Active control of the spatial MRI phase distribution with optimal control theory

[Display omitted] •Optimal RF pulses are designed to actively control magnetization phase in MRI.•The design of RF pulses is achieved with Optimal Control Theory.•RF pulses are computed to create non-trivial phase patterns.•Optimal RF pulses can directly encode wave propagation in MR Elastography. T...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of magnetic resonance (1997) Ročník 281; s. 82 - 93
Hlavní autoři: Lefebvre, Pauline M., Van Reeth, Eric, Ratiney, Hélène, Beuf, Olivier, Brusseau, Elisabeth, Lambert, Simon A., Glaser, Steffen J., Sugny, Dominique, Grenier, Denis, Tse Ve Koon, Kevin
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Elsevier Inc 01.08.2017
Elsevier
Témata:
ISSN:1090-7807, 1096-0856, 1096-0856
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:[Display omitted] •Optimal RF pulses are designed to actively control magnetization phase in MRI.•The design of RF pulses is achieved with Optimal Control Theory.•RF pulses are computed to create non-trivial phase patterns.•Optimal RF pulses can directly encode wave propagation in MR Elastography. This paper investigates the use of Optimal Control (OC) theory to design Radio-Frequency (RF) pulses that actively control the spatial distribution of the MRI magnetization phase. The RF pulses are generated through the application of the Pontryagin Maximum Principle and optimized so that the resulting transverse magnetization reproduces various non-trivial and spatial phase patterns. Two different phase patterns are defined and the resulting optimal pulses are tested both numerically with the ODIN MRI simulator and experimentally with an agar gel phantom on a 4.7T small-animal MR scanner. Phase images obtained in simulations and experiments are both consistent with the defined phase patterns. A practical application of phase control with OC-designed pulses is also presented, with the generation of RF pulses adapted for a Magnetic Resonance Elastography experiment. This study demonstrates the possibility to use OC-designed RF pulses to encode information in the magnetization phase and could have applications in MRI sequences using phase images.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1090-7807
1096-0856
1096-0856
DOI:10.1016/j.jmr.2017.05.008