Intelligent Complementary Multi-Modal Fusion for Anomaly Surveillance and Security System

Recently, security monitoring facilities have mainly adopted artificial intelligence (AI) technology to provide both increased security and improved performance. However, there are technical challenges in the pursuit of elevating system performance, automation, and security efficiency. In this paper...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 23; no. 22; p. 9214
Main Authors: Jeong, Jae-hyeok, Jung, Hwan-hee, Choi, Yong-hoon, Park, Seong-hee, Kim, Min-suk
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.11.2023
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Recently, security monitoring facilities have mainly adopted artificial intelligence (AI) technology to provide both increased security and improved performance. However, there are technical challenges in the pursuit of elevating system performance, automation, and security efficiency. In this paper, we proposed intelligent anomaly detection and classification based on deep learning (DL) using multi-modal fusion. To verify the method, we combined two DL-based schemes, such as (i) the 3D Convolutional AutoEncoder (3D-AE) for anomaly detection and (ii) the SlowFast neural network for anomaly classification. The 3D-AE can detect occurrence points of abnormal events and generate regions of interest (ROI) by the points. The SlowFast model can classify abnormal events using the ROI. These multi-modal approaches can complement weaknesses and leverage strengths in the existing security system. To enhance anomaly learning effectiveness, we also attempted to create a new dataset using the virtual environment in Grand Theft Auto 5 (GTA5). The dataset consists of 400 abnormal-state data and 78 normal-state data with clip sizes in the 8–20 s range. Virtual data collection can also supplement the original dataset, as replicating abnormal states in the real world is challenging. Consequently, the proposed method can achieve a classification accuracy of 85%, which is higher compared to the 77.5% accuracy achieved when only employing the single classification model. Furthermore, we validated the trained model with the GTA dataset by using a real-world assault class dataset, consisting of 1300 instances that we reproduced. As a result, 1100 data as the assault were classified and achieved 83.5% accuracy. This also shows that the proposed method can provide high performance in real-world environments.
AbstractList Recently, security monitoring facilities have mainly adopted artificial intelligence (AI) technology to provide both increased security and improved performance. However, there are technical challenges in the pursuit of elevating system performance, automation, and security efficiency. In this paper, we proposed intelligent anomaly detection and classification based on deep learning (DL) using multi-modal fusion. To verify the method, we combined two DL-based schemes, such as (i) the 3D Convolutional AutoEncoder (3D-AE) for anomaly detection and (ii) the SlowFast neural network for anomaly classification. The 3D-AE can detect occurrence points of abnormal events and generate regions of interest (ROI) by the points. The SlowFast model can classify abnormal events using the ROI. These multi-modal approaches can complement weaknesses and leverage strengths in the existing security system. To enhance anomaly learning effectiveness, we also attempted to create a new dataset using the virtual environment in Grand Theft Auto 5 (GTA5). The dataset consists of 400 abnormal-state data and 78 normal-state data with clip sizes in the 8–20 s range. Virtual data collection can also supplement the original dataset, as replicating abnormal states in the real world is challenging. Consequently, the proposed method can achieve a classification accuracy of 85%, which is higher compared to the 77.5% accuracy achieved when only employing the single classification model. Furthermore, we validated the trained model with the GTA dataset by using a real-world assault class dataset, consisting of 1300 instances that we reproduced. As a result, 1100 data as the assault were classified and achieved 83.5% accuracy. This also shows that the proposed method can provide high performance in real-world environments.
Recently, security monitoring facilities have mainly adopted artificial intelligence (AI) technology to provide both increased security and improved performance. However, there are technical challenges in the pursuit of elevating system performance, automation, and security efficiency. In this paper, we proposed intelligent anomaly detection and classification based on deep learning (DL) using multi-modal fusion. To verify the method, we combined two DL-based schemes, such as (i) the 3D Convolutional AutoEncoder (3D-AE) for anomaly detection and (ii) the SlowFast neural network for anomaly classification. The 3D-AE can detect occurrence points of abnormal events and generate regions of interest (ROI) by the points. The SlowFast model can classify abnormal events using the ROI. These multi-modal approaches can complement weaknesses and leverage strengths in the existing security system. To enhance anomaly learning effectiveness, we also attempted to create a new dataset using the virtual environment in Grand Theft Auto 5 (GTA5). The dataset consists of 400 abnormal-state data and 78 normal-state data with clip sizes in the 8-20 s range. Virtual data collection can also supplement the original dataset, as replicating abnormal states in the real world is challenging. Consequently, the proposed method can achieve a classification accuracy of 85%, which is higher compared to the 77.5% accuracy achieved when only employing the single classification model. Furthermore, we validated the trained model with the GTA dataset by using a real-world assault class dataset, consisting of 1300 instances that we reproduced. As a result, 1100 data as the assault were classified and achieved 83.5% accuracy. This also shows that the proposed method can provide high performance in real-world environments.Recently, security monitoring facilities have mainly adopted artificial intelligence (AI) technology to provide both increased security and improved performance. However, there are technical challenges in the pursuit of elevating system performance, automation, and security efficiency. In this paper, we proposed intelligent anomaly detection and classification based on deep learning (DL) using multi-modal fusion. To verify the method, we combined two DL-based schemes, such as (i) the 3D Convolutional AutoEncoder (3D-AE) for anomaly detection and (ii) the SlowFast neural network for anomaly classification. The 3D-AE can detect occurrence points of abnormal events and generate regions of interest (ROI) by the points. The SlowFast model can classify abnormal events using the ROI. These multi-modal approaches can complement weaknesses and leverage strengths in the existing security system. To enhance anomaly learning effectiveness, we also attempted to create a new dataset using the virtual environment in Grand Theft Auto 5 (GTA5). The dataset consists of 400 abnormal-state data and 78 normal-state data with clip sizes in the 8-20 s range. Virtual data collection can also supplement the original dataset, as replicating abnormal states in the real world is challenging. Consequently, the proposed method can achieve a classification accuracy of 85%, which is higher compared to the 77.5% accuracy achieved when only employing the single classification model. Furthermore, we validated the trained model with the GTA dataset by using a real-world assault class dataset, consisting of 1300 instances that we reproduced. As a result, 1100 data as the assault were classified and achieved 83.5% accuracy. This also shows that the proposed method can provide high performance in real-world environments.
Audience Academic
Author Choi, Yong-hoon
Park, Seong-hee
Jeong, Jae-hyeok
Kim, Min-suk
Jung, Hwan-hee
Author_xml – sequence: 1
  givenname: Jae-hyeok
  surname: Jeong
  fullname: Jeong, Jae-hyeok
– sequence: 2
  givenname: Hwan-hee
  surname: Jung
  fullname: Jung, Hwan-hee
– sequence: 3
  givenname: Yong-hoon
  surname: Choi
  fullname: Choi, Yong-hoon
– sequence: 4
  givenname: Seong-hee
  surname: Park
  fullname: Park, Seong-hee
– sequence: 5
  givenname: Min-suk
  orcidid: 0000-0003-4519-1683
  surname: Kim
  fullname: Kim, Min-suk
BookMark eNptkU1r3DAQhkVIIR_tof_A0Et7cKJPWz4uS9MuJPSQ5pCTkOXRokWWtpJc2H9fbbaEEooOGmaeeWeG9wqdhxgAoY8E3zA24NtMGaUDJfwMXRJOeSspxef_xBfoKucdxpQxJi_R8yYU8N5tIZRmHee9h7mGOh2ah8UX1z7ESfvmbskuhsbG1KxCnLU_NI9L-g3Oex0MNDpMzSOYJblSK4dcYH6P3lntM3z4-1-jp7uvP9ff2_sf3zbr1X1rOMOl1XzUkvdGckEMl92IWceoHIXAmlhjNcYTk0xM2AhqLBm1HRi35FjFREzsGm1OulPUO7VPbq7Lq6ideknEtFU6FWc8KEm1pXyCgdmejwRLTHlnAawUI-t6qFqfT1r7FH8tkIuaXTZwPBLikhWVA6uL9oJX9NMbdBeXFOqlLxQTtBtEpW5O1FbX-S7YWJI29U0wO1Ots67mV33PGe1w19WGL6cGk2LOCezrRQSro8Pq1eHK3r5hjSu6VKPqEOf_0_EHqJOoPA
CitedBy_id crossref_primary_10_1142_S0218213025500101
crossref_primary_10_3390_electronics13132579
crossref_primary_10_1145_3727257_3727258
Cites_doi 10.1007/978-981-16-8403-6_59
10.1007/978-3-030-58452-8_23
10.1007/s11042-020-09964-6
10.1109/CVPR.2019.00803
10.1109/ACCESS.2020.2979869
10.1109/CVPR42600.2020.01438
10.1109/ICCTET.2014.6966297
10.1109/ICCV.2013.338
10.3390/s19194145
10.1109/ICCV.2011.6126543
10.1109/MLSP.2017.8168155
10.1049/ipr2.12532
10.1109/CVPR42600.2020.01055
10.1109/ACCESS.2021.3059170
10.1016/j.procs.2020.06.030
10.1109/ICIMIA48430.2020.9074920
10.1109/ICCV.2017.45
10.1007/978-3-319-46475-6_7
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
DOA
DOI 10.3390/s23229214
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef

MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_82af24de93f74b1080246feef85b367e
A774326066
10_3390_s23229214
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
PUEGO
ID FETCH-LOGICAL-c430t-a4ba847c8451c486b036328b550a1fcfa00d3835d0c52cf1baf934f10a1f015d3
IEDL.DBID BENPR
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001115373200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:43:58 EDT 2025
Thu Oct 02 05:43:38 EDT 2025
Tue Oct 07 07:37:36 EDT 2025
Tue Nov 04 18:32:35 EST 2025
Sat Nov 29 07:13:48 EST 2025
Tue Nov 18 21:50:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c430t-a4ba847c8451c486b036328b550a1fcfa00d3835d0c52cf1baf934f10a1f015d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4519-1683
OpenAccessLink https://www.proquest.com/docview/2893352695?pq-origsite=%requestingapplication%
PQID 2893352695
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_82af24de93f74b1080246feef85b367e
proquest_miscellaneous_2893845754
proquest_journals_2893352695
gale_infotracacademiconefile_A774326066
crossref_primary_10_3390_s23229214
crossref_citationtrail_10_3390_s23229214
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_14
ref_13
ref_12
ref_10
Xu (ref_17) 2021; 80
ref_31
ref_30
ref_18
ref_15
Agarwal (ref_21) 2022; 106
Bhatti (ref_16) 2021; 9
Ganokratanaa (ref_11) 2020; 8
ref_25
ref_24
ref_23
ref_22
ref_20
Jia (ref_6) 2022; 16
ref_1
ref_3
Singh (ref_19) 2020; 173
ref_2
ref_29
ref_28
ref_27
ref_26
ref_9
ref_8
ref_5
ref_4
ref_7
References_xml – ident: ref_7
– volume: 106
  start-page: 647
  year: 2022
  ident: ref_21
  article-title: Suspicious activity detection in surveillance applications using slowfast convolutional neural network
  publication-title: Adv. Data Comput. Commun. Secur.
  doi: 10.1007/978-981-16-8403-6_59
– ident: ref_9
– ident: ref_27
  doi: 10.1007/978-3-030-58452-8_23
– ident: ref_30
– ident: ref_5
– ident: ref_3
– ident: ref_24
– volume: 80
  start-page: 5495
  year: 2021
  ident: ref_17
  article-title: A deep learning approach to building an intelligent video surveillance system
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-020-09964-6
– ident: ref_12
  doi: 10.1109/CVPR.2019.00803
– volume: 8
  start-page: 50312
  year: 2020
  ident: ref_11
  article-title: Unsupervised anomaly detection and localization based on deep spatiotemporal translation network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2979869
– ident: ref_31
  doi: 10.1109/CVPR42600.2020.01438
– ident: ref_1
– ident: ref_8
  doi: 10.1109/ICCTET.2014.6966297
– ident: ref_22
  doi: 10.1109/ICCV.2013.338
– ident: ref_14
  doi: 10.3390/s19194145
– ident: ref_25
  doi: 10.1109/ICCV.2011.6126543
– ident: ref_28
  doi: 10.1109/MLSP.2017.8168155
– ident: ref_4
– ident: ref_29
– ident: ref_2
– volume: 16
  start-page: 2973
  year: 2022
  ident: ref_6
  article-title: Dynamic thresholding for video anomaly detection
  publication-title: IET Image Process
  doi: 10.1049/ipr2.12532
– ident: ref_10
– ident: ref_13
  doi: 10.1109/CVPR42600.2020.01055
– ident: ref_15
– volume: 9
  start-page: 34366
  year: 2021
  ident: ref_16
  article-title: Weapon detection in real-time CCTV videos using deep learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3059170
– volume: 173
  start-page: 254
  year: 2020
  ident: ref_19
  article-title: Real-time anomaly recognition through CCTV using neural networks
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.06.030
– ident: ref_18
  doi: 10.1109/ICIMIA48430.2020.9074920
– ident: ref_20
– ident: ref_23
  doi: 10.1109/ICCV.2017.45
– ident: ref_26
  doi: 10.1007/978-3-319-46475-6_7
SSID ssj0023338
Score 2.44777
Snippet Recently, security monitoring facilities have mainly adopted artificial intelligence (AI) technology to provide both increased security and improved...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 9214
SubjectTerms 3D convolutional autoencoder
anomaly classification
anomaly detection
Artificial intelligence
Automation
Classification
Computational linguistics
Data entry
Datasets
Language processing
Learning
Monitoring systems
multi-modal
Natural language interfaces
Neural networks
Security systems
slowfast
Surveillance
surveillance and security
Teaching methods
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS91AEB-KeKgHaW3FVCvbItRLMNnsJrtHlT5aaKWgLXpaNvsBgs2T9yH433cm2RcULF68ZoewmdnZmV925zcAB60ucZeTEj2taXOBSyhXobB5YaOvtQ5B9KQ-f340Z2fq8lL_etDqi-6EDfTAg-KOFLeRCx90FRvR0o04LuoYQlSyreom0O6LD1dgKkGtCpHXwCNUIag_mmPewDUvxaPo05P0_28r7uPL5A1spsSQHQ8TeguvQrcFGw_oAt_B1feRP3PByJHT1e_ZPevraPOfU4-vmCzpDxjDbJQhuP9rb-7Z-XJ2F6i_EJqY2c6z89S2jg2M5e_h9-Trxem3PLVGyB3qc5Fb0VqMK04JWTqh6pbOY7lqEW_YMrpoi8Ij9pS-cJK7WLY26krEkkYxAfDVNqx10y7sANNFkLYKiPMwUlnlLSq8dqLwIXKu6iKDw5XKjEu84dS-4sYgfiDtmlG7GXweRW8HsoynhE5I76MA8Vv3D9DqJlndPGf1DL6Q1Qx5IU7G2VRMgJ9EfFbmGLNaTEwxn8pgb2VYk9xzbhBlUq1ZrWUGn8ZhdCw6LbFdmC4HGVRvI8WHl5jxLrymTvVDGeMerC1my_AR1t3d4no-2-9X7z_rx_P1
  priority: 102
  providerName: Directory of Open Access Journals
Title Intelligent Complementary Multi-Modal Fusion for Anomaly Surveillance and Security System
URI https://www.proquest.com/docview/2893352695
https://www.proquest.com/docview/2893845754
https://doaj.org/article/82af24de93f74b1080246feef85b367e
Volume 23
WOSCitedRecordID wos001115373200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RLQd64I0aKCuDkOASNXGcxDmhLdoVldjVigLaniLHD4RUkpLdrdQLv52ZxBtAAi5ccrAty_F4xjNj-_sAXlRFjFYuTVHT8ioUuIRCaSMVRsqZrCisFR2oz6d3-WIhV6ti6RNua3-tcmcTO0NtGk058mNOvPBEh52-vvwWEmsUna56Co092CekMjGC_ZPpYvl-CLkSjMB6PKEEg_vjNfoPvOCx-G0X6sD6_2aSu31mdud_R3gXbnsPk036JXEPbtj6Phz8gjv4AM5PByDODSOL4O-Qt9ese5AbzhuDXcy2lEpj6NaySd18VRfX7GzbXlkiKsK1wlRt2Jnnv2M99PlD-DibfnjzNvQcC6FGwWxCJSqFG5SWIo21kFlFB7tcVhi4qNhpp6LIYBCbmkinXLu4Uq5IhIupFj0JkzyCUd3U9hBYEdlUJRYDRtzylDSKK5dpERnrOJdZFMCr3ZyX2gOQEw_GRYmBCImnHMQTwPOh6WWPuvGnRickuKEBAWV3BU37ufR6V0ocBBfGFonLRUUXKrnInLVOplWS5TaAlyT2ktQZB6OVf5WAv0TAWOUE3WP0cNExC-BoJ_bS6_m6_CnzAJ4N1aihdOyiatts-zY4vXkqHv-7iydwi8js-5eORzDatFv7FG7qq82XdTuGvXyVd1859st83GUQ8Dv_PsWy5el8ef4Dl5cJAQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qBQk4sCMCBQwCwSVq4jjbAaFhGXXU6QipBQ0n43ipKpWkZGaK5k_xG3kvW0ECbj1wjS3Ljj-_xcv3ATwr8hCtXBzjSksLXyCE_MwGyg-UM0meWysaUp9P03Q2y-bz_MMG_OjfwtC1yt4mNobaVJr2yLc56cKTHHb8-uSbT6pRdLraS2i0sNi16--Ysi1eTd7h_D7nfPz-4O2O36kK-Bq7svSVKBSaZJ2JONQiSwo6yuRZgaG6Cp12KggMpm2xCXTMtQsL5fJIuJBK0XeaCNu9ABdxhCldIUvnZwlehPley14URXmwvcBohec8FL_5vEYa4G8OoPFq4-v_2_-4Ade6-JmNWsDfhA1b3oKrv7Aq3obPk4FmdMnI3nU35Os1a54b-3uVwSbGK9ooZBi0s1FZfVXHa7a_qk8tyTDhSmCqNGy_U_djLbH7Hfh4LmO7C5tlVdp7wPLAxiqymA6jQ1eZUVy5RIvAWMd5lgQevOznWOqOXp1UPo4lplkEBznAwYOnQ9WTllPkT5XeEFCGCkQD3nyo6kPZWRWZYSe4MDaPXCoKui7KReKsdVlcRElqPXhBMJNkrLAzWnVvLnBIRPslRxj8Y_yOYacHWz3MZGfFFvIMYx48GYrR_tChkipttWrr4O9NY3H_3008hss7B3tTOZ3Mdh_AFY7LpX3TuQWby3plH8Ilfbo8WtSPmkXF4Mt5o_Yna89eEA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qLUKw4I0IFDAIRDfRJI7zWiA0UEaM2o5GKqB2ZRzHRkglKZmZovk1vo57EyeABOy6YJtYlp2c-_LjHICnRR6il4tjtLS08AVCyM9MoPxA2TLJc2NES-rzYT-dzbKjo3y-Ad_7uzB0rLL3ia2jLmtNa-QjTrrwJIcdj6w7FjHfnbw8_eqTghTttPZyGh1E9sz6G5ZvixfTXfzXzzifvHn3-q3vFAZ8jcNa-koUCt2zzkQcapElBW1r8qzAtF2FVlsVBCWWcHEZ6JhrGxbK5pGwIb3FOFpG2O8F2MKUXKCNbc2nB_PjodyLsPrruIyiKA9GC8xdeM5D8VsEbIUC_hYO2hg3ufY_f53rcNVl1mzcmcIN2DDVTbjyC9_iLTieDgSkS0ae0J2db9asvYjsH9QldjFZ0RIiw3Sejav6izpZs8NVc2ZIoAlthKmqZIdO9491lO-34f25zO0ObFZ1Ze4CywMTq8hgoYyhXmWl4somWgSlsZxnSeDBTv-_pXbE66T_cSKxACNoyAEaHjwZmp52bCN_avSKQDM0IILw9kHdfJLO38gMB8FFafLIpqKgg6RcJNYYm8VFlKTGg-cEOUluDAejlbuNgVMiQjA5xrIAM3tMSD3Y7iEnnX9byJ948-Dx8Bo9E203qcrUq64Nft40Fvf-3cUjuIRglfvT2d59uMzRcrrLntuwuWxW5gFc1GfLz4vmobMwBh_PG7Y_AAn8aF8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Complementary+Multi-Modal+Fusion+for+Anomaly+Surveillance+and+Security+System&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Jeong%2C+Jae-hyeok&rft.au=Jung%2C+Hwan-hee&rft.au=Choi%2C+Yong-hoon&rft.au=Park%2C+Seong-hee&rft.date=2023-11-01&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=22&rft.spage=9214&rft_id=info:doi/10.3390%2Fs23229214&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s23229214
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon