HiggsTools: BSM scalar phenomenology with new versions of HiggsBounds and HiggsSignals

The codes HiggsBounds and HiggsSignals compare model predictions of BSM models with extended scalar sectors to searches for additional scalars and to measurements of the detected Higgs boson at 125GeV. We present a unification and extension of the functionalities provided by both codes into the new...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computer physics communications Ročník 291; s. 108803
Hlavní autori: Bahl, Henning, Biekötter, Thomas, Heinemeyer, Sven, Li, Cheng, Paasch, Steven, Weiglein, Georg, Wittbrodt, Jonas
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.10.2023
Predmet:
ISSN:0010-4655, 1879-2944
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The codes HiggsBounds and HiggsSignals compare model predictions of BSM models with extended scalar sectors to searches for additional scalars and to measurements of the detected Higgs boson at 125GeV. We present a unification and extension of the functionalities provided by both codes into the new HiggsTools framework. The codes have been re-written in modern C++ with native Python and Mathematica interfaces for easy interactive use. We discuss the user interface for providing model predictions, now part of the new sub-library HiggsPredictions, which also provides access to many cross sections and branching ratios for reference models such as the SM. HiggsBounds now implements experimental limits purely through json data files, can better handle clusters of BSM particles of similar masses (even for complicated search topologies), and features an improved handling of mass uncertainties. Moreover, it now contains an extended list of Higgs-boson pair production searches and doubly-charged Higgs boson searches. In HiggsSignals, the treatment of different types of measurements has been unified, both in the χ2 computation and in the data file format used to implement experimental results. Program title:HiggsTools CPC Library link to program files:https://doi.org/10.17632/b25smy28cj.1 Developer's repository link:https://gitlab.com/higgsbounds/higgstools Licensing provisions: GPLv3 Programming language:C++, Python, Mathematica Journal reference of previous version: P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K.E. Williams, Comput. Phys. Commun. 182 (2011), 2605-2631 Does the new version supersede the previous version?: Yes Reasons for the new version: This version extends the functionality of the previous versions and is re-written in modern C++. Summary of revisions: List of included Higgs-boson searches and Higgs-boson rate measurements has been expanded. Nature of problem: Determine whether a parameter point of a given model is excluded or allowed by LEP and LHC Higgs boson search results, and whether this model point is in agreement with the LHC Higgs-boson rate measurements. Solution method: Exclusion by Higgs boson searches: The most sensitive channel from LEP and LHC searches is determined and subsequently applied to test this parameter point for each Higgs boson of the model under consideration. The test requires as input, model predictions for the Higgs boson masses, branching ratios and ratios of production cross sections with respect to reference values. Agreement with LHC Higgs-boson rate measurements: A χ2 value is calculated based on the available LHC rate measurements. This calculation requires as input model predictions for the Higgs boson(s) at ∼125 GeV. Additional comments including restrictions and unusual features: Assumes that the narrow width approximation is applicable in the model under consideration and that the model does not predict a significant change to the signature of the background processes or the kinematical distributions of the signal cross sections.
AbstractList The codes HiggsBounds and HiggsSignals compare model predictions of BSM models with extended scalar sectors to searches for additional scalars and to measurements of the detected Higgs boson at 125GeV. We present a unification and extension of the functionalities provided by both codes into the new HiggsTools framework. The codes have been re-written in modern C++ with native Python and Mathematica interfaces for easy interactive use. We discuss the user interface for providing model predictions, now part of the new sub-library HiggsPredictions, which also provides access to many cross sections and branching ratios for reference models such as the SM. HiggsBounds now implements experimental limits purely through json data files, can better handle clusters of BSM particles of similar masses (even for complicated search topologies), and features an improved handling of mass uncertainties. Moreover, it now contains an extended list of Higgs-boson pair production searches and doubly-charged Higgs boson searches. In HiggsSignals, the treatment of different types of measurements has been unified, both in the χ2 computation and in the data file format used to implement experimental results. Program summary: Program title: HiggsTools CPC Library link to program files: https://doi.org/10.17632/b25smy28cj.1 Developer's repository link: https://gitlab.com/higgsbounds/higgstools Licensing provisions: GPLv3 Programming language: C++, Python, Mathematica Journal reference of previous version: P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K.E. Williams, Comput. Phys. Commun. 182 (2011), 2605-2631 Does the new version supersede the previous version?: Yes Reasons for the new version: This version extends the functionality of the previous versions and is re-written in modern C++. Summary of revisions: List of included Higgs-boson searches and Higgs-boson rate measurements has been expanded. Nature of problem: Determine whether a parameter point of a given model is excluded or allowed by LEP and LHC Higgs boson search results, and whether this model point is in agreement with the LHC Higgs-boson rate measurements. Solution method: Exclusion by Higgs boson searches: The most sensitive channel from LEP and LHC searches is determined and subsequently applied to test this parameter point for each Higgs boson of the model under consideration. The test requires as input, model predictions for the Higgs boson masses, branching ratios and ratios of production cross sections with respect to reference values. Agreement with LHC Higgs-boson rate measurements: A χ2 value is calculated based on the available LHC rate measurements. This calculation requires as input model predictions for the Higgs boson(s) at ∼125 GeV. Additional comments including restrictions and unusual features: Assumes that the narrow width approximation is applicable in the model under consideration and that the model does not predict a significant change to the signature of the background processes or the kinematical distributions of the signal cross sections.
The codes HiggsBounds and HiggsSignals compare model predictions of BSM models with extended scalar sectors to searches for additional scalars and to measurements of the detected Higgs boson at 125GeV. We present a unification and extension of the functionalities provided by both codes into the new HiggsTools framework. The codes have been re-written in modern C++ with native Python and Mathematica interfaces for easy interactive use. We discuss the user interface for providing model predictions, now part of the new sub-library HiggsPredictions, which also provides access to many cross sections and branching ratios for reference models such as the SM. HiggsBounds now implements experimental limits purely through json data files, can better handle clusters of BSM particles of similar masses (even for complicated search topologies), and features an improved handling of mass uncertainties. Moreover, it now contains an extended list of Higgs-boson pair production searches and doubly-charged Higgs boson searches. In HiggsSignals, the treatment of different types of measurements has been unified, both in the χ2 computation and in the data file format used to implement experimental results. Program title:HiggsTools CPC Library link to program files:https://doi.org/10.17632/b25smy28cj.1 Developer's repository link:https://gitlab.com/higgsbounds/higgstools Licensing provisions: GPLv3 Programming language:C++, Python, Mathematica Journal reference of previous version: P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K.E. Williams, Comput. Phys. Commun. 182 (2011), 2605-2631 Does the new version supersede the previous version?: Yes Reasons for the new version: This version extends the functionality of the previous versions and is re-written in modern C++. Summary of revisions: List of included Higgs-boson searches and Higgs-boson rate measurements has been expanded. Nature of problem: Determine whether a parameter point of a given model is excluded or allowed by LEP and LHC Higgs boson search results, and whether this model point is in agreement with the LHC Higgs-boson rate measurements. Solution method: Exclusion by Higgs boson searches: The most sensitive channel from LEP and LHC searches is determined and subsequently applied to test this parameter point for each Higgs boson of the model under consideration. The test requires as input, model predictions for the Higgs boson masses, branching ratios and ratios of production cross sections with respect to reference values. Agreement with LHC Higgs-boson rate measurements: A χ2 value is calculated based on the available LHC rate measurements. This calculation requires as input model predictions for the Higgs boson(s) at ∼125 GeV. Additional comments including restrictions and unusual features: Assumes that the narrow width approximation is applicable in the model under consideration and that the model does not predict a significant change to the signature of the background processes or the kinematical distributions of the signal cross sections.
ArticleNumber 108803
Author Biekötter, Thomas
Li, Cheng
Wittbrodt, Jonas
Paasch, Steven
Heinemeyer, Sven
Bahl, Henning
Weiglein, Georg
Author_xml – sequence: 1
  givenname: Henning
  surname: Bahl
  fullname: Bahl, Henning
  email: hbahl@uchicago.edu
  organization: University of Chicago, Department of Physics and Enrico Fermi Institute, 5720 South Ellis Avenue, Chicago, IL 60637, USA
– sequence: 2
  givenname: Thomas
  surname: Biekötter
  fullname: Biekötter, Thomas
  organization: Institute for Theoretical Physics, Karlsruhe Institute of Technology, Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany
– sequence: 3
  givenname: Sven
  surname: Heinemeyer
  fullname: Heinemeyer, Sven
  organization: Instituto de Física Teórica, (UAM/CSIC), Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
– sequence: 4
  givenname: Cheng
  surname: Li
  fullname: Li, Cheng
  organization: Institute for Theoretical Physics, Karlsruhe Institute of Technology, Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany
– sequence: 5
  givenname: Steven
  surname: Paasch
  fullname: Paasch, Steven
  organization: Institute for Theoretical Physics, Karlsruhe Institute of Technology, Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany
– sequence: 6
  givenname: Georg
  surname: Weiglein
  fullname: Weiglein, Georg
  organization: Institute for Theoretical Physics, Karlsruhe Institute of Technology, Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany
– sequence: 7
  givenname: Jonas
  surname: Wittbrodt
  fullname: Wittbrodt, Jonas
  organization: Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
BookMark eNp9kL9u2zAQhzkkQJ20D9CNL2CXFP_IaqfaSOoCKTrE7XqgyKNNQyEFUo7ht48cFR0yZDgcDuR3P9x3Q65iikjIZ84WnHH95bCwvV1UrBLjvFwycUVmjHE2l1qpD-SmlANjrK4bMSN_N2G3K9uUuvKVrh5_0WJNZzLt9xjT01hd2p3pKQx7GvFEnzGXkGKhydNXcpWO0RVqopvmx7CLpisfybUfG37612_Jn_u77Xozf_j94-f6-8PcSsGGeau0bJ3iCg1K6bhD5rmulWyUthq9rAUKrxurZM1bWXvPpaxqf3m0rlXilphpbzlhf2yhz-HJ5DMkE6BPeTAdZCxost1Dd4SCMP7qgjXD5QqoqiWzWjSADg1I7RpomUBwZonaOMkb044ZfMqwOZWS0f9P4QwuwuEAo3C4CIdJ-MjUbxgbhtfQIZvQvUt-m0gctT0HzFBswGjRhYx2AJfCO_QLFXChrw
CitedBy_id crossref_primary_10_1016_j_physletb_2025_139298
crossref_primary_10_1103_w2xw_q49n
crossref_primary_10_1007_JHEP11_2024_106
crossref_primary_10_1088_1361_6471_ad7d24
crossref_primary_10_1007_JHEP11_2024_108
crossref_primary_10_1103_rp5d_c795
crossref_primary_10_1140_epjc_s10052_025_14630_y
crossref_primary_10_1140_epjc_s10052_024_12900_9
crossref_primary_10_1016_j_jspc_2025_100081
crossref_primary_10_1051_epjconf_202431400017
crossref_primary_10_1103_rf5m_wb6y
crossref_primary_10_1007_JHEP11_2023_017
crossref_primary_10_1007_JHEP12_2024_197
crossref_primary_10_1016_j_nuclphysb_2024_116593
crossref_primary_10_1140_epjc_s10052_023_12236_w
crossref_primary_10_1103_vsz9_gwvs
crossref_primary_10_1140_epjc_s10052_025_14124_x
crossref_primary_10_1140_epjc_s10052_024_13594_9
crossref_primary_10_1103_PhysRevD_111_053012
crossref_primary_10_1007_JHEP06_2025_170
crossref_primary_10_1103_jb96_gjrg
crossref_primary_10_1016_j_physletb_2024_139121
crossref_primary_10_1103_PhysRevD_111_095016
crossref_primary_10_1103_PhysRevD_111_075021
crossref_primary_10_1007_JHEP11_2024_077
crossref_primary_10_1007_JHEP09_2024_113
crossref_primary_10_1140_epjc_s10052_024_13316_1
crossref_primary_10_1103_t5df_67wh
crossref_primary_10_1140_epjc_s10052_024_13390_5
crossref_primary_10_1007_JHEP05_2024_209
crossref_primary_10_1007_JHEP09_2025_101
crossref_primary_10_1140_epjc_s10052_025_13878_8
crossref_primary_10_1140_epjc_s10052_025_14591_2
crossref_primary_10_3390_particles8010010
crossref_primary_10_1103_PhysRevD_111_095026
crossref_primary_10_1016_j_cpc_2025_109766
crossref_primary_10_1016_j_physletb_2023_138188
crossref_primary_10_1007_JHEP12_2023_138
crossref_primary_10_1007_JHEP11_2024_086
crossref_primary_10_1140_epjc_s10052_025_14237_3
crossref_primary_10_1007_JHEP05_2024_127
crossref_primary_10_1016_j_physletb_2024_138949
crossref_primary_10_1016_j_ppnp_2024_104105
crossref_primary_10_1103_PhysRevD_111_055010
crossref_primary_10_1140_epjc_s10052_024_13247_x
crossref_primary_10_1007_JHEP12_2024_018
crossref_primary_10_1103_PhysRevD_111_035009
crossref_primary_10_1140_epjc_s10052_025_14502_5
crossref_primary_10_1016_j_physletb_2025_139759
crossref_primary_10_1103_PhysRevD_111_035006
crossref_primary_10_1007_JHEP06_2025_211
crossref_primary_10_1140_epjc_s10052_024_13176_9
crossref_primary_10_1140_epjc_s10052_024_13692_8
crossref_primary_10_1140_epjc_s10052_025_14244_4
crossref_primary_10_1007_JHEP08_2023_012
crossref_primary_10_1088_1475_7516_2025_01_121
crossref_primary_10_1140_epjc_s10052_024_13672_y
crossref_primary_10_1007_JHEP01_2024_107
crossref_primary_10_1088_1475_7516_2025_05_035
crossref_primary_10_1140_epjc_s10052_024_12414_4
crossref_primary_10_1140_epjc_s10052_024_12497_z
crossref_primary_10_1007_JHEP04_2025_094
crossref_primary_10_1088_1361_6471_ad2d5f
crossref_primary_10_1007_JHEP05_2025_098
crossref_primary_10_1140_epjc_s10052_024_13274_8
crossref_primary_10_1016_j_physletb_2025_139688
crossref_primary_10_1140_epjc_s10052_024_13548_1
crossref_primary_10_1140_epjc_s10052_025_14199_6
crossref_primary_10_1103_p3rg_ltlw
crossref_primary_10_1103_PhysRevD_111_015027
crossref_primary_10_1007_JHEP07_2024_037
crossref_primary_10_1103_73xh_7hhz
Cites_doi 10.1140/epjc/s2006-02569-7
10.1140/epjc/s10052-019-7058-z
10.1016/j.physletb.2018.01.001
10.1016/j.cpc.2009.09.003
10.1140/epjc/s10052-020-08557-9
10.1140/epjc/s10052-013-2693-2
10.1140/epjc/s10052-009-1072-5
10.1140/epjc/s10052-022-10528-1
10.1140/epjc/s10052-019-6909-y
10.1016/j.cpc.2011.07.015
10.1103/PhysRevLett.121.191801
10.1140/epjc/s10052-018-6457-x
10.1140/epjc/s10052-020-08554-y
10.1016/j.physrep.2012.02.002
10.1103/PhysRevD.77.013002
10.1103/PhysRevLett.99.161803
10.1140/epjc/s10052-013-2711-4
10.1103/PhysRevD.8.1226
10.1038/s41567-022-01682-0
10.1016/j.physletb.2012.08.021
10.1103/PhysRevD.101.012002
10.1016/j.cpc.2013.02.006
10.1103/PhysRevLett.43.103
10.1016/j.physletb.2017.06.037
10.1016/j.cpc.2016.10.015
10.1016/j.cpc.2012.11.002
10.21468/SciPostPhys.7.4.052
10.1016/S0010-4655(97)00123-9
10.1140/epjc/s10052-018-5661-z
10.1140/epjc/s10052-021-08942-y
10.1103/PhysRevLett.125.051801
10.1140/epjc/s10052-021-09198-2
10.1140/epjc/s10052-015-3645-9
10.1016/j.cpc.2015.04.021
10.1016/j.cpc.2018.12.010
10.1140/epjc/s10052-022-10485-9
10.1016/j.physletb.2012.08.020
10.1103/PhysRevLett.122.121803
10.1140/epjc/s10052-015-3650-z
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
ADTPV
AOWAS
D95
DOI 10.1016/j.cpc.2023.108803
DatabaseName CrossRef
SwePub
SwePub Articles
SWEPUB Lunds universitet
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Physics
ExternalDocumentID oai_portal_research_lu_se_publications_2280c639_edea_46d9_b03e_da8e6ad419ab
10_1016_j_cpc_2023_108803
S0010465523001480
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABNEU
ABQEM
ABQYD
ABXDB
ACDAQ
ACFVG
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADECG
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HME
HMV
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG9
LZ4
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCB
SDF
SDG
SES
SEW
SHN
SPC
SPCBC
SPD
SPG
SSE
SSK
SSQ
SSV
SSZ
T5K
TN5
UPT
VH1
WUQ
ZMT
~02
~G-
9DU
AATTM
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ADTPV
AOWAS
D95
ID FETCH-LOGICAL-c430t-b564bd515eae44d1de0f16754956c6ef473e3f69c5471b47ff14427f6c6ecdb53
ISICitedReferencesCount 104
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001018193100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0010-4655
1879-2944
IngestDate Wed Dec 10 07:30:22 EST 2025
Tue Nov 18 22:23:31 EST 2025
Sat Nov 29 07:01:33 EST 2025
Tue Dec 03 03:44:29 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Higgs bosons
Elementary particle physics
Charged Higgs bosons
General high energy physics and computing
Higgs search
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c430t-b564bd515eae44d1de0f16754956c6ef473e3f69c5471b47ff14427f6c6ecdb53
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0010465523001480
ParticipantIDs swepub_primary_oai_portal_research_lu_se_publications_2280c639_edea_46d9_b03e_da8e6ad419ab
crossref_primary_10_1016_j_cpc_2023_108803
crossref_citationtrail_10_1016_j_cpc_2023_108803
elsevier_sciencedirect_doi_10_1016_j_cpc_2023_108803
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Computer physics communications
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Aad (br0530) 2020; 800
Aad (br0470) 2020; 11
br0300
Sirunyan (br0330) 2019; 79
Brein, Harlander, Zirke (br0270) 2013; 184
Aad (br0780) 2020; 80
Bahl, Stefaniak, Wittbrodt (br0170) 2021; 06
(br0560) 2016
Biekötter, Pierre (br0750) 8 2022
(br0390) 2012
(br0720) 2021
Bechtle, Brein, Heinemeyer, Stål, Stefaniak, Weiglein, Williams (br0050) 2014; 74
Bechtle, Heinemeyer, Klingl, Stefaniak, Weiglein, Wittbrodt (br0090) 2021; 81
Djouadi, Kalinowski, Spira (br0130) 1998; 108
Bechtle, Heinemeyer, Stål, Stefaniak, Weiglein (br0820) 2014; 11
Aaboud (br0460) 2019; 04
Sirunyan (br0510) 2019; 122
Arco, Heinemeyer, Herrero (br0710) 2022; 82
Sirunyan (br0420) 2019; 01
Lee (br0680) 1973; 8
Sirunyan (br0320) 2018; 06
Aaboud (br0800) 2018; 98
Sirunyan (br0440) 2020; 102
Aaboud (br0790) 2019; 01
Whalley, Bourilkov, Group (br0260) 2005
Sirunyan (br0340) 2018; 778
Sirunyan (br0540) 2021; 03
Bechtle, Dercks, Heinemeyer, Klingl, Stefaniak, Weiglein, Wittbrodt (br0060) 2020; 80
Aaboud (br0600) 2018; 78
Alwall, Frederix, Frixione, Hirschi, Maltoni, Mattelaer, Shao, Stelzer, Torrielli, Zaro (br0240) 2014; 07
(br0590) 2017
Mühlleitner, Sampaio, Santos, Wittbrodt (br0770) 7 2020
Branco, Ferreira, Lavoura, Rebelo, Sher, Silva (br0700) 2012; 516
Martin, Stirling, Thorne, Watt (br0250) 2009; 63
Ciccolini, Denner, Dittmaier (br0210) 2008; 77
Kim (br0690) 1979; 43
Bernon, Dumont (br0100) 2015; 75
Aad (br0660) 2020; 101
Schael (br0350) 2006; 47
Sirunyan (br0650) 2019; 79
(br0730) 2019
Bechtle, Brein, Heinemeyer, Weiglein, Williams (br0040) 2010; 181
Denner, Dittmaier, Kallweit, Muck (br0220) 2012; 03
Denner, Dittmaier, Kallweit, Mück (br0230) 2015; 195
Tumasyan (br0670) 2022; 18
Bahl, Lozano, Stefaniak, Wittbrodt (br0070) 9 2021
Aad (br0610) 2021; 06
Workman (br0620) 2022; 2022
Sirunyan (br0430) 2019; 10
Aad (br0310) 2020; 102
Aaboud (br0490) 2018; 11
Aad (br0570) 2015; 08
Sirunyan (br0410) 2019; 01
Bahl, Fuchs, Heinemeyer, Katzy, Menen, Peters, Saimpert, Weiglein (br0640) 2022; 82
Aad (br0810) 2020; 125
Degrande, Frederix, Hirschi, Ubiali, Wiesemann, Zaro (br0160) 2017; 772
Aaboud (br0480) 2018; 78
Ciccolini, Denner, Dittmaier (br0200) 2007; 99
Bechtle, Heinemeyer, Stål, Stefaniak, Weiglein (br0080) 2014; 74
Degrande, Ubiali, Wiesemann, Zaro (br0150) 2015; 10
Aaboud (br0520) 2019; 05
Djouadi, Kalinowski, Muehlleitner, Spira (br0140) 2019; 238
Harlander, Liebler, Mantler (br0190) 2017; 212
Harlander, Liebler, Mantler (br0180) 2013; 184
Kraml, Loc, Nhung, Ninh (br0110) 2019; 7
Sirunyan (br0360) 2018; 09
Bechtle, Heinemeyer, Stal, Stefaniak, Weiglein (br0370) 2015; 75
Aad (br0580) 2015; 03
Bahl, Bechtle, Heinemeyer, Katzy, Klingl, Peters, Saimpert, Stefaniak, Weiglein (br0290) 2020; 11
Slavich (br0380) 2021; 81
Sirunyan (br0400) 2018; 01
Tumasyan (br0630) 10 2021
Harlander, Mühlleitner, Rathsman, Spira, Stål (br0760) 12 2013
Aad (br0020) 2012; 716
Chatrchyan (br0030) 2012; 716
Abouabid, Arhrib, Azevedo, Falaki, Ferreira, Mühlleitner, Santos (br0550) 12 2021
Bechtle, Brein, Heinemeyer, Weiglein, Williams (br0010) 2011; 182
de Florian (br0120) 10 2016
Harlander, Klappert, Liebler, Simon (br0280) 2018; 05
Tumasyan (br0450) 2021; 11
Aad (br0740) 2022; 06
Aaboud (br0500) 2018; 121
Aaboud (10.1016/j.cpc.2023.108803_br0790) 2019; 01
Aaboud (10.1016/j.cpc.2023.108803_br0460) 2019; 04
Aad (10.1016/j.cpc.2023.108803_br0470) 2020; 11
Slavich (10.1016/j.cpc.2023.108803_br0380) 2021; 81
Biekötter (10.1016/j.cpc.2023.108803_br0750)
Whalley (10.1016/j.cpc.2023.108803_br0260) 2005
Sirunyan (10.1016/j.cpc.2023.108803_br0410) 2019; 01
Bechtle (10.1016/j.cpc.2023.108803_br0090) 2021; 81
Harlander (10.1016/j.cpc.2023.108803_br0280) 2018; 05
Workman (10.1016/j.cpc.2023.108803_br0620) 2022; 2022
(10.1016/j.cpc.2023.108803_br0720) 2021
Bechtle (10.1016/j.cpc.2023.108803_br0060) 2020; 80
Alwall (10.1016/j.cpc.2023.108803_br0240) 2014; 07
Mühlleitner (10.1016/j.cpc.2023.108803_br0770) 2020
Sirunyan (10.1016/j.cpc.2023.108803_br0340) 2018; 778
Aad (10.1016/j.cpc.2023.108803_br0660) 2020; 101
Djouadi (10.1016/j.cpc.2023.108803_br0130) 1998; 108
Djouadi (10.1016/j.cpc.2023.108803_br0140) 2019; 238
Aad (10.1016/j.cpc.2023.108803_br0530) 2020; 800
Aad (10.1016/j.cpc.2023.108803_br0580) 2015; 03
Harlander (10.1016/j.cpc.2023.108803_br0760) 2013
Aad (10.1016/j.cpc.2023.108803_br0780) 2020; 80
Sirunyan (10.1016/j.cpc.2023.108803_br0650) 2019; 79
Bahl (10.1016/j.cpc.2023.108803_br0170) 2021; 06
Bahl (10.1016/j.cpc.2023.108803_br0070) 2021
(10.1016/j.cpc.2023.108803_br0730) 2019
Aad (10.1016/j.cpc.2023.108803_br0810) 2020; 125
Degrande (10.1016/j.cpc.2023.108803_br0150) 2015; 10
Aaboud (10.1016/j.cpc.2023.108803_br0500) 2018; 121
Sirunyan (10.1016/j.cpc.2023.108803_br0400) 2018; 01
Kim (10.1016/j.cpc.2023.108803_br0690) 1979; 43
Bechtle (10.1016/j.cpc.2023.108803_br0050) 2014; 74
(10.1016/j.cpc.2023.108803_br0590) 2017
Arco (10.1016/j.cpc.2023.108803_br0710) 2022; 82
Aaboud (10.1016/j.cpc.2023.108803_br0800) 2018; 98
Sirunyan (10.1016/j.cpc.2023.108803_br0430) 2019; 10
Sirunyan (10.1016/j.cpc.2023.108803_br0360) 2018; 09
Aaboud (10.1016/j.cpc.2023.108803_br0490) 2018; 11
Kraml (10.1016/j.cpc.2023.108803_br0110) 2019; 7
Bernon (10.1016/j.cpc.2023.108803_br0100) 2015; 75
Chatrchyan (10.1016/j.cpc.2023.108803_br0030) 2012; 716
Tumasyan (10.1016/j.cpc.2023.108803_br0630) 2021
Bahl (10.1016/j.cpc.2023.108803_br0640) 2022; 82
Aad (10.1016/j.cpc.2023.108803_br0610) 2021; 06
(10.1016/j.cpc.2023.108803_br0390) 2012
Aaboud (10.1016/j.cpc.2023.108803_br0520) 2019; 05
Aad (10.1016/j.cpc.2023.108803_br0570) 2015; 08
Tumasyan (10.1016/j.cpc.2023.108803_br0670) 2022; 18
Aad (10.1016/j.cpc.2023.108803_br0740) 2022; 06
Martin (10.1016/j.cpc.2023.108803_br0250) 2009; 63
Sirunyan (10.1016/j.cpc.2023.108803_br0320) 2018; 06
Aaboud (10.1016/j.cpc.2023.108803_br0480) 2018; 78
Branco (10.1016/j.cpc.2023.108803_br0700) 2012; 516
Aad (10.1016/j.cpc.2023.108803_br0020) 2012; 716
Sirunyan (10.1016/j.cpc.2023.108803_br0330) 2019; 79
Bechtle (10.1016/j.cpc.2023.108803_br0040) 2010; 181
de Florian (10.1016/j.cpc.2023.108803_br0120) 2016
Sirunyan (10.1016/j.cpc.2023.108803_br0510) 2019; 122
Aad (10.1016/j.cpc.2023.108803_br0310) 2020; 102
Abouabid (10.1016/j.cpc.2023.108803_br0550) 2021
Ciccolini (10.1016/j.cpc.2023.108803_br0200) 2007; 99
Harlander (10.1016/j.cpc.2023.108803_br0190) 2017; 212
Denner (10.1016/j.cpc.2023.108803_br0230) 2015; 195
(10.1016/j.cpc.2023.108803_br0560) 2016
Denner (10.1016/j.cpc.2023.108803_br0220) 2012; 03
Degrande (10.1016/j.cpc.2023.108803_br0160) 2017; 772
Bechtle (10.1016/j.cpc.2023.108803_br0010) 2011; 182
Schael (10.1016/j.cpc.2023.108803_br0350) 2006; 47
Harlander (10.1016/j.cpc.2023.108803_br0180) 2013; 184
Aaboud (10.1016/j.cpc.2023.108803_br0600) 2018; 78
Bahl (10.1016/j.cpc.2023.108803_br0290) 2020; 11
Sirunyan (10.1016/j.cpc.2023.108803_br0440) 2020; 102
Lee (10.1016/j.cpc.2023.108803_br0680) 1973; 8
Brein (10.1016/j.cpc.2023.108803_br0270) 2013; 184
Bechtle (10.1016/j.cpc.2023.108803_br0370) 2015; 75
Tumasyan (10.1016/j.cpc.2023.108803_br0450) 2021; 11
Ciccolini (10.1016/j.cpc.2023.108803_br0210) 2008; 77
Sirunyan (10.1016/j.cpc.2023.108803_br0540) 2021; 03
Sirunyan (10.1016/j.cpc.2023.108803_br0420) 2019; 01
Bechtle (10.1016/j.cpc.2023.108803_br0820) 2014; 11
Bechtle (10.1016/j.cpc.2023.108803_br0080) 2014; 74
References_xml – volume: 98
  year: 2018
  ident: br0800
  publication-title: Phys. Rev. D
– volume: 716
  start-page: 30
  year: 2012
  end-page: 61
  ident: br0030
  publication-title: Phys. Lett. B
– year: 7 2020
  ident: br0770
  article-title: ScannerS: Parameter Scans in Extended Scalar Sectors
– volume: 05
  year: 2018
  ident: br0280
  publication-title: J. High Energy Phys.
– volume: 238
  start-page: 214
  year: 2019
  end-page: 231
  ident: br0140
  publication-title: Comput. Phys. Commun.
– volume: 212
  start-page: 239
  year: 2017
  end-page: 257
  ident: br0190
  publication-title: Comput. Phys. Commun.
– volume: 2022
  year: 2022
  ident: br0620
  publication-title: Prog. Theor. Exp. Phys.
– year: 2019
  ident: br0730
  article-title: Measurement of Higgs boson production and decay to the
– volume: 75
  start-page: 421
  year: 2015
  ident: br0370
  publication-title: Eur. Phys. J. C
– volume: 80
  start-page: 1165
  year: 2020
  ident: br0780
  publication-title: Eur. Phys. J. C
– year: 10 2021
  ident: br0630
  article-title: Analysis of the CP structure of the Yukawa coupling between the Higgs boson and
– start-page: 575
  year: 2005
  end-page: 581
  ident: br0260
  publication-title: HERA and the LHC: A Workshop on the Implications of HERA for LHC Physics. Proceedings, Part B
– volume: 121
  year: 2018
  ident: br0500
  publication-title: Phys. Rev. Lett.
– volume: 06
  year: 2021
  ident: br0610
  publication-title: J. High Energy Phys.
– volume: 07
  year: 2014
  ident: br0240
  publication-title: J. High Energy Phys.
– volume: 78
  start-page: 199
  year: 2018
  ident: br0600
  publication-title: Eur. Phys. J. C
– volume: 03
  year: 2012
  ident: br0220
  publication-title: J. High Energy Phys.
– volume: 80
  start-page: 1211
  year: 2020
  ident: br0060
  publication-title: Eur. Phys. J. C
– volume: 81
  start-page: 450
  year: 2021
  ident: br0380
  publication-title: Eur. Phys. J. C
– volume: 05
  year: 2019
  ident: br0520
  publication-title: J. High Energy Phys.
– volume: 7
  year: 2019
  ident: br0110
  publication-title: SciPost Phys.
– volume: 184
  start-page: 1605
  year: 2013
  end-page: 1617
  ident: br0180
  publication-title: Comput. Phys. Commun.
– volume: 82
  start-page: 604
  year: 2022
  ident: br0640
  publication-title: Eur. Phys. J. C
– volume: 102
  year: 2020
  ident: br0440
  publication-title: Phys. Rev. D
– volume: 77
  year: 2008
  ident: br0210
  publication-title: Phys. Rev. D
– volume: 79
  start-page: 564
  year: 2019
  ident: br0330
  publication-title: Eur. Phys. J. C
– ident: br0300
– year: 12 2021
  ident: br0550
  article-title: Benchmarking Di-Higgs Production in Various Extended Higgs Sector Models
– volume: 11
  year: 2020
  ident: br0470
  publication-title: J. High Energy Phys.
– volume: 11
  year: 2014
  ident: br0820
  publication-title: J. High Energy Phys.
– volume: 78
  start-page: 1007
  year: 2018
  ident: br0480
  publication-title: Eur. Phys. J. C
– volume: 43
  start-page: 103
  year: 1979
  ident: br0690
  publication-title: Phys. Rev. Lett.
– volume: 101
  year: 2020
  ident: br0660
  publication-title: Phys. Rev. D
– volume: 01
  year: 2019
  ident: br0410
  publication-title: J. High Energy Phys.
– volume: 195
  start-page: 161
  year: 2015
  end-page: 171
  ident: br0230
  publication-title: Comput. Phys. Commun.
– volume: 778
  start-page: 101
  year: 2018
  end-page: 127
  ident: br0340
  publication-title: Phys. Lett. B
– year: 2021
  ident: br0720
  article-title: Combined measurements of Higgs boson production and decay using up to 139 fb
– volume: 74
  start-page: 2693
  year: 2014
  ident: br0050
  publication-title: Eur. Phys. J. C
– volume: 06
  year: 2022
  ident: br0740
  publication-title: J. High Energy Phys.
– volume: 184
  start-page: 998
  year: 2013
  end-page: 1003
  ident: br0270
  publication-title: Comput. Phys. Commun.
– volume: 01
  year: 2019
  ident: br0790
  publication-title: J. High Energy Phys.
– volume: 125
  year: 2020
  ident: br0810
  publication-title: Phys. Rev. Lett.
– volume: 108
  start-page: 56
  year: 1998
  end-page: 74
  ident: br0130
  publication-title: Comput. Phys. Commun.
– volume: 75
  start-page: 440
  year: 2015
  ident: br0100
  publication-title: Eur. Phys. J. C
– volume: 11
  year: 2018
  ident: br0490
  publication-title: J. High Energy Phys.
– volume: 04
  year: 2019
  ident: br0460
  publication-title: J. High Energy Phys.
– volume: 716
  start-page: 1
  year: 2012
  end-page: 29
  ident: br0020
  publication-title: Phys. Lett. B
– volume: 102
  year: 2020
  ident: br0310
  publication-title: Phys. Rev. D
– volume: 06
  year: 2018
  ident: br0320
  publication-title: J. High Energy Phys.
– volume: 10
  year: 2019
  ident: br0430
  publication-title: J. High Energy Phys.
– year: 12 2013
  ident: br0760
  article-title: Interim recommendations for the evaluation of Higgs production cross sections and branching ratios at the LHC in the Two-Higgs-Doublet Model
– volume: 06
  year: 2021
  ident: br0170
  publication-title: J. High Energy Phys.
– volume: 82
  start-page: 536
  year: 2022
  ident: br0710
  publication-title: Eur. Phys. J. C
– year: 9 2021
  ident: br0070
  article-title: Testing Exotic Scalars with HiggsBounds
– year: 2017
  ident: br0590
  article-title: A search for doubly-charged Higgs boson production in three and four lepton final states at
– volume: 10
  year: 2015
  ident: br0150
  publication-title: J. High Energy Phys.
– year: 2012
  ident: br0390
  article-title: Combination of Standard Model Higgs Boson Searches and Measurements of the Properties of the New Boson with a Mass Near 125 GeV
– year: 2016
  ident: br0560
  article-title: Search for a doubly-charged Higgs boson with
– volume: 516
  start-page: 1
  year: 2012
  end-page: 102
  ident: br0700
  publication-title: Phys. Rep.
– volume: 99
  year: 2007
  ident: br0200
  publication-title: Phys. Rev. Lett.
– volume: 03
  year: 2015
  ident: br0580
  publication-title: J. High Energy Phys.
– volume: 182
  start-page: 2605
  year: 2011
  end-page: 2631
  ident: br0010
  publication-title: Comput. Phys. Commun.
– volume: 01
  year: 2019
  ident: br0420
  publication-title: J. High Energy Phys.
– volume: 47
  start-page: 547
  year: 2006
  end-page: 587
  ident: br0350
  publication-title: Eur. Phys. J. C
– volume: 03
  year: 2021
  ident: br0540
  publication-title: J. High Energy Phys.
– year: 8 2022
  ident: br0750
  article-title: Higgs-boson visible and invisible constraints on hidden sectors
– volume: 81
  start-page: 145
  year: 2021
  ident: br0090
  publication-title: Eur. Phys. J. C
– volume: 772
  start-page: 87
  year: 2017
  end-page: 92
  ident: br0160
  publication-title: Phys. Lett. B
– volume: 181
  start-page: 138
  year: 2010
  end-page: 167
  ident: br0040
  publication-title: Comput. Phys. Commun.
– volume: 63
  start-page: 189
  year: 2009
  end-page: 285
  ident: br0250
  publication-title: Eur. Phys. J. C
– volume: 11
  year: 2020
  ident: br0290
  publication-title: J. High Energy Phys.
– volume: 11
  year: 2021
  ident: br0450
  publication-title: J. High Energy Phys.
– volume: 74
  start-page: 2711
  year: 2014
  ident: br0080
  publication-title: Eur. Phys. J. C
– volume: 09
  year: 2018
  ident: br0360
  publication-title: J. High Energy Phys.
– volume: 18
  start-page: 1329
  year: 2022
  end-page: 1334
  ident: br0670
  publication-title: Nat. Phys.
– year: 10 2016
  ident: br0120
  article-title: Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector 2/2017
– volume: 122
  year: 2019
  ident: br0510
  publication-title: Phys. Rev. Lett.
– volume: 08
  year: 2015
  ident: br0570
  publication-title: J. High Energy Phys.
– volume: 01
  year: 2018
  ident: br0400
  publication-title: J. High Energy Phys.
– volume: 79
  start-page: 421
  year: 2019
  ident: br0650
  publication-title: Eur. Phys. J. C
– volume: 800
  year: 2020
  ident: br0530
  publication-title: Phys. Lett. B
– volume: 8
  start-page: 1226
  year: 1973
  end-page: 1239
  ident: br0680
  publication-title: Phys. Rev. D
– volume: 47
  start-page: 547
  year: 2006
  ident: 10.1016/j.cpc.2023.108803_br0350
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s2006-02569-7
– volume: 03
  year: 2021
  ident: 10.1016/j.cpc.2023.108803_br0540
  publication-title: J. High Energy Phys.
– volume: 04
  year: 2019
  ident: 10.1016/j.cpc.2023.108803_br0460
  publication-title: J. High Energy Phys.
– volume: 01
  year: 2019
  ident: 10.1016/j.cpc.2023.108803_br0790
  publication-title: J. High Energy Phys.
– volume: 79
  start-page: 564
  issue: 7
  year: 2019
  ident: 10.1016/j.cpc.2023.108803_br0330
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-019-7058-z
– volume: 778
  start-page: 101
  year: 2018
  ident: 10.1016/j.cpc.2023.108803_br0340
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2018.01.001
– volume: 181
  start-page: 138
  year: 2010
  ident: 10.1016/j.cpc.2023.108803_br0040
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2009.09.003
– volume: 80
  start-page: 1211
  issue: 12
  year: 2020
  ident: 10.1016/j.cpc.2023.108803_br0060
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-020-08557-9
– volume: 74
  start-page: 2693
  issue: 3
  year: 2014
  ident: 10.1016/j.cpc.2023.108803_br0050
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-013-2693-2
– volume: 63
  start-page: 189
  year: 2009
  ident: 10.1016/j.cpc.2023.108803_br0250
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-009-1072-5
– volume: 82
  start-page: 604
  issue: 7
  year: 2022
  ident: 10.1016/j.cpc.2023.108803_br0640
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-022-10528-1
– volume: 79
  start-page: 421
  issue: 5
  year: 2019
  ident: 10.1016/j.cpc.2023.108803_br0650
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-019-6909-y
– volume: 182
  start-page: 2605
  year: 2011
  ident: 10.1016/j.cpc.2023.108803_br0010
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2011.07.015
– year: 2016
  ident: 10.1016/j.cpc.2023.108803_br0120
– volume: 121
  issue: 19
  year: 2018
  ident: 10.1016/j.cpc.2023.108803_br0500
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.191801
– volume: 78
  start-page: 1007
  issue: 12
  year: 2018
  ident: 10.1016/j.cpc.2023.108803_br0480
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-018-6457-x
– volume: 80
  start-page: 1165
  issue: 12
  year: 2020
  ident: 10.1016/j.cpc.2023.108803_br0780
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-020-08554-y
– volume: 06
  year: 2018
  ident: 10.1016/j.cpc.2023.108803_br0320
  publication-title: J. High Energy Phys.
– volume: 10
  year: 2019
  ident: 10.1016/j.cpc.2023.108803_br0430
  publication-title: J. High Energy Phys.
– volume: 516
  start-page: 1
  year: 2012
  ident: 10.1016/j.cpc.2023.108803_br0700
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2012.02.002
– volume: 11
  year: 2014
  ident: 10.1016/j.cpc.2023.108803_br0820
  publication-title: J. High Energy Phys.
– volume: 77
  year: 2008
  ident: 10.1016/j.cpc.2023.108803_br0210
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.77.013002
– volume: 99
  year: 2007
  ident: 10.1016/j.cpc.2023.108803_br0200
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.161803
– volume: 11
  year: 2020
  ident: 10.1016/j.cpc.2023.108803_br0470
  publication-title: J. High Energy Phys.
– volume: 74
  start-page: 2711
  issue: 2
  year: 2014
  ident: 10.1016/j.cpc.2023.108803_br0080
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-013-2711-4
– volume: 102
  issue: 3
  year: 2020
  ident: 10.1016/j.cpc.2023.108803_br0440
  publication-title: Phys. Rev. D
– volume: 2022
  year: 2022
  ident: 10.1016/j.cpc.2023.108803_br0620
  publication-title: Prog. Theor. Exp. Phys.
– volume: 03
  year: 2012
  ident: 10.1016/j.cpc.2023.108803_br0220
  publication-title: J. High Energy Phys.
– volume: 8
  start-page: 1226
  year: 1973
  ident: 10.1016/j.cpc.2023.108803_br0680
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.8.1226
– volume: 18
  start-page: 1329
  issue: 11
  year: 2022
  ident: 10.1016/j.cpc.2023.108803_br0670
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-022-01682-0
– volume: 06
  year: 2021
  ident: 10.1016/j.cpc.2023.108803_br0170
  publication-title: J. High Energy Phys.
– volume: 716
  start-page: 30
  year: 2012
  ident: 10.1016/j.cpc.2023.108803_br0030
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2012.08.021
– volume: 01
  year: 2019
  ident: 10.1016/j.cpc.2023.108803_br0420
  publication-title: J. High Energy Phys.
– volume: 06
  year: 2022
  ident: 10.1016/j.cpc.2023.108803_br0740
  publication-title: J. High Energy Phys.
– volume: 11
  year: 2018
  ident: 10.1016/j.cpc.2023.108803_br0490
  publication-title: J. High Energy Phys.
– volume: 10
  year: 2015
  ident: 10.1016/j.cpc.2023.108803_br0150
  publication-title: J. High Energy Phys.
– volume: 05
  year: 2018
  ident: 10.1016/j.cpc.2023.108803_br0280
  publication-title: J. High Energy Phys.
– volume: 11
  year: 2021
  ident: 10.1016/j.cpc.2023.108803_br0450
  publication-title: J. High Energy Phys.
– year: 2021
  ident: 10.1016/j.cpc.2023.108803_br0070
– volume: 09
  year: 2018
  ident: 10.1016/j.cpc.2023.108803_br0360
  publication-title: J. High Energy Phys.
– volume: 101
  issue: 1
  year: 2020
  ident: 10.1016/j.cpc.2023.108803_br0660
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.012002
– volume: 184
  start-page: 1605
  year: 2013
  ident: 10.1016/j.cpc.2023.108803_br0180
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2013.02.006
– volume: 08
  year: 2015
  ident: 10.1016/j.cpc.2023.108803_br0570
  publication-title: J. High Energy Phys.
– year: 2021
  ident: 10.1016/j.cpc.2023.108803_br0630
– volume: 43
  start-page: 103
  year: 1979
  ident: 10.1016/j.cpc.2023.108803_br0690
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.43.103
– year: 2021
  ident: 10.1016/j.cpc.2023.108803_br0720
– volume: 01
  year: 2019
  ident: 10.1016/j.cpc.2023.108803_br0410
  publication-title: J. High Energy Phys.
– volume: 01
  year: 2018
  ident: 10.1016/j.cpc.2023.108803_br0400
  publication-title: J. High Energy Phys.
– volume: 800
  year: 2020
  ident: 10.1016/j.cpc.2023.108803_br0530
  publication-title: Phys. Lett. B
– volume: 772
  start-page: 87
  year: 2017
  ident: 10.1016/j.cpc.2023.108803_br0160
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2017.06.037
– volume: 98
  issue: 5
  year: 2018
  ident: 10.1016/j.cpc.2023.108803_br0800
  publication-title: Phys. Rev. D
– start-page: 575
  year: 2005
  ident: 10.1016/j.cpc.2023.108803_br0260
– year: 2013
  ident: 10.1016/j.cpc.2023.108803_br0760
– volume: 212
  start-page: 239
  year: 2017
  ident: 10.1016/j.cpc.2023.108803_br0190
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2016.10.015
– volume: 184
  start-page: 998
  year: 2013
  ident: 10.1016/j.cpc.2023.108803_br0270
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2012.11.002
– volume: 05
  year: 2019
  ident: 10.1016/j.cpc.2023.108803_br0520
  publication-title: J. High Energy Phys.
– volume: 7
  issue: 4
  year: 2019
  ident: 10.1016/j.cpc.2023.108803_br0110
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.7.4.052
– ident: 10.1016/j.cpc.2023.108803_br0750
– volume: 108
  start-page: 56
  year: 1998
  ident: 10.1016/j.cpc.2023.108803_br0130
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/S0010-4655(97)00123-9
– year: 2012
  ident: 10.1016/j.cpc.2023.108803_br0390
– volume: 78
  start-page: 199
  issue: 3
  year: 2018
  ident: 10.1016/j.cpc.2023.108803_br0600
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-018-5661-z
– year: 2017
  ident: 10.1016/j.cpc.2023.108803_br0590
– volume: 81
  start-page: 145
  issue: 2
  year: 2021
  ident: 10.1016/j.cpc.2023.108803_br0090
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-021-08942-y
– volume: 11
  year: 2020
  ident: 10.1016/j.cpc.2023.108803_br0290
  publication-title: J. High Energy Phys.
– year: 2020
  ident: 10.1016/j.cpc.2023.108803_br0770
– volume: 125
  issue: 5
  year: 2020
  ident: 10.1016/j.cpc.2023.108803_br0810
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.051801
– volume: 81
  start-page: 450
  issue: 5
  year: 2021
  ident: 10.1016/j.cpc.2023.108803_br0380
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-021-09198-2
– volume: 03
  year: 2015
  ident: 10.1016/j.cpc.2023.108803_br0580
  publication-title: J. High Energy Phys.
– volume: 75
  start-page: 440
  issue: 9
  year: 2015
  ident: 10.1016/j.cpc.2023.108803_br0100
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-015-3645-9
– volume: 06
  year: 2021
  ident: 10.1016/j.cpc.2023.108803_br0610
  publication-title: J. High Energy Phys.
– volume: 07
  year: 2014
  ident: 10.1016/j.cpc.2023.108803_br0240
  publication-title: J. High Energy Phys.
– volume: 195
  start-page: 161
  year: 2015
  ident: 10.1016/j.cpc.2023.108803_br0230
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2015.04.021
– volume: 238
  start-page: 214
  year: 2019
  ident: 10.1016/j.cpc.2023.108803_br0140
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2018.12.010
– volume: 82
  start-page: 536
  issue: 6
  year: 2022
  ident: 10.1016/j.cpc.2023.108803_br0710
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-022-10485-9
– volume: 102
  issue: 3
  year: 2020
  ident: 10.1016/j.cpc.2023.108803_br0310
  publication-title: Phys. Rev. D
– volume: 716
  start-page: 1
  year: 2012
  ident: 10.1016/j.cpc.2023.108803_br0020
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2012.08.020
– volume: 122
  issue: 12
  year: 2019
  ident: 10.1016/j.cpc.2023.108803_br0510
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.121803
– year: 2021
  ident: 10.1016/j.cpc.2023.108803_br0550
– volume: 75
  start-page: 421
  issue: 9
  year: 2015
  ident: 10.1016/j.cpc.2023.108803_br0370
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-015-3650-z
– year: 2019
  ident: 10.1016/j.cpc.2023.108803_br0730
– year: 2016
  ident: 10.1016/j.cpc.2023.108803_br0560
SSID ssj0007793
Score 2.715549
Snippet The codes HiggsBounds and HiggsSignals compare model predictions of BSM models with extended scalar sectors to searches for additional scalars and to...
SourceID swepub
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 108803
SubjectTerms Charged Higgs bosons
Elementary particle physics
Fysik
General high energy physics and computing
Higgs bosons
Higgs search
Natural Sciences
Naturvetenskap
Physical Sciences
Subatomic Physics
Subatomär fysik
Title HiggsTools: BSM scalar phenomenology with new versions of HiggsBounds and HiggsSignals
URI https://dx.doi.org/10.1016/j.cpc.2023.108803
Volume 291
WOSCitedRecordID wos001018193100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1879-2944
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0007793
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZ5Qi6ledH0RQ49BVy8eljWMS0pTSghhy0svQhLGpHH1rvEm5D--44seb1tSEihuZjFu5ZX88nyN6PRN4R8EA5BVrbIqHQm45b5zKhKZOhrlGDw6WKWt8Um5OlpORqps1SrvWnLCci6Lu_u1PRZocZzCHbYOvsPcM8bxRP4GUHHI8KOxycBH4LIzXAyGTeLxLOr3pBCGU3IJe93hvSx8uo8qltDW8qoD6HDVVhS_1TMUiGPhcSiNpKKZPUn_EpVvG77_WXfLuKiPqTGUoCB9qlq3ZxYSpVRFWUau0mTxhpb9ybgGAu4_GinQR-SspDDWOasf9v8oWsdXQyddI3O9fhGN6CnCwFLHeR6LNIoDQ4qzQuntMkZaFeVUFSOD1RllskqlULhvLx6eHw0Opm_iqVMqsvYpSAUF7zvrjfdEneb7PfX332QpCyqybYMZPiSvEiuw_5hhHyTLEG9RdbPIp7bZKMHfod8_3I0_Pw1S5UuMstZPsuMKLhxSC2hAs7dwEHuB-jKBe_VFuC5ZMB8oaxALmG49B79YCp9-NI6I9guWaknNbwi-zQXDim84I5bLiUYaqj3RuXcIZMXsEfyrmvaJhn4UI1krLt8v0uN1tDBGjpaY48czC-ZRg2Ux37MO3vpROIiOdM4RB677Ee07fwO_3F8vH7Oxt-Qjf6peUtWZtc38I6s2dvZRXP9Po3I3_COl4g
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HiggsTools&rft.jtitle=Computer+physics+communications&rft.au=Bahl%2C+Henning&rft.au=Biek%C3%B6tter%2C+Thomas&rft.au=Heinemeyer%2C+Sven&rft.au=Li%2C+Cheng&rft.date=2023-10-01&rft.issn=1879-2944&rft.volume=291&rft_id=info:doi/10.1016%2Fj.cpc.2023.108803&rft.externalDocID=oai_portal_research_lu_se_publications_2280c639_edea_46d9_b03e_da8e6ad419ab
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon