2023; 331
da Silva, de Oliveira, Cazzolato, Sergiienko, Amaral, Ding (b60) 2022; 261
Holmes, Bekele (b61) 2001
Hu, Zhou, Vogel, Liu, Willden, Sun (b20) 2020; 269
Gao, Ertugrul, Ding, Negnevitsky (b17) 2020
Wang, Du, Lu, Yang, Niu (b100) 2018; 72
Cheng, Luo, Jenkins, Larson (b10) 2023; 331
Coello, Pulido, Lechuga (b38) 2004; 8
Malan, Ochoa (b90) 2021
Korde, Lyu, Robinett III, Wilson, Bacelli, Abdelkhalik (b35) 2017; 69
da Silva, Sergiienko, Pesce, Ding, Cazzolato, Morishita (b65) 2020; 95
Zitzler, Thiele (b96) 1998; 43
Luan, Michailides, Gao, Moan (b50) 2014; Vol. 45547
Zou, Gong, Ouyang (b81) 2023; 329
Deutch (b9) 2020; 4
Deb, Agrawal, Pratap, Meyarivan (b86) 2000
Knowles, Corne (b89) 2000; 8
Falcão (b33) 2010; 14
on Waves TSC. Final Report and Recommendations to the 23rd ITTC. In: Proceedings of the 23rd international towing tank conference. Vol. II, 2002, p. 505–736.
Sø rensen, Hansen, Rosas (b62) 2002; 90
Pfeifer, Feijoo, Duić (b1) 2023; 284
Tian, Yuan, Li (b101) 2021; 106
Deb (b72) 2011
Makhadmeh, Alomari, Mirjalili, Al-Betar, Elnagar (b83) 2022; 34
Trinh, Pattiaratchi, Bui (b8) 2020; 8
Coello (b69) 2002; 191
da Silva, Cazzolato, Sergiienko, Ding (b55) 2021
Lalwani, Singhal, Kumar, Gupta (b99) 2013; 2
Adams (b14) 2021
Li (10.1016/j.apenergy.2024.122955_b68) 2019; 52
Mirjalili (10.1016/j.apenergy.2024.122955_b26) 2014; 69
Coello (10.1016/j.apenergy.2024.122955_b38) 2004; 8
Michailides (10.1016/j.apenergy.2024.122955_b27) 2016; 50
Van Der Tempel (10.1016/j.apenergy.2024.122955_b59) 2011
Astariz (10.1016/j.apenergy.2024.122955_b34) 2016; 113
Guzović (10.1016/j.apenergy.2024.122955_b93) 2023; 263
Lalwani (10.1016/j.apenergy.2024.122955_b99) 2013; 2
Luan (10.1016/j.apenergy.2024.122955_b50) 2014; Vol. 45547
Medhane (10.1016/j.apenergy.2024.122955_b75) 2017; 58
Mirjalili (10.1016/j.apenergy.2024.122955_b31) 2016; 47
Liu (10.1016/j.apenergy.2024.122955_b84) 2020; 145
Zhang (10.1016/j.apenergy.2024.122955_b43) 2007; 11
10.1016/j.apenergy.2024.122955_b29
Chen (10.1016/j.apenergy.2024.122955_b40) 2022; 10
Coello (10.1016/j.apenergy.2024.122955_b97) 2002; Vol. 2
Makhadmeh (10.1016/j.apenergy.2024.122955_b83) 2022; 34
Morteza (10.1016/j.apenergy.2024.122955_b36) 2022
Liu (10.1016/j.apenergy.2024.122955_b76) 2020; 224
Cipolletta (10.1016/j.apenergy.2024.122955_b5) 2023; 347
Neshat (10.1016/j.apenergy.2024.122955_b23) 2022; 256
Østergaard (10.1016/j.apenergy.2024.122955_b11) 2020; 146
Deb (10.1016/j.apenergy.2024.122955_b72) 2011
10.1016/j.apenergy.2024.122955_b56
Mirjalili (10.1016/j.apenergy.2024.122955_b92) 2015; 21
Sø rensen (10.1016/j.apenergy.2024.122955_b62) 2002; 90
Hu (10.1016/j.apenergy.2024.122955_b70) 2017; 222
10.1016/j.apenergy.2024.122955_b57
Dong (10.1016/j.apenergy.2024.122955_b7) 2022; 4
Teegavarapu (10.1016/j.apenergy.2024.122955_b39) 2013; 49
Coello (10.1016/j.apenergy.2024.122955_b88) 2004; 8
Karimirad (10.1016/j.apenergy.2024.122955_b2) 2014
Knowles (10.1016/j.apenergy.2024.122955_b89) 2000; 8
Holmes (10.1016/j.apenergy.2024.122955_b61) 2001
da Silva (10.1016/j.apenergy.2024.122955_b60) 2022; 261
Guerreiro (10.1016/j.apenergy.2024.122955_b91) 2021; 54
Zhang (10.1016/j.apenergy.2024.122955_b16) 2024; 287
Shadmani (10.1016/j.apenergy.2024.122955_b71) 2023; 347
Zou (10.1016/j.apenergy.2024.122955_b94) 2023; 351
Tian (10.1016/j.apenergy.2024.122955_b95) 2021; 54
Niveditha (10.1016/j.apenergy.2024.122955_b80) 2022; 324
Adams (10.1016/j.apenergy.2024.122955_b14) 2021
Deutch (10.1016/j.apenergy.2024.122955_b9) 2020; 4
Trinh (10.1016/j.apenergy.2024.122955_b8) 2020; 8
Gao (10.1016/j.apenergy.2024.122955_b17) 2020
Liu (10.1016/j.apenergy.2024.122955_b37) 2021; 215
Burton (10.1016/j.apenergy.2024.122955_b58) 2001
Deb (10.1016/j.apenergy.2024.122955_b86) 2000
Jonkman (10.1016/j.apenergy.2024.122955_b52) 2009
Tian (10.1016/j.apenergy.2024.122955_b101) 2021; 106
Coello (10.1016/j.apenergy.2024.122955_b49) 2007
Ringwood (10.1016/j.apenergy.2024.122955_b28) 2014; 34
Qian (10.1016/j.apenergy.2024.122955_b74) 2024; 355
de Faria (10.1016/j.apenergy.2024.122955_b4) 2022; 326
Mirjalili (10.1016/j.apenergy.2024.122955_b47) 2016; 27
Neshat (10.1016/j.apenergy.2024.122955_b85) 2020; 534
Pfeifer (10.1016/j.apenergy.2024.122955_b1) 2023; 284
Coello (10.1016/j.apenergy.2024.122955_b73) 2018
Liu (10.1016/j.apenergy.2024.122955_b77) 2023; 348
10.1016/j.apenergy.2024.122955_b66
Tian (10.1016/j.apenergy.2024.122955_b41) 2023; 272
Robertson (10.1016/j.apenergy.2024.122955_b18) 2014
da Silva (10.1016/j.apenergy.2024.122955_b65) 2020; 95
Pulido (10.1016/j.apenergy.2024.122955_b98) 2004
Deb (10.1016/j.apenergy.2024.122955_b79) 2013; 18
Deb (10.1016/j.apenergy.2024.122955_b24) 2002; 6
Chen (10.1016/j.apenergy.2024.122955_b82) 2021; 298
Coello (10.1016/j.apenergy.2024.122955_b30) 2007
Deng (10.1016/j.apenergy.2024.122955_b19) 2023; 22
Srinivas (10.1016/j.apenergy.2024.122955_b78) 1994; 2
Wang (10.1016/j.apenergy.2024.122955_b100) 2018; 72
Hu (10.1016/j.apenergy.2024.122955_b20) 2020; 269
Zitzler (10.1016/j.apenergy.2024.122955_b45) 2001; 103
Babarit (10.1016/j.apenergy.2024.122955_b53) 2011
Coello (10.1016/j.apenergy.2024.122955_b69) 2002; 191
Korde (10.1016/j.apenergy.2024.122955_b35) 2017; 69
Luan (10.1016/j.apenergy.2024.122955_b51) 2018
Fadaee (10.1016/j.apenergy.2024.122955_b25) 2012; 16
Zitzler (10.1016/j.apenergy.2024.122955_b96) 1998; 43
Zou (10.1016/j.apenergy.2024.122955_b81) 2023; 329
Cheng (10.1016/j.apenergy.2024.122955_b10) 2023; 331
(10.1016/j.apenergy.2024.122955_b64) 2019
Kemp (10.1016/j.apenergy.2024.122955_b13) 2021
Zhang (10.1016/j.apenergy.2024.122955_b42) 2022; 15
Corne (10.1016/j.apenergy.2024.122955_b44) 2000
Zhang (10.1016/j.apenergy.2024.122955_b48) 2007; 11
Falcão (10.1016/j.apenergy.2024.122955_b33) 2010; 14
Nastasi (10.1016/j.apenergy.2024.122955_b21) 2023; 182
Letcher (10.1016/j.apenergy.2024.122955_b32) 2008; 30
da Silva (10.1016/j.apenergy.2024.122955_b55) 2021
Prina (10.1016/j.apenergy.2024.122955_b6) 2021; 152
10.1016/j.apenergy.2024.122955_b87
(10.1016/j.apenergy.2024.122955_b67) 1991
Malan (10.1016/j.apenergy.2024.122955_b90) 2021
Guzovi (10.1016/j.apenergy.2024.122955_b15) 2023; 284
Pfeifer (10.1016/j.apenergy.2024.122955_b12) 2023; 284
(10.1016/j.apenergy.2024.122955_b63) 2019
Mirjalili (10.1016/j.apenergy.2024.122955_b46) 2017; 46
Lee (10.1016/j.apenergy.2024.122955_b54) 1995
Kluger (10.1016/j.apenergy.2024.122955_b22) 2023; 331
Amini (10.1016/j.apenergy.2024.122955_b3) 2022; 194
References_xml – volume: 58
  start-page: 126
  year: 2017
  end-page: 143
  ident: b75
  article-title: Search space-based multi-objective optimization evolutionary algorithm
  publication-title: Comput Electr Eng
– year: 2007
  ident: b49
  article-title: Evolutionary algorithms for solving multi-objective problems
– volume: 324
  year: 2022
  ident: b80
  article-title: Optimal sizing of hybrid PV–wind–battery storage system for net zero energy buildings to reduce grid burden
  publication-title: Appl Energy
– volume: 54
  start-page: 1
  year: 2021
  end-page: 42
  ident: b91
  article-title: The hypervolume indicator: Computational problems and algorithms
  publication-title: ACM Comput Surv
– reference: Zheng W, Doerr B. Better approximation guarantees for the NSGA-II by using the current crowding distance. In: Proceedings of the genetic and evolutionary computation conference. 2022, p. 611–9.
– volume: 222
  start-page: 170
  year: 2017
  end-page: 182
  ident: b70
  article-title: An improved multi-objective evolutionary algorithm based on environmental and history information
  publication-title: Neurocomputing
– volume: 54
  start-page: 1
  year: 2021
  end-page: 34
  ident: b95
  article-title: Evolutionary large-scale multi-objective optimization: A survey
  publication-title: ACM Comput Surv
– year: 1991
  ident: b67
  article-title: Wind turbine generator systems-part 1: Safety requirements
– volume: 284
  start-page: 1
  year: 2023
  end-page: 20
  ident: b15
  article-title: SDEWES science-The path to a sustainable carbon neutral world
  publication-title: Energy
– year: 2014
  ident: b18
  article-title: Definition of the semisubmersible floating system for phase II of OC4
– volume: 347
  year: 2023
  ident: b71
  article-title: A multi-objective approach for location and layout optimization of wave energy converters
  publication-title: Appl Energy
– year: 2019
  ident: b64
  article-title: Marine energy - Wave, tidal and other water current converters - Part 2: Marine energy systems - Design requirements
– volume: 261
  year: 2022
  ident: b60
  article-title: Statistical linearisation of a nonlinear floating offshore wind turbine under random waves and winds
  publication-title: Ocean Eng
– volume: 146
  start-page: 2430
  year: 2020
  end-page: 2437
  ident: b11
  article-title: Sustainable development using renewable energy technology
  publication-title: Renew Energy
– start-page: 1
  year: 2011
  end-page: 317
  ident: b53
  article-title: The NumWEC project
  publication-title: Numerical estimation of energy delivery from a selection of wave energy converters–Final report
– start-page: 1
  year: 2020
  end-page: 6
  ident: b17
  article-title: Offshore wind, wave and integrated energy conversion systems: A review and future
  publication-title: 2020 Australasian universities power engineering conference
– volume: 2
  start-page: 221
  year: 1994
  end-page: 248
  ident: b78
  article-title: Muiltiobjective optimization using nondominated sorting in genetic algorithms
  publication-title: Evol Comput
– volume: 298
  year: 2021
  ident: b82
  article-title: Economic and environmental operation of power systems including combined cooling, heating, power and energy storage resources using developed multi-objective grey wolf algorithm
  publication-title: Appl Energy
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: b48
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans Evol Comput
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b24
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans Evol Comput
– volume: 10
  year: 2022
  ident: b40
  article-title: Fully coupled analysis of an integrated floating wind-wave power generation platform in operational sea-states
  publication-title: Front Energy Res
– volume: 284
  year: 2023
  ident: b1
  article-title: Fast energy transition as a best strategy for all? The nash equilibrium of long-term energy planning strategies in coupled power markets
  publication-title: Energy
– volume: 329
  year: 2023
  ident: b81
  article-title: A non-dominated sorting genetic approach using elite crossover for the combined cooling, heating, and power system with three energy storages
  publication-title: Appl Energy
– volume: 30
  start-page: 20
  year: 2008
  end-page: 21
  ident: b32
  article-title: Future energy: Improved, sustainable, and clean options for our planet
  publication-title: Chem Int–Newsmagazine IUPAC
– year: 1995
  ident: b54
  article-title: WAMIT theory manual
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: b43
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans Evol Comput
– volume: 269
  year: 2020
  ident: b20
  article-title: Optimal design and performance analysis of a hybrid system combing a floating wind platform and wave energy converters
  publication-title: Appl Energy
– volume: 263
  year: 2023
  ident: b93
  article-title: Paving the way for the Paris agreement: Contributions of SDEWES science
  publication-title: Energy
– volume: 272
  year: 2023
  ident: b41
  article-title: Numerical study of hydrodynamic responses for a combined concept of semisubmersible wind turbine and different layouts of a wave energy converter
  publication-title: Ocean Eng
– volume: 331
  year: 2023
  ident: b10
  article-title: The value of low-and negative-carbon fuels in the transition to net-zero emission economies: Lifecycle greenhouse gas emissions and cost assessments across multiple fuel types
  publication-title: Appl Energy
– volume: 284
  year: 2023
  ident: b12
  article-title: Cutting-edge science for sustainable development-SDEWES 2022 special issue
  publication-title: Energy
– year: 2014
  ident: b2
  article-title: Offshore energy structures: for wind power, wave energy and hybrid marine platforms
– volume: 326
  year: 2022
  ident: b4
  article-title: Optimizing offshore renewable portfolios under resource variability
  publication-title: Appl Energy
– volume: 113
  start-page: 497
  year: 2016
  end-page: 508
  ident: b34
  article-title: Co-located wind and wave energy farms: Uniformly distributed arrays
  publication-title: Energy
– volume: 4
  start-page: 2237
  year: 2020
  end-page: 2240
  ident: b9
  article-title: Is net zero carbon 2050 possible?
  publication-title: Joule
– volume: 191
  start-page: 1245
  year: 2002
  end-page: 1287
  ident: b69
  article-title: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art
  publication-title: Comput Methods Appl Mech Engrg
– volume: 15
  start-page: 8681
  year: 2022
  ident: b42
  article-title: Research on size optimization of wave energy converters based on a floating wind-wave combined power generation platform
  publication-title: Energies
– year: 2022
  ident: b36
  article-title: A dagging-based deep learning framework for transmission line flexibility assessment
  publication-title: IET Renew Power Gener
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b26
  article-title: Grey wolf optimizer
  publication-title: Adv Eng Softw
– volume: 348
  year: 2023
  ident: b77
  article-title: Multi-objective optimization with advanced exergy analysis of a wind-solar-hydrogen multi-energy supply system
  publication-title: Appl Energy
– volume: 103
  year: 2001
  ident: b45
  article-title: SPEA2: Improving the strength Pareto evolutionary algorithm
  publication-title: TIK-Rep
– volume: 351
  year: 2023
  ident: b94
  article-title: The dynamic economic emission dispatch of the combined heat and power system integrated with a wind farm and a photovoltaic plant
  publication-title: Appl Energy
– volume: 49
  start-page: 3180
  year: 2013
  end-page: 3193
  ident: b39
  article-title: Fuzzy multiobjective models for optimal operation of a hydropower system
  publication-title: Water Resour Res
– year: 2009
  ident: b52
  article-title: Definition of a 5-MW reference wind turbine for offshore system development
– start-page: 849
  year: 2000
  end-page: 858
  ident: b86
  article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II
  publication-title: Parallel problem solving from nature PPSN VI: 6th international conference Paris, France, September 18–20, 2000 proceedings. Vol. 6
– volume: 43
  year: 1998
  ident: b96
  article-title: An evolutionary algorithm for multiobjective optimization: The strength pareto approach
  publication-title: TIK-Rep
– volume: 331
  year: 2023
  ident: b22
  article-title: The power balancing benefits of wave energy converters in offshore wind-wave farms with energy storage
  publication-title: Appl Energy
– volume: 95
  year: 2020
  ident: b65
  article-title: Stochastic analysis of nonlinear wave energy converters via statistical linearization
  publication-title: Appl Ocean Res
– volume: 90
  start-page: 1381
  year: 2002
  end-page: 1402
  ident: b62
  article-title: Wind models for simulation of power fluctuations from wind farms
  publication-title: J Wind Eng Ind Aerodyn
– volume: 27
  start-page: 1053
  year: 2016
  end-page: 1073
  ident: b47
  article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
  publication-title: Neural Comput Appl
– volume: 72
  start-page: 321
  year: 2018
  end-page: 337
  ident: b100
  article-title: An improved grey model optimized by multi-objective ant lion optimization algorithm for annual electricity consumption forecasting
  publication-title: Appl Soft Comput
– start-page: 1
  year: 2021
  end-page: 17
  ident: b55
  article-title: Efficient estimation of the nonlinear aerodynamic loads of floating offshore wind turbines under random waves and wind in frequency domain
  publication-title: J Ocean Eng Mar Energy
– reference: Sclavounos P, Tracy C, Lee S. Floating offshore wind turbines: Responses in a seastate Pareto optimal designs and economic assessment. In: International conference on offshore mechanics and arctic engineering. Vol. 48234, 2008, p. 31–41.
– volume: 2
  start-page: 39
  year: 2013
  end-page: 101
  ident: b99
  article-title: A comprehensive survey: Applications of multi-objective particle swarm optimization (MOPSO) algorithm
  publication-title: Trans Combinat
– volume: 16
  start-page: 3364
  year: 2012
  end-page: 3369
  ident: b25
  article-title: Multi-objective optimization of a stand-alone hybrid renewable energy system by using evolutionary algorithms: A review
  publication-title: Renew Sustain Energy Rev
– volume: 256
  year: 2022
  ident: b23
  article-title: Wave power forecasting using an effective decomposition-based convolutional Bi-directional model with equilibrium Nelder-Mead optimiser
  publication-title: Energy
– volume: 534
  start-page: 218
  year: 2020
  end-page: 244
  ident: b85
  article-title: A hybrid cooperative co-evolution algorithm framework for optimising power take off and placements of wave energy converters
  publication-title: Inform Sci
– volume: 8
  start-page: 256
  year: 2004
  end-page: 279
  ident: b88
  article-title: Handling multiple objectives with particle swarm optimization
  publication-title: IEEE Trans Evol Comput
– volume: 21
  start-page: 1
  year: 2015
  end-page: 23
  ident: b92
  article-title: Novel performance metrics for robust multi-objective optimization algorithms
  publication-title: Swarm Evol Comput
– year: 2011
  ident: b72
  article-title: Multi-objective optimisation using evolutionary algorithms: an introduction
– volume: 224
  year: 2020
  ident: b76
  article-title: A review on multi-objective optimization framework in wind energy forecasting techniques and applications
  publication-title: Energy Convers Manage
– volume: 8
  start-page: 256
  year: 2004
  end-page: 279
  ident: b38
  article-title: Handling multiple objectives with particle swarm optimization
  publication-title: IEEE Trans Evol Comput
– volume: 106
  year: 2021
  ident: b101
  article-title: Robust optimization of the continuous annealing process based on a novel Multi-Objective Dragonfly Algorithm
  publication-title: Eng Appl Artif Intell
– start-page: 899
  year: 2021
  end-page: 917
  ident: b90
  article-title: Recent advances in landscape analysis for optimisation and learning
  publication-title: GECCO companion
– year: 2021
  ident: b13
  article-title: Towards net zero: implications for Australia of energy policies in East Asia — Bulletin – September 2021
– volume: 18
  start-page: 577
  year: 2013
  end-page: 601
  ident: b79
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints
  publication-title: IEEE Trans Evol Comput
– start-page: 3
  year: 2021
  ident: b14
  article-title: Zero greenhouse gas emissions by 2050: What it means for the Australian economy, industries and regions
– volume: 347
  year: 2023
  ident: b5
  article-title: Design of sustainable offshore hybrid energy systems for improved wave energy dispatchability
  publication-title: Appl Energy
– volume: 34
  start-page: 19723
  year: 2022
  end-page: 19749
  ident: b83
  article-title: Recent advances in multi-objective grey wolf optimizer, its versions and applications
  publication-title: Neural Comput Appl
– start-page: 225
  year: 2004
  end-page: 237
  ident: b98
  article-title: Using clustering techniques to improve the performance of a multi-objective particle swarm optimizer
  publication-title: Genetic and evolutionary computation conference
– volume: 47
  start-page: 106
  year: 2016
  end-page: 119
  ident: b31
  article-title: Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization
  publication-title: Expert Syst Appl
– volume: 287
  year: 2024
  ident: b16
  article-title: A novel wake control strategy for a twin-rotor floating wind turbine: Mitigating wake effect
  publication-title: Energy
– reference: Celesti ML, Paduano B, Peña-Sanchez Y, Pasta E, Faedo N, Ringwood J. Design considerations for a hybrid wind-wave platform under energy-maximising control. In: Proceedings of the European wave and tidal energy conference. Vol. 15, 2023.
– year: 2019
  ident: b63
  article-title: Wind energy generation systems - Part 3-2: Design requirements for floating offshore wind turbines
– volume: 355
  year: 2024
  ident: b74
  article-title: Multi-objective optimization design of the wind-to-heat system blades based on the Particle Swarm Optimization algorithm
  publication-title: Appl Energy
– volume: 34
  start-page: 30
  year: 2014
  end-page: 55
  ident: b28
  article-title: Energy-maximizing control of wave-energy converters: The development of control system technology to optimize their operation
  publication-title: IEEE Control Syst Mag
– volume: 152
  year: 2021
  ident: b6
  article-title: Bottom-up energy system models applied to sustainable islands
  publication-title: Renew Sustain Energy Rev
– volume: 22
  start-page: 1165
  year: 2023
  end-page: 1180
  ident: b19
  article-title: Multi-objective optimal design of the wind-wave hybrid platform with the coupling interaction
  publication-title: J Ocean Univ China
– start-page: 463
  year: 2011
  end-page: 478
  ident: b59
  article-title: Offshore environmental loads and wind turbine design: impact of wind, wave, currents and ice
  publication-title: Wind energy systems
– volume: 182
  year: 2023
  ident: b21
  article-title: Techniques and technologies to board on the feasible renewable and sustainable energy systems
  publication-title: Renew Sustain Energy Rev
– year: 2001
  ident: b61
  article-title: Wind loading of structures
– volume: 215
  year: 2021
  ident: b37
  article-title: A high-precise model for the hydraulic power take-off of a raft-type wave energy converter
  publication-title: Energy
– start-page: 177
  year: 2018
  end-page: 204
  ident: b73
  article-title: Multi-objective optimization
  publication-title: Handbook of heuristics
– year: 2007
  ident: b30
  article-title: Evolutionary algorithms for solving multi-objective problems
– volume: 50
  start-page: 35
  year: 2016
  end-page: 54
  ident: b27
  article-title: Experimental and numerical study of the response of the offshore combined wind/wave energy concept SFC in extreme environmental conditions
  publication-title: Mar Struct
– year: 2001
  ident: b58
  article-title: Wind energy handbook
– reference: Jonkman JM, Hayman G, Jonkman B, Damiani R, Murray R. AeroDyn v15 user’s guide and theory manual. NREL Draft Report, 2015, p. 46.
– volume: 8
  start-page: 149
  year: 2000
  end-page: 172
  ident: b89
  article-title: Approximating the nondominated front using the Pareto archived evolution strategy
  publication-title: Evol Comput
– volume: Vol. 2
  start-page: 1051
  year: 2002
  end-page: 1056
  ident: b97
  article-title: MOPSO: A proposal for multiple objective particle swarm optimization
  publication-title: Proceedings of the 2002 congress on evolutionary computation
– volume: 145
  year: 2020
  ident: b84
  article-title: A multiple search strategies based grey wolf optimizer for solving multi-objective optimization problems
  publication-title: Expert Syst Appl
– volume: Vol. 45547
  year: 2014
  ident: b50
  article-title: Modeling and analysis of a 5 MW semi-submersible wind turbine combined with three flap-type Wave Energy Converters
  publication-title: International conference on offshore mechanics and arctic engineering
– volume: 4
  year: 2022
  ident: b7
  article-title: A state-of-the-art review of the hybrid wind-wave energy converter
  publication-title: Progr Energy
– reference: on Waves TSC. Final Report and Recommendations to the 23rd ITTC. In: Proceedings of the 23rd international towing tank conference. Vol. II, 2002, p. 505–736.
– volume: 8
  start-page: 508
  year: 2020
  ident: b8
  article-title: The contribution of forerunner to storm surges along the Vietnam Coast
  publication-title: J Mar Sci Eng
– start-page: 839
  year: 2000
  end-page: 848
  ident: b44
  article-title: The Pareto envelope-based selection algorithm for multiobjective optimization
  publication-title: Parallel problem solving from nature PPSN VI: 6th international conference Paris, France, September 18–20, 2000 proceedings. Vol. 6
– volume: 46
  start-page: 79
  year: 2017
  end-page: 95
  ident: b46
  article-title: Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems
  publication-title: Appl Intell
– volume: 52
  start-page: 1
  year: 2019
  end-page: 38
  ident: b68
  article-title: Quality evaluation of solution sets in multiobjective optimisation: A survey
  publication-title: ACM Comput Surv
– volume: 14
  start-page: 899
  year: 2010
  end-page: 918
  ident: b33
  article-title: Wave energy utilization: A review of the technologies
  publication-title: Renew Sustain Energy Rev
– volume: 194
  start-page: 938
  year: 2022
  end-page: 954
  ident: b3
  article-title: Optimization of hydraulic power take-off system settings for point absorber wave energy converter
  publication-title: Renew Energy
– year: 2018
  ident: b51
  article-title: Design and analysis for a steel braceless semi-submersible hull for supporting a 5-MW horizontal axis wind turbine
– volume: 69
  start-page: 126
  year: 2017
  end-page: 137
  ident: b35
  article-title: Constrained near-optimal control of a wave energy converter in three oscillation modes
  publication-title: Appl Ocean Res
– volume: 272
  year: 2023
  ident: 10.1016/j.apenergy.2024.122955_b41
  article-title: Numerical study of hydrodynamic responses for a combined concept of semisubmersible wind turbine and different layouts of a wave energy converter
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2023.113824
– volume: 47
  start-page: 106
  year: 2016
  ident: 10.1016/j.apenergy.2024.122955_b31
  article-title: Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2015.10.039
– volume: 146
  start-page: 2430
  year: 2020
  ident: 10.1016/j.apenergy.2024.122955_b11
  article-title: Sustainable development using renewable energy technology
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.08.094
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.apenergy.2024.122955_b26
  article-title: Grey wolf optimizer
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.12.007
– year: 1991
  ident: 10.1016/j.apenergy.2024.122955_b67
– volume: 34
  start-page: 30
  issue: 5
  year: 2014
  ident: 10.1016/j.apenergy.2024.122955_b28
  article-title: Energy-maximizing control of wave-energy converters: The development of control system technology to optimize their operation
  publication-title: IEEE Control Syst Mag
  doi: 10.1109/MCS.2014.2333253
– volume: 30
  start-page: 20
  issue: 2
  year: 2008
  ident: 10.1016/j.apenergy.2024.122955_b32
  article-title: Future energy: Improved, sustainable, and clean options for our planet
  publication-title: Chem Int–Newsmagazine IUPAC
– volume: 191
  start-page: 1245
  issue: 11–12
  year: 2002
  ident: 10.1016/j.apenergy.2024.122955_b69
  article-title: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/S0045-7825(01)00323-1
– volume: 106
  year: 2021
  ident: 10.1016/j.apenergy.2024.122955_b101
  article-title: Robust optimization of the continuous annealing process based on a novel Multi-Objective Dragonfly Algorithm
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2021.104448
– volume: 347
  year: 2023
  ident: 10.1016/j.apenergy.2024.122955_b71
  article-title: A multi-objective approach for location and layout optimization of wave energy converters
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2023.121397
– volume: 50
  start-page: 35
  year: 2016
  ident: 10.1016/j.apenergy.2024.122955_b27
  article-title: Experimental and numerical study of the response of the offshore combined wind/wave energy concept SFC in extreme environmental conditions
  publication-title: Mar Struct
  doi: 10.1016/j.marstruc.2016.06.005
– start-page: 1
  year: 2011
  ident: 10.1016/j.apenergy.2024.122955_b53
  article-title: The NumWEC project
– volume: 21
  start-page: 1
  year: 2015
  ident: 10.1016/j.apenergy.2024.122955_b92
  article-title: Novel performance metrics for robust multi-objective optimization algorithms
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2014.10.005
– volume: 269
  year: 2020
  ident: 10.1016/j.apenergy.2024.122955_b20
  article-title: Optimal design and performance analysis of a hybrid system combing a floating wind platform and wave energy converters
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.114998
– volume: 43
  year: 1998
  ident: 10.1016/j.apenergy.2024.122955_b96
  article-title: An evolutionary algorithm for multiobjective optimization: The strength pareto approach
  publication-title: TIK-Rep
– year: 2007
  ident: 10.1016/j.apenergy.2024.122955_b49
– ident: 10.1016/j.apenergy.2024.122955_b66
  doi: 10.1115/OMAE2008-57056
– volume: 52
  start-page: 1
  issue: 2
  year: 2019
  ident: 10.1016/j.apenergy.2024.122955_b68
  article-title: Quality evaluation of solution sets in multiobjective optimisation: A survey
  publication-title: ACM Comput Surv
  doi: 10.1145/3300148
– volume: 90
  start-page: 1381
  issue: 12–15
  year: 2002
  ident: 10.1016/j.apenergy.2024.122955_b62
  article-title: Wind models for simulation of power fluctuations from wind farms
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/S0167-6105(02)00260-X
– volume: 152
  year: 2021
  ident: 10.1016/j.apenergy.2024.122955_b6
  article-title: Bottom-up energy system models applied to sustainable islands
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2021.111625
– volume: 287
  year: 2024
  ident: 10.1016/j.apenergy.2024.122955_b16
  article-title: A novel wake control strategy for a twin-rotor floating wind turbine: Mitigating wake effect
  publication-title: Energy
  doi: 10.1016/j.energy.2023.129619
– volume: 284
  start-page: 1
  year: 2023
  ident: 10.1016/j.apenergy.2024.122955_b15
  article-title: SDEWES science-The path to a sustainable carbon neutral world
  publication-title: Energy
– volume: 331
  year: 2023
  ident: 10.1016/j.apenergy.2024.122955_b10
  article-title: The value of low-and negative-carbon fuels in the transition to net-zero emission economies: Lifecycle greenhouse gas emissions and cost assessments across multiple fuel types
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.120388
– volume: 355
  year: 2024
  ident: 10.1016/j.apenergy.2024.122955_b74
  article-title: Multi-objective optimization design of the wind-to-heat system blades based on the Particle Swarm Optimization algorithm
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2023.122186
– start-page: 1
  year: 2021
  ident: 10.1016/j.apenergy.2024.122955_b55
  article-title: Efficient estimation of the nonlinear aerodynamic loads of floating offshore wind turbines under random waves and wind in frequency domain
  publication-title: J Ocean Eng Mar Energy
– volume: 72
  start-page: 321
  year: 2018
  ident: 10.1016/j.apenergy.2024.122955_b100
  article-title: An improved grey model optimized by multi-objective ant lion optimization algorithm for annual electricity consumption forecasting
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.07.022
– volume: 46
  start-page: 79
  year: 2017
  ident: 10.1016/j.apenergy.2024.122955_b46
  article-title: Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems
  publication-title: Appl Intell
  doi: 10.1007/s10489-016-0825-8
– start-page: 463
  year: 2011
  ident: 10.1016/j.apenergy.2024.122955_b59
  article-title: Offshore environmental loads and wind turbine design: impact of wind, wave, currents and ice
– volume: 54
  start-page: 1
  issue: 8
  year: 2021
  ident: 10.1016/j.apenergy.2024.122955_b95
  article-title: Evolutionary large-scale multi-objective optimization: A survey
  publication-title: ACM Comput Surv
– volume: 113
  start-page: 497
  year: 2016
  ident: 10.1016/j.apenergy.2024.122955_b34
  article-title: Co-located wind and wave energy farms: Uniformly distributed arrays
  publication-title: Energy
  doi: 10.1016/j.energy.2016.07.069
– start-page: 177
  year: 2018
  ident: 10.1016/j.apenergy.2024.122955_b73
  article-title: Multi-objective optimization
– ident: 10.1016/j.apenergy.2024.122955_b29
  doi: 10.36688/ewtec-2023-590
– volume: 256
  year: 2022
  ident: 10.1016/j.apenergy.2024.122955_b23
  article-title: Wave power forecasting using an effective decomposition-based convolutional Bi-directional model with equilibrium Nelder-Mead optimiser
  publication-title: Energy
  doi: 10.1016/j.energy.2022.124623
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10.1016/j.apenergy.2024.122955_b48
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2007.892759
– ident: 10.1016/j.apenergy.2024.122955_b56
– volume: 182
  year: 2023
  ident: 10.1016/j.apenergy.2024.122955_b21
  article-title: Techniques and technologies to board on the feasible renewable and sustainable energy systems
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2023.113428
– volume: 8
  start-page: 149
  issue: 2
  year: 2000
  ident: 10.1016/j.apenergy.2024.122955_b89
  article-title: Approximating the nondominated front using the Pareto archived evolution strategy
  publication-title: Evol Comput
  doi: 10.1162/106365600568167
– volume: 284
  year: 2023
  ident: 10.1016/j.apenergy.2024.122955_b1
  article-title: Fast energy transition as a best strategy for all? The nash equilibrium of long-term energy planning strategies in coupled power markets
  publication-title: Energy
  doi: 10.1016/j.energy.2023.129109
– volume: Vol. 2
  start-page: 1051
  year: 2002
  ident: 10.1016/j.apenergy.2024.122955_b97
  article-title: MOPSO: A proposal for multiple objective particle swarm optimization
– volume: 2
  start-page: 39
  issue: 1
  year: 2013
  ident: 10.1016/j.apenergy.2024.122955_b99
  article-title: A comprehensive survey: Applications of multi-objective particle swarm optimization (MOPSO) algorithm
  publication-title: Trans Combinat
– year: 2014
  ident: 10.1016/j.apenergy.2024.122955_b2
– volume: 4
  start-page: 2237
  issue: 11
  year: 2020
  ident: 10.1016/j.apenergy.2024.122955_b9
  article-title: Is net zero carbon 2050 possible?
  publication-title: Joule
  doi: 10.1016/j.joule.2020.09.002
– volume: 351
  year: 2023
  ident: 10.1016/j.apenergy.2024.122955_b94
  article-title: The dynamic economic emission dispatch of the combined heat and power system integrated with a wind farm and a photovoltaic plant
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2023.121890
– volume: 16
  start-page: 3364
  issue: 5
  year: 2012
  ident: 10.1016/j.apenergy.2024.122955_b25
  article-title: Multi-objective optimization of a stand-alone hybrid renewable energy system by using evolutionary algorithms: A review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2012.02.071
– year: 2018
  ident: 10.1016/j.apenergy.2024.122955_b51
– volume: 22
  start-page: 1165
  issue: 5
  year: 2023
  ident: 10.1016/j.apenergy.2024.122955_b19
  article-title: Multi-objective optimal design of the wind-wave hybrid platform with the coupling interaction
  publication-title: J Ocean Univ China
  doi: 10.1007/s11802-023-5242-0
– volume: 27
  start-page: 1053
  year: 2016
  ident: 10.1016/j.apenergy.2024.122955_b47
  article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1920-1
– ident: 10.1016/j.apenergy.2024.122955_b87
  doi: 10.1145/3512290.3528847
– volume: 4
  issue: 4
  year: 2022
  ident: 10.1016/j.apenergy.2024.122955_b7
  article-title: A state-of-the-art review of the hybrid wind-wave energy converter
  publication-title: Progr Energy
  doi: 10.1088/2516-1083/ac821d
– year: 1995
  ident: 10.1016/j.apenergy.2024.122955_b54
– year: 2001
  ident: 10.1016/j.apenergy.2024.122955_b61
– year: 2019
  ident: 10.1016/j.apenergy.2024.122955_b63
– volume: Vol. 45547
  year: 2014
  ident: 10.1016/j.apenergy.2024.122955_b50
  article-title: Modeling and analysis of a 5 MW semi-submersible wind turbine combined with three flap-type Wave Energy Converters
– volume: 284
  year: 2023
  ident: 10.1016/j.apenergy.2024.122955_b12
  article-title: Cutting-edge science for sustainable development-SDEWES 2022 special issue
  publication-title: Energy
  doi: 10.1016/j.energy.2023.129148
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10.1016/j.apenergy.2024.122955_b43
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2007.892759
– volume: 54
  start-page: 1
  issue: 6
  year: 2021
  ident: 10.1016/j.apenergy.2024.122955_b91
  article-title: The hypervolume indicator: Computational problems and algorithms
  publication-title: ACM Comput Surv
  doi: 10.1145/3453474
– volume: 331
  year: 2023
  ident: 10.1016/j.apenergy.2024.122955_b22
  article-title: The power balancing benefits of wave energy converters in offshore wind-wave farms with energy storage
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.120389
– start-page: 839
  year: 2000
  ident: 10.1016/j.apenergy.2024.122955_b44
  article-title: The Pareto envelope-based selection algorithm for multiobjective optimization
– year: 2009
  ident: 10.1016/j.apenergy.2024.122955_b52
– start-page: 849
  year: 2000
  ident: 10.1016/j.apenergy.2024.122955_b86
  article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II
– volume: 298
  year: 2021
  ident: 10.1016/j.apenergy.2024.122955_b82
  article-title: Economic and environmental operation of power systems including combined cooling, heating, power and energy storage resources using developed multi-objective grey wolf algorithm
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.117257
– volume: 8
  start-page: 508
  issue: 7
  year: 2020
  ident: 10.1016/j.apenergy.2024.122955_b8
  article-title: The contribution of forerunner to storm surges along the Vietnam Coast
  publication-title: J Mar Sci Eng
  doi: 10.3390/jmse8070508
– volume: 8
  start-page: 256
  issue: 3
  year: 2004
  ident: 10.1016/j.apenergy.2024.122955_b38
  article-title: Handling multiple objectives with particle swarm optimization
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2004.826067
– year: 2007
  ident: 10.1016/j.apenergy.2024.122955_b30
– start-page: 1
  year: 2020
  ident: 10.1016/j.apenergy.2024.122955_b17
  article-title: Offshore wind, wave and integrated energy conversion systems: A review and future
– volume: 224
  year: 2020
  ident: 10.1016/j.apenergy.2024.122955_b76
  article-title: A review on multi-objective optimization framework in wind energy forecasting techniques and applications
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2020.113324
– volume: 348
  year: 2023
  ident: 10.1016/j.apenergy.2024.122955_b77
  article-title: Multi-objective optimization with advanced exergy analysis of a wind-solar-hydrogen multi-energy supply system
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2023.121512
– volume: 324
  year: 2022
  ident: 10.1016/j.apenergy.2024.122955_b80
  article-title: Optimal sizing of hybrid PV–wind–battery storage system for net zero energy buildings to reduce grid burden
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.119713
– year: 2001
  ident: 10.1016/j.apenergy.2024.122955_b58
– year: 2014
  ident: 10.1016/j.apenergy.2024.122955_b18
– volume: 222
  start-page: 170
  year: 2017
  ident: 10.1016/j.apenergy.2024.122955_b70
  article-title: An improved multi-objective evolutionary algorithm based on environmental and history information
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.10.014
– volume: 2
  start-page: 221
  issue: 3
  year: 1994
  ident: 10.1016/j.apenergy.2024.122955_b78
  article-title: Muiltiobjective optimization using nondominated sorting in genetic algorithms
  publication-title: Evol Comput
  doi: 10.1162/evco.1994.2.3.221
– volume: 58
  start-page: 126
  year: 2017
  ident: 10.1016/j.apenergy.2024.122955_b75
  article-title: Search space-based multi-objective optimization evolutionary algorithm
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2017.01.025
– volume: 329
  year: 2023
  ident: 10.1016/j.apenergy.2024.122955_b81
  article-title: A non-dominated sorting genetic approach using elite crossover for the combined cooling, heating, and power system with three energy storages
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.120227
– volume: 347
  year: 2023
  ident: 10.1016/j.apenergy.2024.122955_b5
  article-title: Design of sustainable offshore hybrid energy systems for improved wave energy dispatchability
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2023.121410
– year: 2021
  ident: 10.1016/j.apenergy.2024.122955_b13
– volume: 14
  start-page: 899
  issue: 3
  year: 2010
  ident: 10.1016/j.apenergy.2024.122955_b33
  article-title: Wave energy utilization: A review of the technologies
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2009.11.003
– volume: 215
  year: 2021
  ident: 10.1016/j.apenergy.2024.122955_b37
  article-title: A high-precise model for the hydraulic power take-off of a raft-type wave energy converter
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119107
– volume: 95
  year: 2020
  ident: 10.1016/j.apenergy.2024.122955_b65
  article-title: Stochastic analysis of nonlinear wave energy converters via statistical linearization
  publication-title: Appl Ocean Res
  doi: 10.1016/j.apor.2019.102023
– volume: 8
  start-page: 256
  issue: 3
  year: 2004
  ident: 10.1016/j.apenergy.2024.122955_b88
  article-title: Handling multiple objectives with particle swarm optimization
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2004.826067
– start-page: 899
  year: 2021
  ident: 10.1016/j.apenergy.2024.122955_b90
  article-title: Recent advances in landscape analysis for optimisation and learning
– volume: 69
  start-page: 126
  year: 2017
  ident: 10.1016/j.apenergy.2024.122955_b35
  article-title: Constrained near-optimal control of a wave energy converter in three oscillation modes
  publication-title: Appl Ocean Res
  doi: 10.1016/j.apor.2017.10.004
– volume: 534
  start-page: 218
  year: 2020
  ident: 10.1016/j.apenergy.2024.122955_b85
  article-title: A hybrid cooperative co-evolution algorithm framework for optimising power take off and placements of wave energy converters
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2020.03.112
– volume: 194
  start-page: 938
  year: 2022
  ident: 10.1016/j.apenergy.2024.122955_b3
  article-title: Optimization of hydraulic power take-off system settings for point absorber wave energy converter
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2022.05.164
– volume: 326
  year: 2022
  ident: 10.1016/j.apenergy.2024.122955_b4
  article-title: Optimizing offshore renewable portfolios under resource variability
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.120012
– volume: 103
  year: 2001
  ident: 10.1016/j.apenergy.2024.122955_b45
  article-title: SPEA2: Improving the strength Pareto evolutionary algorithm
  publication-title: TIK-Rep
– volume: 261
  year: 2022
  ident: 10.1016/j.apenergy.2024.122955_b60
  article-title: Statistical linearisation of a nonlinear floating offshore wind turbine under random waves and winds
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2022.112033
– volume: 34
  start-page: 19723
  issue: 22
  year: 2022
  ident: 10.1016/j.apenergy.2024.122955_b83
  article-title: Recent advances in multi-objective grey wolf optimizer, its versions and applications
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-022-07704-5
– year: 2019
  ident: 10.1016/j.apenergy.2024.122955_b64
– volume: 263
  year: 2023
  ident: 10.1016/j.apenergy.2024.122955_b93
  article-title: Paving the way for the Paris agreement: Contributions of SDEWES science
  publication-title: Energy
  doi: 10.1016/j.energy.2022.125617
– year: 2011
  ident: 10.1016/j.apenergy.2024.122955_b72
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.apenergy.2024.122955_b24
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.996017
– volume: 18
  start-page: 577
  issue: 4
  year: 2013
  ident: 10.1016/j.apenergy.2024.122955_b79
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2013.2281535
– start-page: 3
  year: 2021
  ident: 10.1016/j.apenergy.2024.122955_b14
– volume: 49
  start-page: 3180
  issue: 6
  year: 2013
  ident: 10.1016/j.apenergy.2024.122955_b39
  article-title: Fuzzy multiobjective models for optimal operation of a hydropower system
  publication-title: Water Resour Res
  doi: 10.1002/wrcr.20224
– volume: 145
  year: 2020
  ident: 10.1016/j.apenergy.2024.122955_b84
  article-title: A multiple search strategies based grey wolf optimizer for solving multi-objective optimization problems
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.113134
– ident: 10.1016/j.apenergy.2024.122955_b57
– volume: 10
  year: 2022
  ident: 10.1016/j.apenergy.2024.122955_b40
  article-title: Fully coupled analysis of an integrated floating wind-wave power generation platform in operational sea-states
  publication-title: Front Energy Res
– year: 2022
  ident: 10.1016/j.apenergy.2024.122955_b36
  article-title: A dagging-based deep learning framework for transmission line flexibility assessment
  publication-title: IET Renew Power Gener
– start-page: 225
  year: 2004
  ident: 10.1016/j.apenergy.2024.122955_b98
  article-title: Using clustering techniques to improve the performance of a multi-objective particle swarm optimizer
– volume: 15
  start-page: 8681
  issue: 22
  year: 2022
  ident: 10.1016/j.apenergy.2024.122955_b42
  article-title: Research on size optimization of wave energy converters based on a floating wind-wave combined power generation platform
  publication-title: Energies
  doi: 10.3390/en15228681
SSID ssj0002120
Score 2.5467353
Snippet Hybrid offshore renewable energy platforms have been proposed to optimise power production and reduce the levelised cost of energy by integrating or...
SourceID swepub
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 122955
SubjectTerms acceleration
algorithms
Australia
coasts
damping
decline
energy
Genetic algorithms
Hybrid wave-wind energy system
Hybrid wave-wind energy systems
Hybrid waves
hybrids
income
longevity
Multi-objective optimisation algorithm
Multi-objective optimization algorithm
Multi-objectives optimization
Multiobjective optimization
Offshore oil well production
Offshore wind turbine
Offshore wind turbines
Optimization algorithms
power generation
Power quality
Power takeoffs
spring
Sustainable energy
Swarm intelligence algorithms
swarms
system optimization
water power
wave energy
Wave energy conversion
Wave energy converters
Wave wind
wind
Wind energy systems
Wind power
wind turbine
wind turbines
Title Enhancing the performance of hybrid wave-wind energy systems through a fast and adaptive chaotic multi-objective swarm optimisation method
URI https://dx.doi.org/10.1016/j.apenergy.2024.122955
https://www.proquest.com/docview/3153787957
https://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-66338
Volume 362
WOSCitedRecordID wos001219088400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKxwM8IBhMlJuMBE9RShrn-lhBEaBtmrSBxpN14jg0pU2qpmsHP4E_xV_juHbSMA3GHnhJqyjHcXK-2N-xz4WQFzCA2E0QvE4kXNvLPBwH5SCwkdqGaItlTgAbTe-Hh4fR6Wl81On8rGNhVtOwKKLz83j-X1WN51DZKnT2GupuGsUT-B-VjkdUOx7_SfGjYqxyaNRRUK3AAMULv6kILWsNK2mv0Ry3pI790wmdq6ZsD1gZVNr5HFKYb_yLxBhKld5144Nol8lEj5VWtYbFzCrxopnxDTJ1qdvEt2a7-n6t7akxaIcROU7zZrkHr8lxzPla6glAZWnMwfrc38p9H2tsHiASYWYdwCTfyqdgHefT1YYX70tQORms4_5Rv73E4Xpqd14HedahXU5gK1OvPWwzM4rrgXegypL7l84Jenli0oe5fsS-ukV_K_B7Eu4Lk2Pjslh7w0143Q5X7XDdzg2y44Z-HHXJzvD96PRDQwZckxm0foJWkPrlPfoTP2rbP-2cthsedHKX3DEGDB1q4N0jHVnsktuttJa7ZG-0jZ7ES830Ud0nPxpsUsQmbWGTlhnV2KQNNqnuNjXYpAabFKjCJkW10hqb1GCTXsAm3WCTtrFJNTYfkI9vRyev39mmGIgtPOYsbRHEgXDjyJOB6zBImZTRIEhlHIWpRDNCIrMfeAlDm0GgSe5n-OsK4SSR5wNjKdsj3aIs5ENCIZF-NBDABATKXk9YFCYsy4TngapZ2yN-rQIuTKZ8VbBlyv8Ogh551cjNda6YKyXiWsPcMF7NZDmC90rZ5zUkOL5Ctc8HhSzPKs6QxeA8HPthj7zUWGn6o7LJv8k_DXm5-MJn6ZijxcGiR9fu-WNya_ulPiHd5eJMPiU3xWqZV4tn5iv4Be5P8Yg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+the+performance+of+hybrid+wave-wind+energy+systems+through+a+fast+and+adaptive+chaotic+multi-objective+swarm+optimisation+method&rft.jtitle=Applied+energy&rft.au=Neshat%2C+Mehdi&rft.au=Sergiienko%2C+Nataliia+Y.&rft.au=Nezhad%2C+Meysam+Majidi&rft.au=da+Silva%2C+Leandro+S.P.&rft.date=2024-05-15&rft.issn=0306-2619&rft.volume=362&rft.spage=122955&rft_id=info:doi/10.1016%2Fj.apenergy.2024.122955&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2024_122955
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon