JorGPT: Instructor-Aided Grading of Programming Assignments with Large Language Models (LLMs)
This paper explores the application of large language models (LLMs) to automate the evaluation of programming assignments in an undergraduate “Introduction to Programming” course. This study addresses the challenges of manual grading, including time constraints and potential inconsistencies, by prop...
Uloženo v:
| Vydáno v: | Future internet Ročník 17; číslo 6; s. 265 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.06.2025
|
| Témata: | |
| ISSN: | 1999-5903, 1999-5903 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper explores the application of large language models (LLMs) to automate the evaluation of programming assignments in an undergraduate “Introduction to Programming” course. This study addresses the challenges of manual grading, including time constraints and potential inconsistencies, by proposing a system that integrates several LLMs to streamline the assessment process. The system utilizes a graphic interface to process student submissions, allowing instructors to select an LLM and customize the grading rubric. A comparative analysis, using LLMs from OpenAI, Google, DeepSeek and ALIBABA to evaluate student code submissions, revealed a strong correlation between LLM-generated grades and those assigned by human instructors. Specifically, the reduced model using statistically significant variables demonstrates a high explanatory power, with an adjusted R2 of 0.9156 and a Mean Absolute Error of 0.4579, indicating that LLMs can effectively replicate human grading. The findings suggest that LLMs can automate grading when paired with human oversight, drastically reducing the instructor workload, transforming a task estimated to take more than 300 h of manual work into less than 15 min of automated processing and improving the efficiency and consistency of assessment in computer science education. |
|---|---|
| AbstractList | This paper explores the application of large language models (LLMs) to automate the evaluation of programming assignments in an undergraduate “Introduction to Programming” course. This study addresses the challenges of manual grading, including time constraints and potential inconsistencies, by proposing a system that integrates several LLMs to streamline the assessment process. The system utilizes a graphic interface to process student submissions, allowing instructors to select an LLM and customize the grading rubric. A comparative analysis, using LLMs from OpenAI, Google, DeepSeek and ALIBABA to evaluate student code submissions, revealed a strong correlation between LLM-generated grades and those assigned by human instructors. Specifically, the reduced model using statistically significant variables demonstrates a high explanatory power, with an adjusted R2 of 0.9156 and a Mean Absolute Error of 0.4579, indicating that LLMs can effectively replicate human grading. The findings suggest that LLMs can automate grading when paired with human oversight, drastically reducing the instructor workload, transforming a task estimated to take more than 300 h of manual work into less than 15 min of automated processing and improving the efficiency and consistency of assessment in computer science education. This paper explores the application of large language models (LLMs) to automate the evaluation of programming assignments in an undergraduate “Introduction to Programming” course. This study addresses the challenges of manual grading, including time constraints and potential inconsistencies, by proposing a system that integrates several LLMs to streamline the assessment process. The system utilizes a graphic interface to process student submissions, allowing instructors to select an LLM and customize the grading rubric. A comparative analysis, using LLMs from OpenAI, Google, DeepSeek and ALIBABA to evaluate student code submissions, revealed a strong correlation between LLM-generated grades and those assigned by human instructors. Specifically, the reduced model using statistically significant variables demonstrates a high explanatory power, with an adjusted R[sup.2] of 0.9156 and a Mean Absolute Error of 0.4579, indicating that LLMs can effectively replicate human grading. The findings suggest that LLMs can automate grading when paired with human oversight, drastically reducing the instructor workload, transforming a task estimated to take more than 300 h of manual work into less than 15 min of automated processing and improving the efficiency and consistency of assessment in computer science education. |
| Audience | Academic |
| Author | Gordo-Herrera, Natalia Cisneros-González, Jorge Barcia-Santos, Iván Sánchez-Soriano, Javier |
| Author_xml | – sequence: 1 givenname: Jorge orcidid: 0009-0003-7859-5622 surname: Cisneros-González fullname: Cisneros-González, Jorge – sequence: 2 givenname: Natalia orcidid: 0000-0003-3466-1264 surname: Gordo-Herrera fullname: Gordo-Herrera, Natalia – sequence: 3 givenname: Iván orcidid: 0009-0001-6784-3323 surname: Barcia-Santos fullname: Barcia-Santos, Iván – sequence: 4 givenname: Javier orcidid: 0000-0002-0367-9907 surname: Sánchez-Soriano fullname: Sánchez-Soriano, Javier |
| BookMark | eNptUVFrFDEQXqSCtfbFX7Dgiwpbk80ml_h2FHueXLEP9VHCbDJZc9wmNckh_vvmPKUqncDMZPi-j0m-581JiAGb5iUlF4wp8s55uiCC9II_aU6pUqrjirCTv_pnzXnOW1KDqV6IxWnz9VNMq5vb9-065JL2psTULb1F264SWB-mNrr2JsUpwTwfrsuc_RRmDCW3P3z51m4gTVhzmPZQm-tocZfb15vNdX7zonnqYJfx_Hc9a75cfbi9_NhtPq_Wl8tNZwZGSgdCcnBgUIKjzAxqlDAOHAWXclgwHDjBnltJpeTSCaCW9uOCk5GMiAoFO2vWR10bYavvkp8h_dQRvP41iGnSkIo3O9RcASOcKg4oB0sGIMQ5BGGoUMoOpGq9Omrdpfh9j7nobdynUNfXrO_rPwvG-gfUBFXUBxdLAjP7bPRSDlwoIchhr4tHUPVYnL2p7jlf5_8QyJFgUsw5odPGFyg-hkr0O02JPlitH6yulLf_Uf68_xHwPfBvp44 |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3601448 |
| Cites_doi | 10.4324/9780203122761 10.1145/3513140 10.18653/v1/K17-1017 10.1109/CSEET58097.2023.00037 10.3390/electronics12224671 10.1007/s10639-024-12723-x 10.3390/software1010002 10.1109/TAI.2025.3567369 10.1007/978-981-97-8367-0_27 10.51380/gujr-39-02-02 10.1002/rev3.3292 10.1007/s12528-021-09305-y 10.1109/JIOT.2025.3531512 10.1016/j.lindif.2023.102274 10.1145/3568813.3600122 10.1145/3658644.3690291 10.1002/cae.22642 10.1145/3233231 10.1016/j.softx.2022.101079 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
| DOI | 10.3390/fi17060265 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC Proquest Central Business Premium Collection ProQuest Technology Collection ProQuest One ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ |
| DatabaseTitle | CrossRef Publicly Available Content Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1999-5903 |
| ExternalDocumentID | oai_doaj_org_article_59a305195ae84d04a00ffea6c1699d40 A845696606 10_3390_fi17060265 |
| GroupedDBID | -DT .4I 5VS 7WY 8FE 8FG 8FL AADQD AAFWJ AAKPC AAYXX ABDBF ABUWG ACIHN ADBBV ADMLS AEAQA AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BEZIV BGLVJ BPHCQ CCPQU CITATION DWQXO E3Z EAP EBS EJD ESX FRNLG GNUQQ GROUPED_DOAJ HCIFZ IAO ICD ITC K60 K6V K6~ K7- KQ8 M0C MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQBIZ PQBZA PQGLB PQQKQ PROAC RNS TR2 3V. 7SC 7XB 8AL 8FD 8FK ACUHS JQ2 L.- L7M L~C L~D M0N PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c430t-a685aface8af13c49b8ab45e6588473e450e25d818858f6a1d12b750b0bee9e63 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001515585700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1999-5903 |
| IngestDate | Mon Nov 10 04:29:50 EST 2025 Fri Jul 25 09:15:39 EDT 2025 Tue Nov 11 10:48:51 EST 2025 Tue Nov 04 18:15:44 EST 2025 Tue Nov 18 21:58:33 EST 2025 Sat Nov 29 07:10:32 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c430t-a685aface8af13c49b8ab45e6588473e450e25d818858f6a1d12b750b0bee9e63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3466-1264 0009-0003-7859-5622 0000-0002-0367-9907 0009-0001-6784-3323 |
| OpenAccessLink | https://www.proquest.com/docview/3223906332?pq-origsite=%requestingapplication% |
| PQID | 3223906332 |
| PQPubID | 2032396 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_59a305195ae84d04a00ffea6c1699d40 proquest_journals_3223906332 gale_infotracmisc_A845696606 gale_infotracacademiconefile_A845696606 crossref_citationtrail_10_3390_fi17060265 crossref_primary_10_3390_fi17060265 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-01 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Future internet |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Aldriye (ref_24) 2019; 10 (ref_16) 2022; 1 ref_36 ref_35 ref_12 ref_34 Kasneci (ref_28) 2023; 103 ref_33 Du (ref_1) 2020; 3 ref_10 ref_31 ref_30 Lu (ref_15) 2022; 34 Lipton (ref_32) 2018; 61 ref_18 Bhullar (ref_27) 2024; 29 Climent (ref_11) 2023; 31 Paiva (ref_13) 2022; 22 Chowdhery (ref_26) 2022; 24 ref_25 ref_23 ref_22 ref_21 Burstein (ref_19) 2004; 25 ref_20 Trust (ref_29) 2023; 23 ref_3 ref_2 Kanwal (ref_5) 2023; 39 ref_9 ref_8 Cipriano (ref_17) 2022; 18 ref_4 ref_7 ref_6 Morris (ref_14) 2021; 9 |
| References_xml | – ident: ref_9 – ident: ref_30 – ident: ref_20 doi: 10.4324/9780203122761 – ident: ref_3 – volume: 22 start-page: 1 year: 2022 ident: ref_13 article-title: Automated Assessment in Computer Science Education: A State-of-the-Art Review publication-title: ACM Trans. Comput. Educ. doi: 10.1145/3513140 – ident: ref_22 doi: 10.18653/v1/K17-1017 – ident: ref_18 doi: 10.1109/CSEET58097.2023.00037 – ident: ref_23 doi: 10.3390/electronics12224671 – volume: 3 start-page: 16 year: 2020 ident: ref_1 article-title: The Transformation of Teacher Authority in Schools publication-title: Curric. Teach. Methodol. – volume: 29 start-page: 21501 year: 2024 ident: ref_27 article-title: ChatGPT in higher education—A synthesis of the literature and a future research agenda publication-title: Educ. Inf. Technol. doi: 10.1007/s10639-024-12723-x – ident: ref_35 – volume: 24 start-page: 11324 year: 2022 ident: ref_26 article-title: PaLM: Scaling Language Modeling with Pathways publication-title: J. Mach. Learn. Res. – ident: ref_21 – volume: 1 start-page: 3 year: 2022 ident: ref_16 article-title: Automated Code Assessment for Education: Review, Classification and Perspectives on Techniques and Tools publication-title: Software doi: 10.3390/software1010002 – volume: 25 start-page: 27 year: 2004 ident: ref_19 article-title: Automated Essay Evaluation: The Criterion Online Writing Service publication-title: AI Mag. – ident: ref_6 doi: 10.1109/TAI.2025.3567369 – ident: ref_31 doi: 10.1007/978-981-97-8367-0_27 – volume: 39 start-page: 131 year: 2023 ident: ref_5 article-title: Impact of Workload on Teachers’ Efficiency and Their Students’ Academic Achievement at the University Level publication-title: Gomal Univ. J. Res. doi: 10.51380/gujr-39-02-02 – ident: ref_8 – ident: ref_25 – ident: ref_33 – volume: 9 start-page: e3292 year: 2021 ident: ref_14 article-title: Formative assessment and feedback for learning in higher education: A systematic review publication-title: Rev. Educ. doi: 10.1002/rev3.3292 – ident: ref_2 – ident: ref_12 – volume: 10 start-page: 215 year: 2019 ident: ref_24 article-title: Automated grading systems for programming assignments: A literature review publication-title: Int. J. Adv. Comput. Sci. Appl. – volume: 23 start-page: 1 year: 2023 ident: ref_29 article-title: Editorial: ChatGPT: Challenges, Opportunities, and Implications for Teacher publication-title: Contemp. Issues Technol. Teach. Educ. – ident: ref_10 – volume: 34 start-page: 416 year: 2022 ident: ref_15 article-title: A scoping review of computational thinking assessments in higher education publication-title: J. Comput. High Educ. doi: 10.1007/s12528-021-09305-y – ident: ref_7 doi: 10.1109/JIOT.2025.3531512 – volume: 103 start-page: 102274 year: 2023 ident: ref_28 article-title: ChatGPT for good? On opportunities and challenges of large language models for education publication-title: Learn. Individ. Differ. doi: 10.1016/j.lindif.2023.102274 – ident: ref_4 doi: 10.1145/3568813.3600122 – ident: ref_36 – ident: ref_34 doi: 10.1145/3658644.3690291 – volume: 31 start-page: 1321 year: 2023 ident: ref_11 article-title: Automatic assessment of object oriented programming assignments with unit testing in Python and a real case assignment publication-title: Comput. Appl. Eng. Educ. doi: 10.1002/cae.22642 – volume: 61 start-page: 35 year: 2018 ident: ref_32 article-title: The mythos of model interpretability publication-title: Commun ACM doi: 10.1145/3233231 – volume: 18 start-page: 101079 year: 2022 ident: ref_17 article-title: Drop Project: An automatic assessment tool for programming assignments publication-title: SoftwareX doi: 10.1016/j.softx.2022.101079 |
| SSID | ssj0000392667 |
| Score | 2.3071558 |
| Snippet | This paper explores the application of large language models (LLMs) to automate the evaluation of programming assignments in an undergraduate “Introduction to... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 265 |
| SubjectTerms | academic assessment AI-helped feedback Artificial intelligence automated assessment automated code assessment Automation Comparative analysis Computer science Deep learning Evaluation Feedback generative artificial intelligence Large language models Machine learning Mechanization Multiple choice Natural language processing Programming Science education Students Teachers Teaching Workloads |
| SummonAdditionalLinks | – databaseName: DOAJ dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSxxBEG5EctBDMImS1Y00JKAeBmemH9Od2yrRRFbZg4KX0PRTFnRXdsXfb1XPrK6g5JLLwMwUQ81X3V1VTfVXhPyoa6eS46qIwacCImJeWJlCwbRgokqs8lXIzSaaiwt1fa1HS62-sCaspQdugTsU2jIMM4SNioeS27JMKVrpK6l14DlbLxu9lEzlNRjcvpRNy0fKIK8_TONMFFOjF1nyQJmo_73lOPuYkw3ysQsO6aBV6hNZiZPPZH2JMvAL-Xs2nZ2OLn_SPx3163RWDMYhBno6y-XwdJroqC26usNbwH980x5ko7jpSodY-w3Xdp-SYjO02zndHw7P5web5Ork1-Xx76JrkVB4zsoHwFUJm6yPyqaKea6dso6LKPH8acMiF2WsRQCvrIRK0lahqh0ECa50Meoo2RZZnUwn8SuhyakA2VWAmIFz-IRzEGnElCCF1EzEpkcOFrAZ3_GHYxuLWwN5BEJsXiDuke_Psvcta8abUkeI_rMEMl3nB2B_09nf_Mv-PbKHtjM4H0Edb7tjBfBTyGxlBgpCRKQglT3SfyUJ88i_fr2wvunm8dzAcgc6S8bq7f-h7A5Zq7F_cN7F6ZNVGCfxG_ngHx_G89luHsJPguLzSQ priority: 102 providerName: Directory of Open Access Journals |
| Title | JorGPT: Instructor-Aided Grading of Programming Assignments with Large Language Models (LLMs) |
| URI | https://www.proquest.com/docview/3223906332 https://doaj.org/article/59a305195ae84d04a00ffea6c1699d40 |
| Volume | 17 |
| WOSCitedRecordID | wos001515585700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ (Directory of Open Access Journals) customDbUrl: eissn: 1999-5903 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392667 issn: 1999-5903 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1999-5903 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392667 issn: 1999-5903 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1999-5903 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392667 issn: 1999-5903 databaseCode: M0C dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1999-5903 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392667 issn: 1999-5903 databaseCode: P5Z dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1999-5903 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392667 issn: 1999-5903 databaseCode: K7- dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest ABI/INFORM Collection customDbUrl: eissn: 1999-5903 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392667 issn: 1999-5903 databaseCode: 7WY dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Proquest Central customDbUrl: eissn: 1999-5903 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392667 issn: 1999-5903 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1999-5903 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392667 issn: 1999-5903 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEF9s64M-1G-8Wo8FBe1DaJL9yMYXuZa2Vu-OIBVbQcJ-loN6qZfi3-9MsndtQX3xZSDZIWwyszsfmf0NIa_z3KhguEq8syEBj5gnWgaXsFIwkQWW2cx1zSaK6VSdnpZVTLi1saxyuSd2G7VrLObId0HxIDyXjOXvL38m2DUK_67GFhprZAORykDPN_YOptXnVZYlBfMvZdHjkjJ4wG6YdYAxOVqTG5aoA-z_27bc2ZrDB_87y4dkM3qZdNSrxSNyx88fk_s3sAefkO8fm8VRdfKOHkcM2WaRjGbOO3q06OrqaRNo1Vdv_cBLEOTsvD8RRzF7S8dYRA60T3hS7Kp20dK34_Gk3XlKvhwenOx_SGKvhcRyll6BgJTQQVuvdMiY5aVR2nDhJR5kLZjnIvW5cGDelVBB6sxluQFvw6TG-9JL9oysz5u5f05oMMpBmObA-eAcHmEMuCw-BIhFSyZ8MSA7y-9e2whEjv0wLmoISFBG9bWMBuTViveyh9_4I9ceim_FgZDZ3Y1mcV7HFViLUjP0V4X2CibHdZqG4LW0mSxLx9MBeYPCr3Fhw3SsjucT4KUQIqseKfA1EctUDsj2LU5YkPb28FI36rghtPW1Ymz9e_gFuZdji-Eu0bNN1kED_Ety1_66mrWLIVkrvp4No5YPuwQC0E9FAnSS7gOtxDcYr44n1dlvTN8JTg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ba9RAFB5qFdQH7-Jq1QEV7UNokrnsRBBZq23XZpd9WKEvMk7mUhbqpiZF8U_5Gz0nl20L6lsffAkkM4SZzDfnljnfIeR5mhYqFFxF3tkQgUXMIyODi1gmmEgCS2zimmITw-lUHRxkszXyq8-FwWOVvUxsBLUrLcbItwB44J5LxtK3x98irBqFf1f7EhotLPb9zx_gstVvxu9hfV-k6c6H-fZe1FUViCxn8QkMRQkTjPXKhIRZnhXKFFx4iSmbQ-a5iH0qHCgyJVSQJnFJWoBeLeLC-8xLBu-9RC5zcLxwX03i7VVMJwZjQ8phy4LKYLhbYdHQ06Sou87ovaY8wN-UQKPZdm7-b9_kFrnR2dB01IL-Nlnzyzvk-hlmxbvk88ey2p3NX9Nxx5BbVtFo4byju1WTNUDLQGft2bSveAswXRy2-X4UY9M0xyPycG3DuRRrxh3V9FWeT-rNe-TThczvPllflkv_gNBQKAdOqAPTinN4RVGAQeZDAE87Y8IPB2SzX2dtO5p1rPZxpMHdQkzoU0wMyLNV3-OWXOSPvd4hXFY9kBC8eVBWh7qTL1pkhqE1LoxXMDhu4jgEb6RNZJY5Hg_ISwSbRrEFw7Gmy76ASSEBmB4psKSRqVUOyMa5niBu7PnmHou6E3e1PgXiw383PyVX9-aTXOfj6f4jci3FYspNSGuDrAMa_GNyxX4_WdTVk2ZnUfLlomH7GywrXsA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ba9RAFB5qFdEH7-Jq1QEV7UPYJHPJRBBZrVvXrss-tFAEGSdzKQt1U5Oi-Nf8dZ6Ty7YF9a0PvgSSDGGS-ebccs53CHmapoUKBVeRdzZEYBHzyMjgIpYLJpLAEpu4ptlENpup_f18vkZ-9bUwmFbZy8RGULvSYox8CMAD91wylg5DlxYx3xq_PvoWYQcp_NPat9NoIbLjf_4A961-NdmCtX6WpuN3u2_fR12HgchyFh_DtJQwwVivTEiY5XmhTMGFl1i-mTHPRexT4UCpKaGCNIlL0gJ0bBEX3udeMnjuBXIx41JhOtlcfFrFd2IwPKTMWkZUBlMfhkVDVZOiHjulA5tWAX9TCI2WG1__n7_PDXKts63pqN0MN8maX94iV08xLt4mnz-U1fZ89yWddMy5ZRWNFs47ul011QS0DHTe5qx9xVOA7-KgrQOkGLOmU0ydh2Mb5qXYS-6wpi-m04_15h2ydy7vd5esL8ulv0doKJQD59SBycU5PKIowFDzIYAHnjPhswHZ7Ndc245-HbuAHGpwwxAf-gQfA_JkNfaoJR3546g3CJ3VCCQKby6U1YHu5I4WuWFopQvjFUyOmzgOwRtpE5nnjscD8hyBp1GcwXSs6aoy4KWQGEyPFFjYyOAqB2TjzEgQQ_bs7R6XuhODtT4B5f1_335MLgNa9XQy23lArqTYY7mJdG2QdQCDf0gu2e_Hi7p61GwySr6cN2p_A2nQZ9A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=JorGPT%3A+Instructor-Aided+Grading+of+Programming+Assignments+with+Large+Language+Models+%28LLMs%29&rft.jtitle=Future+internet&rft.au=Cisneros-Gonz%C3%A1lez%2C+Jorge&rft.au=Gordo-Herrera%2C+Natalia&rft.au=Barcia-Santos%2C+Iv%C3%A1n&rft.au=S%C3%A1nchez-Soriano%2C+Javier&rft.date=2025-06-01&rft.pub=MDPI+AG&rft.eissn=1999-5903&rft.volume=17&rft.issue=6&rft.spage=265&rft_id=info:doi/10.3390%2Ffi17060265&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-5903&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-5903&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-5903&client=summon |