HiggsTools: BSM scalar phenomenology with new versions of HiggsBounds and HiggsSignals
The codes HiggsBounds and HiggsSignals compare model predictions of BSM models with extended scalar sectors to searches for additional scalars and to measurements of the detected Higgs boson at 125GeV. We present a unification and extension of the functionalities provided by both codes into the new...
Uložené v:
| Vydané v: | Computer physics communications Ročník 291; s. 108803 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.10.2023
|
| Predmet: | |
| ISSN: | 0010-4655, 1879-2944 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The codes HiggsBounds and HiggsSignals compare model predictions of BSM models with extended scalar sectors to searches for additional scalars and to measurements of the detected Higgs boson at 125GeV. We present a unification and extension of the functionalities provided by both codes into the new HiggsTools framework. The codes have been re-written in modern C++ with native Python and Mathematica interfaces for easy interactive use. We discuss the user interface for providing model predictions, now part of the new sub-library HiggsPredictions, which also provides access to many cross sections and branching ratios for reference models such as the SM. HiggsBounds now implements experimental limits purely through json data files, can better handle clusters of BSM particles of similar masses (even for complicated search topologies), and features an improved handling of mass uncertainties. Moreover, it now contains an extended list of Higgs-boson pair production searches and doubly-charged Higgs boson searches. In HiggsSignals, the treatment of different types of measurements has been unified, both in the χ2 computation and in the data file format used to implement experimental results.
Program title:HiggsTools
CPC Library link to program files:https://doi.org/10.17632/b25smy28cj.1
Developer's repository link:https://gitlab.com/higgsbounds/higgstools
Licensing provisions: GPLv3
Programming language:C++, Python, Mathematica
Journal reference of previous version: P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K.E. Williams, Comput. Phys. Commun. 182 (2011), 2605-2631
Does the new version supersede the previous version?: Yes
Reasons for the new version: This version extends the functionality of the previous versions and is re-written in modern C++.
Summary of revisions: List of included Higgs-boson searches and Higgs-boson rate measurements has been expanded.
Nature of problem: Determine whether a parameter point of a given model is excluded or allowed by LEP and LHC Higgs boson search results, and whether this model point is in agreement with the LHC Higgs-boson rate measurements.
Solution method: Exclusion by Higgs boson searches: The most sensitive channel from LEP and LHC searches is determined and subsequently applied to test this parameter point for each Higgs boson of the model under consideration. The test requires as input, model predictions for the Higgs boson masses, branching ratios and ratios of production cross sections with respect to reference values. Agreement with LHC Higgs-boson rate measurements: A χ2 value is calculated based on the available LHC rate measurements. This calculation requires as input model predictions for the Higgs boson(s) at ∼125 GeV.
Additional comments including restrictions and unusual features: Assumes that the narrow width approximation is applicable in the model under consideration and that the model does not predict a significant change to the signature of the background processes or the kinematical distributions of the signal cross sections. |
|---|---|
| AbstractList | The codes HiggsBounds and HiggsSignals compare model predictions of BSM models with extended scalar sectors to searches for additional scalars and to measurements of the detected Higgs boson at 125GeV. We present a unification and extension of the functionalities provided by both codes into the new HiggsTools framework. The codes have been re-written in modern C++ with native Python and Mathematica interfaces for easy interactive use. We discuss the user interface for providing model predictions, now part of the new sub-library HiggsPredictions, which also provides access to many cross sections and branching ratios for reference models such as the SM. HiggsBounds now implements experimental limits purely through json data files, can better handle clusters of BSM particles of similar masses (even for complicated search topologies), and features an improved handling of mass uncertainties. Moreover, it now contains an extended list of Higgs-boson pair production searches and doubly-charged Higgs boson searches. In HiggsSignals, the treatment of different types of measurements has been unified, both in the χ2 computation and in the data file format used to implement experimental results. Program summary: Program title: HiggsTools CPC Library link to program files: https://doi.org/10.17632/b25smy28cj.1 Developer's repository link: https://gitlab.com/higgsbounds/higgstools Licensing provisions: GPLv3 Programming language: C++, Python, Mathematica Journal reference of previous version: P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K.E. Williams, Comput. Phys. Commun. 182 (2011), 2605-2631 Does the new version supersede the previous version?: Yes Reasons for the new version: This version extends the functionality of the previous versions and is re-written in modern C++. Summary of revisions: List of included Higgs-boson searches and Higgs-boson rate measurements has been expanded. Nature of problem: Determine whether a parameter point of a given model is excluded or allowed by LEP and LHC Higgs boson search results, and whether this model point is in agreement with the LHC Higgs-boson rate measurements. Solution method: Exclusion by Higgs boson searches: The most sensitive channel from LEP and LHC searches is determined and subsequently applied to test this parameter point for each Higgs boson of the model under consideration. The test requires as input, model predictions for the Higgs boson masses, branching ratios and ratios of production cross sections with respect to reference values. Agreement with LHC Higgs-boson rate measurements: A χ2 value is calculated based on the available LHC rate measurements. This calculation requires as input model predictions for the Higgs boson(s) at ∼125 GeV. Additional comments including restrictions and unusual features: Assumes that the narrow width approximation is applicable in the model under consideration and that the model does not predict a significant change to the signature of the background processes or the kinematical distributions of the signal cross sections. The codes HiggsBounds and HiggsSignals compare model predictions of BSM models with extended scalar sectors to searches for additional scalars and to measurements of the detected Higgs boson at 125GeV. We present a unification and extension of the functionalities provided by both codes into the new HiggsTools framework. The codes have been re-written in modern C++ with native Python and Mathematica interfaces for easy interactive use. We discuss the user interface for providing model predictions, now part of the new sub-library HiggsPredictions, which also provides access to many cross sections and branching ratios for reference models such as the SM. HiggsBounds now implements experimental limits purely through json data files, can better handle clusters of BSM particles of similar masses (even for complicated search topologies), and features an improved handling of mass uncertainties. Moreover, it now contains an extended list of Higgs-boson pair production searches and doubly-charged Higgs boson searches. In HiggsSignals, the treatment of different types of measurements has been unified, both in the χ2 computation and in the data file format used to implement experimental results. Program title:HiggsTools CPC Library link to program files:https://doi.org/10.17632/b25smy28cj.1 Developer's repository link:https://gitlab.com/higgsbounds/higgstools Licensing provisions: GPLv3 Programming language:C++, Python, Mathematica Journal reference of previous version: P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K.E. Williams, Comput. Phys. Commun. 182 (2011), 2605-2631 Does the new version supersede the previous version?: Yes Reasons for the new version: This version extends the functionality of the previous versions and is re-written in modern C++. Summary of revisions: List of included Higgs-boson searches and Higgs-boson rate measurements has been expanded. Nature of problem: Determine whether a parameter point of a given model is excluded or allowed by LEP and LHC Higgs boson search results, and whether this model point is in agreement with the LHC Higgs-boson rate measurements. Solution method: Exclusion by Higgs boson searches: The most sensitive channel from LEP and LHC searches is determined and subsequently applied to test this parameter point for each Higgs boson of the model under consideration. The test requires as input, model predictions for the Higgs boson masses, branching ratios and ratios of production cross sections with respect to reference values. Agreement with LHC Higgs-boson rate measurements: A χ2 value is calculated based on the available LHC rate measurements. This calculation requires as input model predictions for the Higgs boson(s) at ∼125 GeV. Additional comments including restrictions and unusual features: Assumes that the narrow width approximation is applicable in the model under consideration and that the model does not predict a significant change to the signature of the background processes or the kinematical distributions of the signal cross sections. |
| ArticleNumber | 108803 |
| Author | Biekötter, Thomas Li, Cheng Wittbrodt, Jonas Paasch, Steven Heinemeyer, Sven Bahl, Henning Weiglein, Georg |
| Author_xml | – sequence: 1 givenname: Henning surname: Bahl fullname: Bahl, Henning email: hbahl@uchicago.edu organization: University of Chicago, Department of Physics and Enrico Fermi Institute, 5720 South Ellis Avenue, Chicago, IL 60637, USA – sequence: 2 givenname: Thomas surname: Biekötter fullname: Biekötter, Thomas organization: Institute for Theoretical Physics, Karlsruhe Institute of Technology, Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany – sequence: 3 givenname: Sven surname: Heinemeyer fullname: Heinemeyer, Sven organization: Instituto de Física Teórica, (UAM/CSIC), Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain – sequence: 4 givenname: Cheng surname: Li fullname: Li, Cheng organization: Institute for Theoretical Physics, Karlsruhe Institute of Technology, Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany – sequence: 5 givenname: Steven surname: Paasch fullname: Paasch, Steven organization: Institute for Theoretical Physics, Karlsruhe Institute of Technology, Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany – sequence: 6 givenname: Georg surname: Weiglein fullname: Weiglein, Georg organization: Institute for Theoretical Physics, Karlsruhe Institute of Technology, Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany – sequence: 7 givenname: Jonas surname: Wittbrodt fullname: Wittbrodt, Jonas organization: Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany |
| BookMark | eNp9kL9u2zAQhzkkQJ20D9CNL2CXFP_IaqfaSOoCKTrE7XqgyKNNQyEFUo7ht48cFR0yZDgcDuR3P9x3Q65iikjIZ84WnHH95bCwvV1UrBLjvFwycUVmjHE2l1qpD-SmlANjrK4bMSN_N2G3K9uUuvKVrh5_0WJNZzLt9xjT01hd2p3pKQx7GvFEnzGXkGKhydNXcpWO0RVqopvmx7CLpisfybUfG37612_Jn_u77Xozf_j94-f6-8PcSsGGeau0bJ3iCg1K6bhD5rmulWyUthq9rAUKrxurZM1bWXvPpaxqf3m0rlXilphpbzlhf2yhz-HJ5DMkE6BPeTAdZCxost1Dd4SCMP7qgjXD5QqoqiWzWjSADg1I7RpomUBwZonaOMkb044ZfMqwOZWS0f9P4QwuwuEAo3C4CIdJ-MjUbxgbhtfQIZvQvUt-m0gctT0HzFBswGjRhYx2AJfCO_QLFXChrw |
| CitedBy_id | crossref_primary_10_1016_j_physletb_2025_139298 crossref_primary_10_1103_w2xw_q49n crossref_primary_10_1007_JHEP11_2024_106 crossref_primary_10_1088_1361_6471_ad7d24 crossref_primary_10_1007_JHEP11_2024_108 crossref_primary_10_1103_rp5d_c795 crossref_primary_10_1140_epjc_s10052_025_14630_y crossref_primary_10_1140_epjc_s10052_024_12900_9 crossref_primary_10_1016_j_jspc_2025_100081 crossref_primary_10_1051_epjconf_202431400017 crossref_primary_10_1103_rf5m_wb6y crossref_primary_10_1007_JHEP11_2023_017 crossref_primary_10_1007_JHEP12_2024_197 crossref_primary_10_1016_j_nuclphysb_2024_116593 crossref_primary_10_1140_epjc_s10052_023_12236_w crossref_primary_10_1103_vsz9_gwvs crossref_primary_10_1140_epjc_s10052_025_14124_x crossref_primary_10_1140_epjc_s10052_024_13594_9 crossref_primary_10_1103_PhysRevD_111_053012 crossref_primary_10_1007_JHEP06_2025_170 crossref_primary_10_1103_jb96_gjrg crossref_primary_10_1016_j_physletb_2024_139121 crossref_primary_10_1103_PhysRevD_111_095016 crossref_primary_10_1103_PhysRevD_111_075021 crossref_primary_10_1007_JHEP11_2024_077 crossref_primary_10_1007_JHEP09_2024_113 crossref_primary_10_1140_epjc_s10052_024_13316_1 crossref_primary_10_1103_t5df_67wh crossref_primary_10_1140_epjc_s10052_024_13390_5 crossref_primary_10_1007_JHEP05_2024_209 crossref_primary_10_1007_JHEP09_2025_101 crossref_primary_10_1140_epjc_s10052_025_13878_8 crossref_primary_10_1140_epjc_s10052_025_14591_2 crossref_primary_10_3390_particles8010010 crossref_primary_10_1103_PhysRevD_111_095026 crossref_primary_10_1016_j_cpc_2025_109766 crossref_primary_10_1016_j_physletb_2023_138188 crossref_primary_10_1007_JHEP12_2023_138 crossref_primary_10_1007_JHEP11_2024_086 crossref_primary_10_1140_epjc_s10052_025_14237_3 crossref_primary_10_1007_JHEP05_2024_127 crossref_primary_10_1016_j_physletb_2024_138949 crossref_primary_10_1016_j_ppnp_2024_104105 crossref_primary_10_1103_PhysRevD_111_055010 crossref_primary_10_1140_epjc_s10052_024_13247_x crossref_primary_10_1007_JHEP12_2024_018 crossref_primary_10_1103_PhysRevD_111_035009 crossref_primary_10_1140_epjc_s10052_025_14502_5 crossref_primary_10_1016_j_physletb_2025_139759 crossref_primary_10_1103_PhysRevD_111_035006 crossref_primary_10_1007_JHEP06_2025_211 crossref_primary_10_1140_epjc_s10052_024_13176_9 crossref_primary_10_1140_epjc_s10052_024_13692_8 crossref_primary_10_1140_epjc_s10052_025_14244_4 crossref_primary_10_1007_JHEP08_2023_012 crossref_primary_10_1088_1475_7516_2025_01_121 crossref_primary_10_1140_epjc_s10052_024_13672_y crossref_primary_10_1007_JHEP01_2024_107 crossref_primary_10_1088_1475_7516_2025_05_035 crossref_primary_10_1140_epjc_s10052_024_12414_4 crossref_primary_10_1140_epjc_s10052_024_12497_z crossref_primary_10_1007_JHEP04_2025_094 crossref_primary_10_1088_1361_6471_ad2d5f crossref_primary_10_1007_JHEP05_2025_098 crossref_primary_10_1140_epjc_s10052_024_13274_8 crossref_primary_10_1016_j_physletb_2025_139688 crossref_primary_10_1140_epjc_s10052_024_13548_1 crossref_primary_10_1140_epjc_s10052_025_14199_6 crossref_primary_10_1103_p3rg_ltlw crossref_primary_10_1103_PhysRevD_111_015027 crossref_primary_10_1007_JHEP07_2024_037 crossref_primary_10_1103_73xh_7hhz |
| Cites_doi | 10.1140/epjc/s2006-02569-7 10.1140/epjc/s10052-019-7058-z 10.1016/j.physletb.2018.01.001 10.1016/j.cpc.2009.09.003 10.1140/epjc/s10052-020-08557-9 10.1140/epjc/s10052-013-2693-2 10.1140/epjc/s10052-009-1072-5 10.1140/epjc/s10052-022-10528-1 10.1140/epjc/s10052-019-6909-y 10.1016/j.cpc.2011.07.015 10.1103/PhysRevLett.121.191801 10.1140/epjc/s10052-018-6457-x 10.1140/epjc/s10052-020-08554-y 10.1016/j.physrep.2012.02.002 10.1103/PhysRevD.77.013002 10.1103/PhysRevLett.99.161803 10.1140/epjc/s10052-013-2711-4 10.1103/PhysRevD.8.1226 10.1038/s41567-022-01682-0 10.1016/j.physletb.2012.08.021 10.1103/PhysRevD.101.012002 10.1016/j.cpc.2013.02.006 10.1103/PhysRevLett.43.103 10.1016/j.physletb.2017.06.037 10.1016/j.cpc.2016.10.015 10.1016/j.cpc.2012.11.002 10.21468/SciPostPhys.7.4.052 10.1016/S0010-4655(97)00123-9 10.1140/epjc/s10052-018-5661-z 10.1140/epjc/s10052-021-08942-y 10.1103/PhysRevLett.125.051801 10.1140/epjc/s10052-021-09198-2 10.1140/epjc/s10052-015-3645-9 10.1016/j.cpc.2015.04.021 10.1016/j.cpc.2018.12.010 10.1140/epjc/s10052-022-10485-9 10.1016/j.physletb.2012.08.020 10.1103/PhysRevLett.122.121803 10.1140/epjc/s10052-015-3650-z |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier B.V. |
| Copyright_xml | – notice: 2023 Elsevier B.V. |
| DBID | AAYXX CITATION ADTPV AOWAS D95 |
| DOI | 10.1016/j.cpc.2023.108803 |
| DatabaseName | CrossRef SwePub SwePub Articles SWEPUB Lunds universitet |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| ExternalDocumentID | oai_portal_research_lu_se_publications_2280c639_edea_46d9_b03e_da8e6ad419ab 10_1016_j_cpc_2023_108803 S0010465523001480 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXKI AAXUO AAYFN ABBOA ABFNM ABMAC ABNEU ABQEM ABQYD ABXDB ACDAQ ACFVG ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADECG ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFJKZ AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HME HMV HVGLF HZ~ IHE IMUCA J1W KOM LG9 LZ4 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCB SDF SDG SES SEW SHN SPC SPCBC SPD SPG SSE SSK SSQ SSV SSZ T5K TN5 UPT VH1 WUQ ZMT ~02 ~G- 9DU AATTM AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD ADTPV AOWAS D95 |
| ID | FETCH-LOGICAL-c430t-b564bd515eae44d1de0f16754956c6ef473e3f69c5471b47ff14427f6c6ecdb53 |
| ISICitedReferencesCount | 104 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001018193100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0010-4655 1879-2944 |
| IngestDate | Wed Dec 10 07:30:22 EST 2025 Tue Nov 18 22:23:31 EST 2025 Sat Nov 29 07:01:33 EST 2025 Tue Dec 03 03:44:29 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Higgs bosons Elementary particle physics Charged Higgs bosons General high energy physics and computing Higgs search |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c430t-b564bd515eae44d1de0f16754956c6ef473e3f69c5471b47ff14427f6c6ecdb53 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0010465523001480 |
| ParticipantIDs | swepub_primary_oai_portal_research_lu_se_publications_2280c639_edea_46d9_b03e_da8e6ad419ab crossref_primary_10_1016_j_cpc_2023_108803 crossref_citationtrail_10_1016_j_cpc_2023_108803 elsevier_sciencedirect_doi_10_1016_j_cpc_2023_108803 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-10-01 |
| PublicationDateYYYYMMDD | 2023-10-01 |
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Computer physics communications |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Aad (br0530) 2020; 800 Aad (br0470) 2020; 11 br0300 Sirunyan (br0330) 2019; 79 Brein, Harlander, Zirke (br0270) 2013; 184 Aad (br0780) 2020; 80 Bahl, Stefaniak, Wittbrodt (br0170) 2021; 06 (br0560) 2016 Biekötter, Pierre (br0750) 8 2022 (br0390) 2012 (br0720) 2021 Bechtle, Brein, Heinemeyer, Stål, Stefaniak, Weiglein, Williams (br0050) 2014; 74 Bechtle, Heinemeyer, Klingl, Stefaniak, Weiglein, Wittbrodt (br0090) 2021; 81 Djouadi, Kalinowski, Spira (br0130) 1998; 108 Bechtle, Heinemeyer, Stål, Stefaniak, Weiglein (br0820) 2014; 11 Aaboud (br0460) 2019; 04 Sirunyan (br0510) 2019; 122 Arco, Heinemeyer, Herrero (br0710) 2022; 82 Sirunyan (br0420) 2019; 01 Lee (br0680) 1973; 8 Sirunyan (br0320) 2018; 06 Aaboud (br0800) 2018; 98 Sirunyan (br0440) 2020; 102 Aaboud (br0790) 2019; 01 Whalley, Bourilkov, Group (br0260) 2005 Sirunyan (br0340) 2018; 778 Sirunyan (br0540) 2021; 03 Bechtle, Dercks, Heinemeyer, Klingl, Stefaniak, Weiglein, Wittbrodt (br0060) 2020; 80 Aaboud (br0600) 2018; 78 Alwall, Frederix, Frixione, Hirschi, Maltoni, Mattelaer, Shao, Stelzer, Torrielli, Zaro (br0240) 2014; 07 (br0590) 2017 Mühlleitner, Sampaio, Santos, Wittbrodt (br0770) 7 2020 Branco, Ferreira, Lavoura, Rebelo, Sher, Silva (br0700) 2012; 516 Martin, Stirling, Thorne, Watt (br0250) 2009; 63 Ciccolini, Denner, Dittmaier (br0210) 2008; 77 Kim (br0690) 1979; 43 Bernon, Dumont (br0100) 2015; 75 Aad (br0660) 2020; 101 Schael (br0350) 2006; 47 Sirunyan (br0650) 2019; 79 (br0730) 2019 Bechtle, Brein, Heinemeyer, Weiglein, Williams (br0040) 2010; 181 Denner, Dittmaier, Kallweit, Muck (br0220) 2012; 03 Denner, Dittmaier, Kallweit, Mück (br0230) 2015; 195 Tumasyan (br0670) 2022; 18 Bahl, Lozano, Stefaniak, Wittbrodt (br0070) 9 2021 Aad (br0610) 2021; 06 Workman (br0620) 2022; 2022 Sirunyan (br0430) 2019; 10 Aad (br0310) 2020; 102 Aaboud (br0490) 2018; 11 Aad (br0570) 2015; 08 Sirunyan (br0410) 2019; 01 Bahl, Fuchs, Heinemeyer, Katzy, Menen, Peters, Saimpert, Weiglein (br0640) 2022; 82 Aad (br0810) 2020; 125 Degrande, Frederix, Hirschi, Ubiali, Wiesemann, Zaro (br0160) 2017; 772 Aaboud (br0480) 2018; 78 Ciccolini, Denner, Dittmaier (br0200) 2007; 99 Bechtle, Heinemeyer, Stål, Stefaniak, Weiglein (br0080) 2014; 74 Degrande, Ubiali, Wiesemann, Zaro (br0150) 2015; 10 Aaboud (br0520) 2019; 05 Djouadi, Kalinowski, Muehlleitner, Spira (br0140) 2019; 238 Harlander, Liebler, Mantler (br0190) 2017; 212 Harlander, Liebler, Mantler (br0180) 2013; 184 Kraml, Loc, Nhung, Ninh (br0110) 2019; 7 Sirunyan (br0360) 2018; 09 Bechtle, Heinemeyer, Stal, Stefaniak, Weiglein (br0370) 2015; 75 Aad (br0580) 2015; 03 Bahl, Bechtle, Heinemeyer, Katzy, Klingl, Peters, Saimpert, Stefaniak, Weiglein (br0290) 2020; 11 Slavich (br0380) 2021; 81 Sirunyan (br0400) 2018; 01 Tumasyan (br0630) 10 2021 Harlander, Mühlleitner, Rathsman, Spira, Stål (br0760) 12 2013 Aad (br0020) 2012; 716 Chatrchyan (br0030) 2012; 716 Abouabid, Arhrib, Azevedo, Falaki, Ferreira, Mühlleitner, Santos (br0550) 12 2021 Bechtle, Brein, Heinemeyer, Weiglein, Williams (br0010) 2011; 182 de Florian (br0120) 10 2016 Harlander, Klappert, Liebler, Simon (br0280) 2018; 05 Tumasyan (br0450) 2021; 11 Aad (br0740) 2022; 06 Aaboud (br0500) 2018; 121 Aaboud (10.1016/j.cpc.2023.108803_br0790) 2019; 01 Aaboud (10.1016/j.cpc.2023.108803_br0460) 2019; 04 Aad (10.1016/j.cpc.2023.108803_br0470) 2020; 11 Slavich (10.1016/j.cpc.2023.108803_br0380) 2021; 81 Biekötter (10.1016/j.cpc.2023.108803_br0750) Whalley (10.1016/j.cpc.2023.108803_br0260) 2005 Sirunyan (10.1016/j.cpc.2023.108803_br0410) 2019; 01 Bechtle (10.1016/j.cpc.2023.108803_br0090) 2021; 81 Harlander (10.1016/j.cpc.2023.108803_br0280) 2018; 05 Workman (10.1016/j.cpc.2023.108803_br0620) 2022; 2022 (10.1016/j.cpc.2023.108803_br0720) 2021 Bechtle (10.1016/j.cpc.2023.108803_br0060) 2020; 80 Alwall (10.1016/j.cpc.2023.108803_br0240) 2014; 07 Mühlleitner (10.1016/j.cpc.2023.108803_br0770) 2020 Sirunyan (10.1016/j.cpc.2023.108803_br0340) 2018; 778 Aad (10.1016/j.cpc.2023.108803_br0660) 2020; 101 Djouadi (10.1016/j.cpc.2023.108803_br0130) 1998; 108 Djouadi (10.1016/j.cpc.2023.108803_br0140) 2019; 238 Aad (10.1016/j.cpc.2023.108803_br0530) 2020; 800 Aad (10.1016/j.cpc.2023.108803_br0580) 2015; 03 Harlander (10.1016/j.cpc.2023.108803_br0760) 2013 Aad (10.1016/j.cpc.2023.108803_br0780) 2020; 80 Sirunyan (10.1016/j.cpc.2023.108803_br0650) 2019; 79 Bahl (10.1016/j.cpc.2023.108803_br0170) 2021; 06 Bahl (10.1016/j.cpc.2023.108803_br0070) 2021 (10.1016/j.cpc.2023.108803_br0730) 2019 Aad (10.1016/j.cpc.2023.108803_br0810) 2020; 125 Degrande (10.1016/j.cpc.2023.108803_br0150) 2015; 10 Aaboud (10.1016/j.cpc.2023.108803_br0500) 2018; 121 Sirunyan (10.1016/j.cpc.2023.108803_br0400) 2018; 01 Kim (10.1016/j.cpc.2023.108803_br0690) 1979; 43 Bechtle (10.1016/j.cpc.2023.108803_br0050) 2014; 74 (10.1016/j.cpc.2023.108803_br0590) 2017 Arco (10.1016/j.cpc.2023.108803_br0710) 2022; 82 Aaboud (10.1016/j.cpc.2023.108803_br0800) 2018; 98 Sirunyan (10.1016/j.cpc.2023.108803_br0430) 2019; 10 Sirunyan (10.1016/j.cpc.2023.108803_br0360) 2018; 09 Aaboud (10.1016/j.cpc.2023.108803_br0490) 2018; 11 Kraml (10.1016/j.cpc.2023.108803_br0110) 2019; 7 Bernon (10.1016/j.cpc.2023.108803_br0100) 2015; 75 Chatrchyan (10.1016/j.cpc.2023.108803_br0030) 2012; 716 Tumasyan (10.1016/j.cpc.2023.108803_br0630) 2021 Bahl (10.1016/j.cpc.2023.108803_br0640) 2022; 82 Aad (10.1016/j.cpc.2023.108803_br0610) 2021; 06 (10.1016/j.cpc.2023.108803_br0390) 2012 Aaboud (10.1016/j.cpc.2023.108803_br0520) 2019; 05 Aad (10.1016/j.cpc.2023.108803_br0570) 2015; 08 Tumasyan (10.1016/j.cpc.2023.108803_br0670) 2022; 18 Aad (10.1016/j.cpc.2023.108803_br0740) 2022; 06 Martin (10.1016/j.cpc.2023.108803_br0250) 2009; 63 Sirunyan (10.1016/j.cpc.2023.108803_br0320) 2018; 06 Aaboud (10.1016/j.cpc.2023.108803_br0480) 2018; 78 Branco (10.1016/j.cpc.2023.108803_br0700) 2012; 516 Aad (10.1016/j.cpc.2023.108803_br0020) 2012; 716 Sirunyan (10.1016/j.cpc.2023.108803_br0330) 2019; 79 Bechtle (10.1016/j.cpc.2023.108803_br0040) 2010; 181 de Florian (10.1016/j.cpc.2023.108803_br0120) 2016 Sirunyan (10.1016/j.cpc.2023.108803_br0510) 2019; 122 Aad (10.1016/j.cpc.2023.108803_br0310) 2020; 102 Abouabid (10.1016/j.cpc.2023.108803_br0550) 2021 Ciccolini (10.1016/j.cpc.2023.108803_br0200) 2007; 99 Harlander (10.1016/j.cpc.2023.108803_br0190) 2017; 212 Denner (10.1016/j.cpc.2023.108803_br0230) 2015; 195 (10.1016/j.cpc.2023.108803_br0560) 2016 Denner (10.1016/j.cpc.2023.108803_br0220) 2012; 03 Degrande (10.1016/j.cpc.2023.108803_br0160) 2017; 772 Bechtle (10.1016/j.cpc.2023.108803_br0010) 2011; 182 Schael (10.1016/j.cpc.2023.108803_br0350) 2006; 47 Harlander (10.1016/j.cpc.2023.108803_br0180) 2013; 184 Aaboud (10.1016/j.cpc.2023.108803_br0600) 2018; 78 Bahl (10.1016/j.cpc.2023.108803_br0290) 2020; 11 Sirunyan (10.1016/j.cpc.2023.108803_br0440) 2020; 102 Lee (10.1016/j.cpc.2023.108803_br0680) 1973; 8 Brein (10.1016/j.cpc.2023.108803_br0270) 2013; 184 Bechtle (10.1016/j.cpc.2023.108803_br0370) 2015; 75 Tumasyan (10.1016/j.cpc.2023.108803_br0450) 2021; 11 Ciccolini (10.1016/j.cpc.2023.108803_br0210) 2008; 77 Sirunyan (10.1016/j.cpc.2023.108803_br0540) 2021; 03 Sirunyan (10.1016/j.cpc.2023.108803_br0420) 2019; 01 Bechtle (10.1016/j.cpc.2023.108803_br0820) 2014; 11 Bechtle (10.1016/j.cpc.2023.108803_br0080) 2014; 74 |
| References_xml | – volume: 98 year: 2018 ident: br0800 publication-title: Phys. Rev. D – volume: 716 start-page: 30 year: 2012 end-page: 61 ident: br0030 publication-title: Phys. Lett. B – year: 7 2020 ident: br0770 article-title: ScannerS: Parameter Scans in Extended Scalar Sectors – volume: 05 year: 2018 ident: br0280 publication-title: J. High Energy Phys. – volume: 238 start-page: 214 year: 2019 end-page: 231 ident: br0140 publication-title: Comput. Phys. Commun. – volume: 212 start-page: 239 year: 2017 end-page: 257 ident: br0190 publication-title: Comput. Phys. Commun. – volume: 2022 year: 2022 ident: br0620 publication-title: Prog. Theor. Exp. Phys. – year: 2019 ident: br0730 article-title: Measurement of Higgs boson production and decay to the – volume: 75 start-page: 421 year: 2015 ident: br0370 publication-title: Eur. Phys. J. C – volume: 80 start-page: 1165 year: 2020 ident: br0780 publication-title: Eur. Phys. J. C – year: 10 2021 ident: br0630 article-title: Analysis of the CP structure of the Yukawa coupling between the Higgs boson and – start-page: 575 year: 2005 end-page: 581 ident: br0260 publication-title: HERA and the LHC: A Workshop on the Implications of HERA for LHC Physics. Proceedings, Part B – volume: 121 year: 2018 ident: br0500 publication-title: Phys. Rev. Lett. – volume: 06 year: 2021 ident: br0610 publication-title: J. High Energy Phys. – volume: 07 year: 2014 ident: br0240 publication-title: J. High Energy Phys. – volume: 78 start-page: 199 year: 2018 ident: br0600 publication-title: Eur. Phys. J. C – volume: 03 year: 2012 ident: br0220 publication-title: J. High Energy Phys. – volume: 80 start-page: 1211 year: 2020 ident: br0060 publication-title: Eur. Phys. J. C – volume: 81 start-page: 450 year: 2021 ident: br0380 publication-title: Eur. Phys. J. C – volume: 05 year: 2019 ident: br0520 publication-title: J. High Energy Phys. – volume: 7 year: 2019 ident: br0110 publication-title: SciPost Phys. – volume: 184 start-page: 1605 year: 2013 end-page: 1617 ident: br0180 publication-title: Comput. Phys. Commun. – volume: 82 start-page: 604 year: 2022 ident: br0640 publication-title: Eur. Phys. J. C – volume: 102 year: 2020 ident: br0440 publication-title: Phys. Rev. D – volume: 77 year: 2008 ident: br0210 publication-title: Phys. Rev. D – volume: 79 start-page: 564 year: 2019 ident: br0330 publication-title: Eur. Phys. J. C – ident: br0300 – year: 12 2021 ident: br0550 article-title: Benchmarking Di-Higgs Production in Various Extended Higgs Sector Models – volume: 11 year: 2020 ident: br0470 publication-title: J. High Energy Phys. – volume: 11 year: 2014 ident: br0820 publication-title: J. High Energy Phys. – volume: 78 start-page: 1007 year: 2018 ident: br0480 publication-title: Eur. Phys. J. C – volume: 43 start-page: 103 year: 1979 ident: br0690 publication-title: Phys. Rev. Lett. – volume: 101 year: 2020 ident: br0660 publication-title: Phys. Rev. D – volume: 01 year: 2019 ident: br0410 publication-title: J. High Energy Phys. – volume: 195 start-page: 161 year: 2015 end-page: 171 ident: br0230 publication-title: Comput. Phys. Commun. – volume: 778 start-page: 101 year: 2018 end-page: 127 ident: br0340 publication-title: Phys. Lett. B – year: 2021 ident: br0720 article-title: Combined measurements of Higgs boson production and decay using up to 139 fb – volume: 74 start-page: 2693 year: 2014 ident: br0050 publication-title: Eur. Phys. J. C – volume: 06 year: 2022 ident: br0740 publication-title: J. High Energy Phys. – volume: 184 start-page: 998 year: 2013 end-page: 1003 ident: br0270 publication-title: Comput. Phys. Commun. – volume: 01 year: 2019 ident: br0790 publication-title: J. High Energy Phys. – volume: 125 year: 2020 ident: br0810 publication-title: Phys. Rev. Lett. – volume: 108 start-page: 56 year: 1998 end-page: 74 ident: br0130 publication-title: Comput. Phys. Commun. – volume: 75 start-page: 440 year: 2015 ident: br0100 publication-title: Eur. Phys. J. C – volume: 11 year: 2018 ident: br0490 publication-title: J. High Energy Phys. – volume: 04 year: 2019 ident: br0460 publication-title: J. High Energy Phys. – volume: 716 start-page: 1 year: 2012 end-page: 29 ident: br0020 publication-title: Phys. Lett. B – volume: 102 year: 2020 ident: br0310 publication-title: Phys. Rev. D – volume: 06 year: 2018 ident: br0320 publication-title: J. High Energy Phys. – volume: 10 year: 2019 ident: br0430 publication-title: J. High Energy Phys. – year: 12 2013 ident: br0760 article-title: Interim recommendations for the evaluation of Higgs production cross sections and branching ratios at the LHC in the Two-Higgs-Doublet Model – volume: 06 year: 2021 ident: br0170 publication-title: J. High Energy Phys. – volume: 82 start-page: 536 year: 2022 ident: br0710 publication-title: Eur. Phys. J. C – year: 9 2021 ident: br0070 article-title: Testing Exotic Scalars with HiggsBounds – year: 2017 ident: br0590 article-title: A search for doubly-charged Higgs boson production in three and four lepton final states at – volume: 10 year: 2015 ident: br0150 publication-title: J. High Energy Phys. – year: 2012 ident: br0390 article-title: Combination of Standard Model Higgs Boson Searches and Measurements of the Properties of the New Boson with a Mass Near 125 GeV – year: 2016 ident: br0560 article-title: Search for a doubly-charged Higgs boson with – volume: 516 start-page: 1 year: 2012 end-page: 102 ident: br0700 publication-title: Phys. Rep. – volume: 99 year: 2007 ident: br0200 publication-title: Phys. Rev. Lett. – volume: 03 year: 2015 ident: br0580 publication-title: J. High Energy Phys. – volume: 182 start-page: 2605 year: 2011 end-page: 2631 ident: br0010 publication-title: Comput. Phys. Commun. – volume: 01 year: 2019 ident: br0420 publication-title: J. High Energy Phys. – volume: 47 start-page: 547 year: 2006 end-page: 587 ident: br0350 publication-title: Eur. Phys. J. C – volume: 03 year: 2021 ident: br0540 publication-title: J. High Energy Phys. – year: 8 2022 ident: br0750 article-title: Higgs-boson visible and invisible constraints on hidden sectors – volume: 81 start-page: 145 year: 2021 ident: br0090 publication-title: Eur. Phys. J. C – volume: 772 start-page: 87 year: 2017 end-page: 92 ident: br0160 publication-title: Phys. Lett. B – volume: 181 start-page: 138 year: 2010 end-page: 167 ident: br0040 publication-title: Comput. Phys. Commun. – volume: 63 start-page: 189 year: 2009 end-page: 285 ident: br0250 publication-title: Eur. Phys. J. C – volume: 11 year: 2020 ident: br0290 publication-title: J. High Energy Phys. – volume: 11 year: 2021 ident: br0450 publication-title: J. High Energy Phys. – volume: 74 start-page: 2711 year: 2014 ident: br0080 publication-title: Eur. Phys. J. C – volume: 09 year: 2018 ident: br0360 publication-title: J. High Energy Phys. – volume: 18 start-page: 1329 year: 2022 end-page: 1334 ident: br0670 publication-title: Nat. Phys. – year: 10 2016 ident: br0120 article-title: Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector 2/2017 – volume: 122 year: 2019 ident: br0510 publication-title: Phys. Rev. Lett. – volume: 08 year: 2015 ident: br0570 publication-title: J. High Energy Phys. – volume: 01 year: 2018 ident: br0400 publication-title: J. High Energy Phys. – volume: 79 start-page: 421 year: 2019 ident: br0650 publication-title: Eur. Phys. J. C – volume: 800 year: 2020 ident: br0530 publication-title: Phys. Lett. B – volume: 8 start-page: 1226 year: 1973 end-page: 1239 ident: br0680 publication-title: Phys. Rev. D – volume: 47 start-page: 547 year: 2006 ident: 10.1016/j.cpc.2023.108803_br0350 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s2006-02569-7 – volume: 03 year: 2021 ident: 10.1016/j.cpc.2023.108803_br0540 publication-title: J. High Energy Phys. – volume: 04 year: 2019 ident: 10.1016/j.cpc.2023.108803_br0460 publication-title: J. High Energy Phys. – volume: 01 year: 2019 ident: 10.1016/j.cpc.2023.108803_br0790 publication-title: J. High Energy Phys. – volume: 79 start-page: 564 issue: 7 year: 2019 ident: 10.1016/j.cpc.2023.108803_br0330 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-019-7058-z – volume: 778 start-page: 101 year: 2018 ident: 10.1016/j.cpc.2023.108803_br0340 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2018.01.001 – volume: 181 start-page: 138 year: 2010 ident: 10.1016/j.cpc.2023.108803_br0040 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2009.09.003 – volume: 80 start-page: 1211 issue: 12 year: 2020 ident: 10.1016/j.cpc.2023.108803_br0060 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-020-08557-9 – volume: 74 start-page: 2693 issue: 3 year: 2014 ident: 10.1016/j.cpc.2023.108803_br0050 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-013-2693-2 – volume: 63 start-page: 189 year: 2009 ident: 10.1016/j.cpc.2023.108803_br0250 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-009-1072-5 – volume: 82 start-page: 604 issue: 7 year: 2022 ident: 10.1016/j.cpc.2023.108803_br0640 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-022-10528-1 – volume: 79 start-page: 421 issue: 5 year: 2019 ident: 10.1016/j.cpc.2023.108803_br0650 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-019-6909-y – volume: 182 start-page: 2605 year: 2011 ident: 10.1016/j.cpc.2023.108803_br0010 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2011.07.015 – year: 2016 ident: 10.1016/j.cpc.2023.108803_br0120 – volume: 121 issue: 19 year: 2018 ident: 10.1016/j.cpc.2023.108803_br0500 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.191801 – volume: 78 start-page: 1007 issue: 12 year: 2018 ident: 10.1016/j.cpc.2023.108803_br0480 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-018-6457-x – volume: 80 start-page: 1165 issue: 12 year: 2020 ident: 10.1016/j.cpc.2023.108803_br0780 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-020-08554-y – volume: 06 year: 2018 ident: 10.1016/j.cpc.2023.108803_br0320 publication-title: J. High Energy Phys. – volume: 10 year: 2019 ident: 10.1016/j.cpc.2023.108803_br0430 publication-title: J. High Energy Phys. – volume: 516 start-page: 1 year: 2012 ident: 10.1016/j.cpc.2023.108803_br0700 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2012.02.002 – volume: 11 year: 2014 ident: 10.1016/j.cpc.2023.108803_br0820 publication-title: J. High Energy Phys. – volume: 77 year: 2008 ident: 10.1016/j.cpc.2023.108803_br0210 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.77.013002 – volume: 99 year: 2007 ident: 10.1016/j.cpc.2023.108803_br0200 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.161803 – volume: 11 year: 2020 ident: 10.1016/j.cpc.2023.108803_br0470 publication-title: J. High Energy Phys. – volume: 74 start-page: 2711 issue: 2 year: 2014 ident: 10.1016/j.cpc.2023.108803_br0080 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-013-2711-4 – volume: 102 issue: 3 year: 2020 ident: 10.1016/j.cpc.2023.108803_br0440 publication-title: Phys. Rev. D – volume: 2022 year: 2022 ident: 10.1016/j.cpc.2023.108803_br0620 publication-title: Prog. Theor. Exp. Phys. – volume: 03 year: 2012 ident: 10.1016/j.cpc.2023.108803_br0220 publication-title: J. High Energy Phys. – volume: 8 start-page: 1226 year: 1973 ident: 10.1016/j.cpc.2023.108803_br0680 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.8.1226 – volume: 18 start-page: 1329 issue: 11 year: 2022 ident: 10.1016/j.cpc.2023.108803_br0670 publication-title: Nat. Phys. doi: 10.1038/s41567-022-01682-0 – volume: 06 year: 2021 ident: 10.1016/j.cpc.2023.108803_br0170 publication-title: J. High Energy Phys. – volume: 716 start-page: 30 year: 2012 ident: 10.1016/j.cpc.2023.108803_br0030 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2012.08.021 – volume: 01 year: 2019 ident: 10.1016/j.cpc.2023.108803_br0420 publication-title: J. High Energy Phys. – volume: 06 year: 2022 ident: 10.1016/j.cpc.2023.108803_br0740 publication-title: J. High Energy Phys. – volume: 11 year: 2018 ident: 10.1016/j.cpc.2023.108803_br0490 publication-title: J. High Energy Phys. – volume: 10 year: 2015 ident: 10.1016/j.cpc.2023.108803_br0150 publication-title: J. High Energy Phys. – volume: 05 year: 2018 ident: 10.1016/j.cpc.2023.108803_br0280 publication-title: J. High Energy Phys. – volume: 11 year: 2021 ident: 10.1016/j.cpc.2023.108803_br0450 publication-title: J. High Energy Phys. – year: 2021 ident: 10.1016/j.cpc.2023.108803_br0070 – volume: 09 year: 2018 ident: 10.1016/j.cpc.2023.108803_br0360 publication-title: J. High Energy Phys. – volume: 101 issue: 1 year: 2020 ident: 10.1016/j.cpc.2023.108803_br0660 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.101.012002 – volume: 184 start-page: 1605 year: 2013 ident: 10.1016/j.cpc.2023.108803_br0180 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2013.02.006 – volume: 08 year: 2015 ident: 10.1016/j.cpc.2023.108803_br0570 publication-title: J. High Energy Phys. – year: 2021 ident: 10.1016/j.cpc.2023.108803_br0630 – volume: 43 start-page: 103 year: 1979 ident: 10.1016/j.cpc.2023.108803_br0690 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.43.103 – year: 2021 ident: 10.1016/j.cpc.2023.108803_br0720 – volume: 01 year: 2019 ident: 10.1016/j.cpc.2023.108803_br0410 publication-title: J. High Energy Phys. – volume: 01 year: 2018 ident: 10.1016/j.cpc.2023.108803_br0400 publication-title: J. High Energy Phys. – volume: 800 year: 2020 ident: 10.1016/j.cpc.2023.108803_br0530 publication-title: Phys. Lett. B – volume: 772 start-page: 87 year: 2017 ident: 10.1016/j.cpc.2023.108803_br0160 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2017.06.037 – volume: 98 issue: 5 year: 2018 ident: 10.1016/j.cpc.2023.108803_br0800 publication-title: Phys. Rev. D – start-page: 575 year: 2005 ident: 10.1016/j.cpc.2023.108803_br0260 – year: 2013 ident: 10.1016/j.cpc.2023.108803_br0760 – volume: 212 start-page: 239 year: 2017 ident: 10.1016/j.cpc.2023.108803_br0190 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2016.10.015 – volume: 184 start-page: 998 year: 2013 ident: 10.1016/j.cpc.2023.108803_br0270 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2012.11.002 – volume: 05 year: 2019 ident: 10.1016/j.cpc.2023.108803_br0520 publication-title: J. High Energy Phys. – volume: 7 issue: 4 year: 2019 ident: 10.1016/j.cpc.2023.108803_br0110 publication-title: SciPost Phys. doi: 10.21468/SciPostPhys.7.4.052 – ident: 10.1016/j.cpc.2023.108803_br0750 – volume: 108 start-page: 56 year: 1998 ident: 10.1016/j.cpc.2023.108803_br0130 publication-title: Comput. Phys. Commun. doi: 10.1016/S0010-4655(97)00123-9 – year: 2012 ident: 10.1016/j.cpc.2023.108803_br0390 – volume: 78 start-page: 199 issue: 3 year: 2018 ident: 10.1016/j.cpc.2023.108803_br0600 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-018-5661-z – year: 2017 ident: 10.1016/j.cpc.2023.108803_br0590 – volume: 81 start-page: 145 issue: 2 year: 2021 ident: 10.1016/j.cpc.2023.108803_br0090 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-021-08942-y – volume: 11 year: 2020 ident: 10.1016/j.cpc.2023.108803_br0290 publication-title: J. High Energy Phys. – year: 2020 ident: 10.1016/j.cpc.2023.108803_br0770 – volume: 125 issue: 5 year: 2020 ident: 10.1016/j.cpc.2023.108803_br0810 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.051801 – volume: 81 start-page: 450 issue: 5 year: 2021 ident: 10.1016/j.cpc.2023.108803_br0380 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-021-09198-2 – volume: 03 year: 2015 ident: 10.1016/j.cpc.2023.108803_br0580 publication-title: J. High Energy Phys. – volume: 75 start-page: 440 issue: 9 year: 2015 ident: 10.1016/j.cpc.2023.108803_br0100 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-015-3645-9 – volume: 06 year: 2021 ident: 10.1016/j.cpc.2023.108803_br0610 publication-title: J. High Energy Phys. – volume: 07 year: 2014 ident: 10.1016/j.cpc.2023.108803_br0240 publication-title: J. High Energy Phys. – volume: 195 start-page: 161 year: 2015 ident: 10.1016/j.cpc.2023.108803_br0230 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2015.04.021 – volume: 238 start-page: 214 year: 2019 ident: 10.1016/j.cpc.2023.108803_br0140 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2018.12.010 – volume: 82 start-page: 536 issue: 6 year: 2022 ident: 10.1016/j.cpc.2023.108803_br0710 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-022-10485-9 – volume: 102 issue: 3 year: 2020 ident: 10.1016/j.cpc.2023.108803_br0310 publication-title: Phys. Rev. D – volume: 716 start-page: 1 year: 2012 ident: 10.1016/j.cpc.2023.108803_br0020 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2012.08.020 – volume: 122 issue: 12 year: 2019 ident: 10.1016/j.cpc.2023.108803_br0510 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.121803 – year: 2021 ident: 10.1016/j.cpc.2023.108803_br0550 – volume: 75 start-page: 421 issue: 9 year: 2015 ident: 10.1016/j.cpc.2023.108803_br0370 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-015-3650-z – year: 2019 ident: 10.1016/j.cpc.2023.108803_br0730 – year: 2016 ident: 10.1016/j.cpc.2023.108803_br0560 |
| SSID | ssj0007793 |
| Score | 2.715549 |
| Snippet | The codes HiggsBounds and HiggsSignals compare model predictions of BSM models with extended scalar sectors to searches for additional scalars and to... |
| SourceID | swepub crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 108803 |
| SubjectTerms | Charged Higgs bosons Elementary particle physics Fysik General high energy physics and computing Higgs bosons Higgs search Natural Sciences Naturvetenskap Physical Sciences Subatomic Physics Subatomär fysik |
| Title | HiggsTools: BSM scalar phenomenology with new versions of HiggsBounds and HiggsSignals |
| URI | https://dx.doi.org/10.1016/j.cpc.2023.108803 |
| Volume | 291 |
| WOSCitedRecordID | wos001018193100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 1879-2944 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0007793 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZ5Qi6ledH0RQ49BVy8eljWMS0pTSghhy0svQhLGpHH1rvEm5D--44seb1tSEihuZjFu5ZX88nyN6PRN4R8EA5BVrbIqHQm45b5zKhKZOhrlGDw6WKWt8Um5OlpORqps1SrvWnLCci6Lu_u1PRZocZzCHbYOvsPcM8bxRP4GUHHI8KOxycBH4LIzXAyGTeLxLOr3pBCGU3IJe93hvSx8uo8qltDW8qoD6HDVVhS_1TMUiGPhcSiNpKKZPUn_EpVvG77_WXfLuKiPqTGUoCB9qlq3ZxYSpVRFWUau0mTxhpb9ybgGAu4_GinQR-SspDDWOasf9v8oWsdXQyddI3O9fhGN6CnCwFLHeR6LNIoDQ4qzQuntMkZaFeVUFSOD1RllskqlULhvLx6eHw0Opm_iqVMqsvYpSAUF7zvrjfdEneb7PfX332QpCyqybYMZPiSvEiuw_5hhHyTLEG9RdbPIp7bZKMHfod8_3I0_Pw1S5UuMstZPsuMKLhxSC2hAs7dwEHuB-jKBe_VFuC5ZMB8oaxALmG49B79YCp9-NI6I9guWaknNbwi-zQXDim84I5bLiUYaqj3RuXcIZMXsEfyrmvaJhn4UI1krLt8v0uN1tDBGjpaY48czC-ZRg2Ux37MO3vpROIiOdM4RB677Ee07fwO_3F8vH7Oxt-Qjf6peUtWZtc38I6s2dvZRXP9Po3I3_COl4g |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HiggsTools&rft.jtitle=Computer+physics+communications&rft.au=Bahl%2C+Henning&rft.au=Biek%C3%B6tter%2C+Thomas&rft.au=Heinemeyer%2C+Sven&rft.au=Li%2C+Cheng&rft.date=2023-10-01&rft.issn=1879-2944&rft.volume=291&rft_id=info:doi/10.1016%2Fj.cpc.2023.108803&rft.externalDocID=oai_portal_research_lu_se_publications_2280c639_edea_46d9_b03e_da8e6ad419ab |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon |