Metacognition and Self-Efficacy in Action: How First-Year Students Monitor and Use Self-Coaching to Move Past Metacognitive Discomfort During Problem Solving
Stronger metacognitive regulation skills and higher self-efficacy are linked to increased academic achievement. Metacognition and self-efficacy have primarily been studied using retrospective methods, but these methods limit access to students' in-the-moment metacognition and self-efficacy. We...
Uloženo v:
| Vydáno v: | CBE life sciences education Ročník 23; číslo 2; s. ar13 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
01.06.2024
|
| Témata: | |
| ISSN: | 1931-7913, 1931-7913 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Stronger metacognitive regulation skills and higher self-efficacy are linked to increased academic achievement. Metacognition and self-efficacy have primarily been studied using retrospective methods, but these methods limit access to students' in-the-moment metacognition and self-efficacy. We investigated first-year life science students' metacognition and self-efficacy while they solved challenging problems, and asked: 1) What metacognitive regulation skills are evident when first-year life science students solve problems on their own? and 2) What aspects of learning self-efficacy do first-year life science students reveal when they solve problems on their own? Think-aloud interviews were conducted with 52 first-year life science students across three institutions and analyzed using content analysis. Our results reveal that while first-year life science students plan, monitor, and evaluate when solving challenging problems, they monitor in a myriad of ways. One aspect of self-efficacy, which we call self-coaching, helped students move past the discomfort of monitoring a lack of understanding so they could take action. These verbalizations suggest ways we can encourage students to couple their metacognitive skills and self-efficacy to persist when faced with challenging problems. Based on our findings, we offer recommendations for helping first-year life science students develop and strengthen their metacognition to achieve improved problem-solving performance. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1931-7913 1931-7913 |
| DOI: | 10.1187/cbe.23-08-0158 |