Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action

The investigation of novel nanoparticles with antimicrobial activity has grown in recent years due to the increased incidence of nosocomial infections occurring during hospitalization and food poisoning derived from foodborne pathogens. Antimicrobial agents are necessary in various fields in which b...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Beilstein journal of nanotechnology Ročník 11; číslo 1; s. 1450 - 1469
Hlavní autori: Guerrero Correa, Matías, Martínez, Fernanda B, Vidal, Cristian Patiño, Streitt, Camilo, Escrig, Juan, de Dicastillo, Carol Lopez
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Trakehner Str. 7-9, 60487 Frankfurt am Main, Germany Beilstein-Institut 25.09.2020
Predmet:
ISSN:2190-4286, 2190-4286
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The investigation of novel nanoparticles with antimicrobial activity has grown in recent years due to the increased incidence of nosocomial infections occurring during hospitalization and food poisoning derived from foodborne pathogens. Antimicrobial agents are necessary in various fields in which biological contamination occurs. For example, in food packaging they are used to control food contamination by microbes, in the medical field the microbial agents are important for reducing the risk of contamination in invasive and routine interventions, and in the textile industry, they can limit the growth of microorganisms due to sweat. The combination of nanotechnology with materials that have an intrinsic antimicrobial activity can result in the development of novel antimicrobial substances. Specifically, metal-based nanoparticles have attracted much interest due to their broad effectiveness against pathogenic microorganisms due to their high surface area and high reactivity. The aim of this review was to explore the state-of-the-art in metal-based nanoparticles, focusing on their synthesis methods, types, and their antimicrobial action. Different techniques used to synthesize metal-based nanoparticles were discussed, including chemical and physical methods and “green synthesis” methods that are free of chemical agents. Although the most studied nanoparticles with antimicrobial properties are metallic or metal-oxide nanoparticles, other types of nanoparticles, such as superparamagnetic iron-oxide nanoparticles and silica-releasing systems also exhibit antimicrobial properties. Finally, since the quantification and understanding of the antimicrobial action of metal-based nanoparticles are key topics, several methods for evaluating in vitro antimicrobial activity and the most common antimicrobial mechanisms (e.g., cell damage and changes in the expression of metabolic genes) were discussed in this review.
AbstractList The investigation of novel nanoparticles with antimicrobial activity has grown in recent years due to the increased incidence of nosocomial infections occurring during hospitalization and food poisoning derived from foodborne pathogens. Antimicrobial agents are necessary in various fields in which biological contamination occurs. For example, in food packaging they are used to control food contamination by microbes, in the medical field the microbial agents are important for reducing the risk of contamination in invasive and routine interventions, and in the textile industry, they can limit the growth of microorganisms due to sweat. The combination of nanotechnology with materials that have an intrinsic antimicrobial activity can result in the development of novel antimicrobial substances. Specifically, metal-based nanoparticles have attracted much interest due to their broad effectiveness against pathogenic microorganisms due to their high surface area and high reactivity. The aim of this review was to explore the state-of-the-art in metal-based nanoparticles, focusing on their synthesis methods, types, and their antimicrobial action. Different techniques used to synthesize metal-based nanoparticles were discussed, including chemical and physical methods and “green synthesis” methods that are free of chemical agents. Although the most studied nanoparticles with antimicrobial properties are metallic or metal-oxide nanoparticles, other types of nanoparticles, such as superparamagnetic iron-oxide nanoparticles and silica-releasing systems also exhibit antimicrobial properties. Finally, since the quantification and understanding of the antimicrobial action of metal-based nanoparticles are key topics, several methods for evaluating in vitro antimicrobial activity and the most common antimicrobial mechanisms (e.g., cell damage and changes in the expression of metabolic genes) were discussed in this review.
The investigation of novel nanoparticles with antimicrobial activity has grown in recent years due to the increased incidence of nosocomial infections occurring during hospitalization and food poisoning derived from foodborne pathogens. Antimicrobial agents are necessary in various fields in which biological contamination occurs. For example, in food packaging they are used to control food contamination by microbes, in the medical field the microbial agents are important for reducing the risk of contamination in invasive and routine interventions, and in the textile industry, they can limit the growth of microorganisms due to sweat. The combination of nanotechnology with materials that have an intrinsic antimicrobial activity can result in the development of novel antimicrobial substances. Specifically, metal-based nanoparticles have attracted much interest due to their broad effectiveness against pathogenic microorganisms due to their high surface area and high reactivity. The aim of this review was to explore the state-of-the-art in metal-based nanoparticles, focusing on their synthesis methods, types, and their antimicrobial action. Different techniques used to synthesize metal-based nanoparticles were discussed, including chemical and physical methods and "green synthesis" methods that are free of chemical agents. Although the most studied nanoparticles with antimicrobial properties are metallic or metal-oxide nanoparticles, other types of nanoparticles, such as superparamagnetic iron-oxide nanoparticles and silica-releasing systems also exhibit antimicrobial properties. Finally, since the quantification and understanding of the antimicrobial action of metal-based nanoparticles are key topics, several methods for evaluating in vitro antimicrobial activity and the most common antimicrobial mechanisms (e.g., cell damage and changes in the expression of metabolic genes) were discussed in this review.The investigation of novel nanoparticles with antimicrobial activity has grown in recent years due to the increased incidence of nosocomial infections occurring during hospitalization and food poisoning derived from foodborne pathogens. Antimicrobial agents are necessary in various fields in which biological contamination occurs. For example, in food packaging they are used to control food contamination by microbes, in the medical field the microbial agents are important for reducing the risk of contamination in invasive and routine interventions, and in the textile industry, they can limit the growth of microorganisms due to sweat. The combination of nanotechnology with materials that have an intrinsic antimicrobial activity can result in the development of novel antimicrobial substances. Specifically, metal-based nanoparticles have attracted much interest due to their broad effectiveness against pathogenic microorganisms due to their high surface area and high reactivity. The aim of this review was to explore the state-of-the-art in metal-based nanoparticles, focusing on their synthesis methods, types, and their antimicrobial action. Different techniques used to synthesize metal-based nanoparticles were discussed, including chemical and physical methods and "green synthesis" methods that are free of chemical agents. Although the most studied nanoparticles with antimicrobial properties are metallic or metal-oxide nanoparticles, other types of nanoparticles, such as superparamagnetic iron-oxide nanoparticles and silica-releasing systems also exhibit antimicrobial properties. Finally, since the quantification and understanding of the antimicrobial action of metal-based nanoparticles are key topics, several methods for evaluating in vitro antimicrobial activity and the most common antimicrobial mechanisms (e.g., cell damage and changes in the expression of metabolic genes) were discussed in this review.
Author Escrig, Juan
de Dicastillo, Carol Lopez
Vidal, Cristian Patiño
Streitt, Camilo
Martínez, Fernanda B
Guerrero Correa, Matías
AuthorAffiliation 2 Center for the Development of Nanoscience and Nanotechnology (CEDENNA), 9170124 Santiago, Chile
3 Department of Physics, University of Santiago de Chile (USACH), Av. Ecuador 3493, 9170124 Santiago, Chile
1 Center of Innovation in Packaging (LABEN), University of Santiago de Chile (USACH), Obispo Umaña 050, 9170201 Santiago, Chile
AuthorAffiliation_xml – name: 1 Center of Innovation in Packaging (LABEN), University of Santiago de Chile (USACH), Obispo Umaña 050, 9170201 Santiago, Chile
– name: 2 Center for the Development of Nanoscience and Nanotechnology (CEDENNA), 9170124 Santiago, Chile
– name: 3 Department of Physics, University of Santiago de Chile (USACH), Av. Ecuador 3493, 9170124 Santiago, Chile
Author_xml – sequence: 1
  givenname: Matías
  orcidid: 0000-0001-5776-8094
  surname: Guerrero Correa
  fullname: Guerrero Correa, Matías
– sequence: 2
  givenname: Fernanda B
  surname: Martínez
  fullname: Martínez, Fernanda B
– sequence: 3
  givenname: Cristian Patiño
  surname: Vidal
  fullname: Vidal, Cristian Patiño
– sequence: 4
  givenname: Camilo
  surname: Streitt
  fullname: Streitt, Camilo
– sequence: 5
  givenname: Juan
  orcidid: 0000-0002-3958-8185
  surname: Escrig
  fullname: Escrig, Juan
– sequence: 6
  givenname: Carol Lopez
  orcidid: 0000-0003-0067-9765
  surname: de Dicastillo
  fullname: de Dicastillo, Carol Lopez
BookMark eNptkU1v1DAQhi1URD_okXuOHMjizyTmgFRVQCtV4gJna-xMWq8Se7G9rfbf42UXqUVYsjwav_NoZt5zchJiQELeMboSfcc_2nWAEFeMrRjXr8gZZ5q2kg_dybP4lFzmvKb1SMoHPbwhp0JQrmUvz8h4FYpfvEvRepibBQvMrYWMY7NHbyAV72bMnxpoEj56fGpiaMoD-tTkXahB9vlDU3YbzA2Esd7nPHDFx_CWvJ5gznh5fC_Iz69fflzftHffv91eX921TgpaWtX1YKce-oFzK9BZVL0cKIw9Y2M3sQHVBLob0aHSPRXcKaGGiWHXaTEhExfk9sAdI6zNJvkF0s5E8OZPIqZ7c5zHKKCMD2CtpU520gKyUXDKkSNqoYfK-nxgbbZ2wdFhKAnmF9CXP8E_mPv4aHrFuVS6At4fASn-2mIuZvHZ4TxDwLjNhkupuRLVlioVB2ldW84JJ-N8gf3mKtnPhlGzt9sc7DaMmWp3rWr_qfrb3P_1vwEOX7Ed
CitedBy_id crossref_primary_10_3390_ijms231911957
crossref_primary_10_1007_s10118_023_3029_9
crossref_primary_10_3390_nano12142371
crossref_primary_10_1007_s13399_023_04739_z
crossref_primary_10_3390_nano14141182
crossref_primary_10_1016_j_jwpe_2025_107541
crossref_primary_10_1007_s40089_021_00358_6
crossref_primary_10_1111_jace_18002
crossref_primary_10_3389_fmicb_2025_1527473
crossref_primary_10_1007_s12668_024_01530_w
crossref_primary_10_1134_S0036023622602781
crossref_primary_10_3390_metabo13050625
crossref_primary_10_1016_j_molliq_2022_120094
crossref_primary_10_3389_fnano_2024_1346069
crossref_primary_10_1002_adem_202500936
crossref_primary_10_1016_j_jinorgbio_2022_111938
crossref_primary_10_1177_15280837251322535
crossref_primary_10_1002_slct_202100618
crossref_primary_10_1007_s10904_024_03571_w
crossref_primary_10_1080_09205063_2024_2365047
crossref_primary_10_1016_j_fbio_2025_106347
crossref_primary_10_1007_s13346_022_01216_4
crossref_primary_10_1016_j_inoche_2023_111636
crossref_primary_10_3390_nano15010010
crossref_primary_10_3390_coatings14020172
crossref_primary_10_1007_s10854_021_07331_1
crossref_primary_10_1016_j_inoche_2024_112750
crossref_primary_10_1007_s00253_025_13589_w
crossref_primary_10_1016_j_foodchem_2022_135099
crossref_primary_10_1039_D2NR02395D
crossref_primary_10_1016_j_surfin_2025_105805
crossref_primary_10_1080_87559129_2024_2368065
crossref_primary_10_3390_jof8070733
crossref_primary_10_3390_pharmaceutics14122599
crossref_primary_10_1111_1751_7915_14549
crossref_primary_10_3389_fbioe_2021_782799
crossref_primary_10_3390_pharmaceutics14112273
crossref_primary_10_1002_slct_202502607
crossref_primary_10_1088_2053_1591_ad8c17
crossref_primary_10_3103_S1068335624602462
crossref_primary_10_47853_FAS_2025_e11
crossref_primary_10_1016_j_ica_2021_120636
crossref_primary_10_3390_app14114612
crossref_primary_10_3390_ma14185454
crossref_primary_10_3390_ijms24032457
crossref_primary_10_4103_apjtb_apjtb_185_24
crossref_primary_10_3390_antibiotics13070623
crossref_primary_10_36107_hfb_2024_i4_s242
crossref_primary_10_3390_antibiotics12060968
crossref_primary_10_3390_molecules26175426
crossref_primary_10_3390_pharmaceutics13111795
crossref_primary_10_1134_S0036023621080064
crossref_primary_10_3390_biom13071092
crossref_primary_10_1038_s41598_022_23615_w
crossref_primary_10_3390_ph18070976
crossref_primary_10_1080_03639045_2022_2075007
crossref_primary_10_3390_nano13202775
crossref_primary_10_1016_j_afres_2025_100860
crossref_primary_10_3390_ijms25168915
crossref_primary_10_1016_j_ijfoodmicro_2024_110959
crossref_primary_10_1016_j_actbio_2022_02_027
crossref_primary_10_1016_j_surfin_2025_107004
crossref_primary_10_1016_j_matchemphys_2025_131299
crossref_primary_10_1080_10408436_2025_2483676
crossref_primary_10_1134_S1068162024060025
crossref_primary_10_3762_bjnano_12_59
crossref_primary_10_1002_pc_29628
crossref_primary_10_1093_femsle_fnad138
crossref_primary_10_1016_j_eurpolymj_2023_112418
crossref_primary_10_1080_09506608_2023_2193784
crossref_primary_10_1080_87559129_2025_2541849
crossref_primary_10_3390_molecules27030845
crossref_primary_10_1007_s42770_024_01410_1
crossref_primary_10_1016_j_apsusc_2025_162590
crossref_primary_10_1016_j_cej_2024_155422
crossref_primary_10_1002_cmdc_202300262
crossref_primary_10_1016_j_aej_2025_04_002
crossref_primary_10_1016_j_susmat_2024_e00942
crossref_primary_10_1080_00387010_2025_2486180
crossref_primary_10_1039_D5CP01880C
crossref_primary_10_12944_CRNFSJ_10_1_01
crossref_primary_10_1039_D5NA00037H
crossref_primary_10_1016_j_jddst_2024_105542
crossref_primary_10_1155_jnt_8412675
crossref_primary_10_3389_fcimb_2025_1528583
crossref_primary_10_3389_fimmu_2021_684605
crossref_primary_10_3390_ma16041460
crossref_primary_10_1007_s12668_024_01494_x
crossref_primary_10_1186_s12985_024_02315_z
crossref_primary_10_1016_j_inoche_2024_113809
crossref_primary_10_3390_ma18020382
crossref_primary_10_1016_j_bioadv_2023_213723
crossref_primary_10_1515_ijmr_2023_0243
crossref_primary_10_4028_p_c80drd
crossref_primary_10_3390_molecules28155650
crossref_primary_10_1038_s41598_024_56503_6
crossref_primary_10_13005_bpj_2587
crossref_primary_10_1016_j_ijbiomac_2024_130515
crossref_primary_10_1016_j_nwnano_2025_100145
crossref_primary_10_3389_fmats_2024_1449614
crossref_primary_10_1007_s12602_024_10327_y
crossref_primary_10_1039_D2RA04557E
crossref_primary_10_1007_s10904_024_03078_4
crossref_primary_10_3389_fbioe_2024_1342340
crossref_primary_10_32604_phyton_2024_049612
crossref_primary_10_1007_s42864_022_00196_9
crossref_primary_10_3390_molecules30020291
crossref_primary_10_1016_j_cis_2025_103626
crossref_primary_10_1016_j_jmbbm_2023_106315
crossref_primary_10_1002_aoc_7467
crossref_primary_10_1016_j_mtchem_2025_102619
crossref_primary_10_1155_2023_9935556
crossref_primary_10_1007_s13204_024_03072_9
crossref_primary_10_3390_app131910934
crossref_primary_10_1007_s13399_023_04847_w
Cites_doi 10.1016/j.tifs.2018.09.021
10.3390/coatings8110391
10.3390/ma9040274
10.1039/c2ce06392a
10.1016/j.tibtech.2012.06.004
10.1016/j.micpath.2017.09.019
10.1070/mc1999v009n04abeh001080
10.3390/nano10030503
10.1039/c8nr02278j
10.1016/j.cdc.2019.100190
10.1016/j.mtchem.2019.07.003
10.1016/j.biomaterials.2009.03.044
10.1002/smll.201302434
10.1128/cmr.17.2.268-280.2004
10.1371/journal.pone.0123084
10.1016/j.actbio.2012.03.002
10.1016/j.snb.2011.05.023
10.1016/j.biomaterials.2011.11.057
10.1016/j.mssp.2018.03.017
10.1007/s10853-019-03727-x
10.1016/j.biomaterials.2009.01.052
10.1021/es060999b
10.1007/s10570-019-02542-6
10.1039/c5ra19388e
10.1016/j.physe.2018.11.007
10.1016/j.molliq.2016.03.038
10.1007/s13205-014-0210-4
10.1007/s10904-018-01071-2
10.3762/bjnano.10.167
10.1007/978-3-642-18312-6_1
10.1039/c3ce27011d
10.1016/j.heliyon.2019.e02980
10.1007/s12274-016-0984-2
10.1016/j.msec.2015.09.078
10.1016/j.physb.2019.01.040
10.1007/s00775-019-01717-7
10.1016/j.apsusc.2015.02.176
10.1007/s10616-014-9701-8
10.3762/bjnano.7.133
10.1039/c6nr00202a
10.1016/s0169-4332(02)01230-8
10.1016/j.watres.2019.115229
10.1016/b978-0-323-46152-8.00025-1
10.1002/adfm.200500029
10.1016/j.tifs.2020.03.008
10.3390/nano8121009
10.1016/j.bcab.2018.08.002
10.1016/j.wsj.2017.10.001
10.32607/20758251-2014-6-1-35-44
10.1016/j.carbpol.2019.115360
10.1016/j.colsurfa.2004.12.058
10.25141/2475-3432-2017-3.0066
10.1016/j.jallcom.2018.09.190
10.1038/srep24312
10.1016/j.msec.2019.110011
10.1016/s0022-1759(99)00207-0
10.1016/j.optlaseng.2008.05.018
10.1016/j.jpba.2019.112970
10.1073/pnas.96.24.13611
10.1016/j.scriptamat.2018.10.026
10.1016/j.nano.2009.07.002
10.1016/j.jcis.2010.09.041
10.1002/adtp.201700033
10.1016/j.cattod.2018.05.033
10.1016/j.matchemphys.2005.06.045
10.1021/jf0636465
10.3390/nano8020128
10.1158/0008-5472.can-09-2496
10.1016/j.heliyon.2019.e01878
10.1016/s1872-2067(11)60431-2
10.3109/17435390903305260
10.1016/j.carbpol.2019.115187
10.1016/j.onano.2017.07.001
10.1007/s13738-019-01595-5
10.1016/j.matlet.2019.126813
10.1016/j.mseb.2017.12.031
10.1016/j.rinp.2019.102565
10.1016/j.molliq.2015.09.004
10.1016/j.reffit.2017.03.002
10.1016/j.cbi.2016.03.029
10.1016/j.arabjc.2016.04.009
10.4172/2157-7439.1000165
10.1016/b978-0-323-41533-0.00006-4
10.3390/ma8115377
10.1038/s41598-019-52473-2
10.1016/j.matchemphys.2019.01.020
10.5681/apb.2015.003
10.1002/aoc.4950
10.3390/polym9120636
10.1021/la001331s
10.1016/s1010-6030(03)00077-7
10.1016/j.msec.2019.109809
10.1016/j.tibtech.2013.01.003
10.1016/j.nimb.2019.06.039
10.1128/microbiolspec.funk-0035-2016
10.1016/j.fct.2019.110814
10.1515/ntrev-2017-0159
10.1166/jnn.2019.15854
10.15171/ehem.2019.08
10.1016/j.apsusc.2020.145818
10.1016/j.foodchem.2018.07.114
10.1021/cm990315h
10.1016/j.freeradbiomed.2018.04.561
10.1038/srep11033
10.1016/j.onano.2017.07.002
10.1007/978-3-319-13503-8_3
10.1116/1.2815690
10.1016/j.ceramint.2019.05.309
10.1016/j.bcab.2018.05.011
10.1039/b200272h
10.1016/j.carbpol.2019.115349
10.1016/j.mimet.2010.10.010
10.1016/j.jare.2015.02.007
10.1086/381972
10.1021/nn300042m
10.1007/s10876-019-01584-x
10.1016/j.colsurfa.2019.123732
10.1016/j.jaerosci.2006.09.002
10.1080/87559129.2020.1737709
10.1016/j.matchemphys.2008.11.056
10.1016/j.jlumin.2014.02.015
10.1038/nchembio.607
10.1021/la800951v
10.1002/wnan.1592
10.2147/ijn.s134526
10.1515/ijcre-2012-0055
10.1016/j.ceramint.2018.10.054
10.1002/vnl.21606
10.3390/ph9040075
10.1021/la035646u
10.1016/j.jpha.2015.11.005
10.1088/1748-6041/10/1/015001
10.1002/aoc.5298
10.1016/j.coche.2015.01.003
10.1111/jdv.15943
10.1016/j.jscs.2010.06.004
10.1128/aem.71.11.7589-7593.2005
10.1016/j.jiec.2013.12.043
10.1016/s1388-2481(02)00256-4
10.1016/j.matlet.2009.05.068
10.1093/jac/dkr408
10.1016/j.jrras.2015.01.007
10.1166/jbn.2012.1423
10.1039/a900568d
10.1039/c39940000801
10.3390/ijms17091534
10.1002/pc.25414
10.1038/ncomms5947
10.1016/j.lwt.2019.01.023
10.1007/s11671-009-9445-0
10.1021/cm000607e
10.1016/j.btre.2020.e00427
10.1016/j.mimet.2019.105766
10.1520/e2149-13a
10.1016/b978-0-323-46152-8.00024-x
10.1016/j.matchar.2019.109814
10.1016/j.ecolecon.2016.12.019
10.1016/j.sjbs.2019.09.005
10.1155/2014/410423
10.1016/j.matchemphys.2020.123014
10.1021/la701236v
10.1021/ja983361b
10.1007/s10904-019-01166-4
10.1016/j.jpcs.2008.06.143
10.1016/j.foodcont.2010.09.011
10.2147/ijn.s61143
ContentType Journal Article
Copyright Copyright © 2020, Guerrero Correa et al.; licensee Beilstein-Institut.
Copyright © 2020, Guerrero Correa et al. 2020 Guerrero Correa et al.
Copyright_xml – notice: Copyright © 2020, Guerrero Correa et al.; licensee Beilstein-Institut.
– notice: Copyright © 2020, Guerrero Correa et al. 2020 Guerrero Correa et al.
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3762/bjnano.11.129
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: 开放获取期刊(Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2190-4286
EndPage 1469
ExternalDocumentID oai_doaj_org_article_5a0128abbb0c464bae1d3202e2ee9398
PMC7522459
10_3762_bjnano_11_129
GroupedDBID 53G
5VS
88I
8FE
8FG
AAFWJ
AAKDD
AAYXX
ABUWG
ACGFO
ACGOD
ADBBV
ADDVE
ADRAZ
AENEX
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
BAWUL
BCNDV
BENPR
BFMQW
BGLVJ
BPHCQ
CCPQU
CITATION
DIK
DWQXO
FRP
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HYE
KQ8
M2P
M48
M~E
OK1
P62
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RNS
RPM
~9O
7X8
5PM
ID FETCH-LOGICAL-c430t-567abf7a7822b3ecbe57480ad711d6f18e5fa96dece597032c5358f1e6693fe13
IEDL.DBID DOA
ISICitedReferencesCount 138
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000575578800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2190-4286
IngestDate Mon Nov 10 04:25:47 EST 2025
Tue Nov 04 01:58:57 EST 2025
Sun Nov 09 10:06:01 EST 2025
Sat Nov 29 03:42:04 EST 2025
Tue Nov 18 22:05:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by/4.0
This is an Open Access article under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0). Please note that the reuse, redistribution and reproduction in particular requires that the authors and source are credited.
The license is subject to the Beilstein Journal of Nanotechnology terms and conditions: (https://www.beilstein-journals.org/bjnano/terms)
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c430t-567abf7a7822b3ecbe57480ad711d6f18e5fa96dece597032c5358f1e6693fe13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-3958-8185
0000-0001-5776-8094
0000-0003-0067-9765
OpenAccessLink https://doaj.org/article/5a0128abbb0c464bae1d3202e2ee9398
PMID 33029474
PQID 2449253000
PQPubID 23479
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_5a0128abbb0c464bae1d3202e2ee9398
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7522459
proquest_miscellaneous_2449253000
crossref_citationtrail_10_3762_bjnano_11_129
crossref_primary_10_3762_bjnano_11_129
PublicationCentury 2000
PublicationDate 2020-09-25
PublicationDateYYYYMMDD 2020-09-25
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-25
  day: 25
PublicationDecade 2020
PublicationPlace Trakehner Str. 7-9, 60487 Frankfurt am Main, Germany
PublicationPlace_xml – name: Trakehner Str. 7-9, 60487 Frankfurt am Main, Germany
PublicationTitle Beilstein journal of nanotechnology
PublicationYear 2020
Publisher Beilstein-Institut
Publisher_xml – name: Beilstein-Institut
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref168
ref54
ref169
ref170
ref51
ref50
ref171
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref7
ref9
ref4
ref3
ref6
ref5
ref100
ref101
ref40
ref35
ref34
Pantic (ref16) 2014; 37
ref37
ref36
ref31
ref148
ref30
ref149
ref33
ref146
ref32
ref39
ref38
ref155
ref156
ref153
ref154
ref151
ref152
ref150
ref24
ref23
ref26
ref25
ref159
ref22
ref157
ref21
ref158
ref28
ref27
ref29
ref166
ref167
ref164
ref165
ref162
ref163
ref160
ref161
ref13
ref12
ref15
ref128
ref14
ref129
ref97
ref126
ref96
ref127
ref11
Camporotondia (ref20) 2013; 2
ref99
ref124
ref10
ref98
ref125
ref17
ref19
ref18
ref93
ref133
ref92
ref134
ref95
ref131
ref94
ref132
ref130
ref91
ref90
ref89
ref139
ref86
ref137
ref85
ref138
ref88
ref135
ref87
ref136
Adibkia (ref8) 2009; 15
ref82
ref144
ref81
ref84
ref142
ref83
ref143
ref140
ref141
ref80
ref79
ref108
ref78
ref109
ref106
ref107
ref75
ref104
ref74
ref105
ref77
ref102
ref76
ref103
ref2
ref1
(ref145) 2015; 35
(ref147) 2011; 38
ref71
ref111
ref70
ref112
ref73
ref72
ref110
ref68
ref119
ref67
ref117
ref69
ref118
ref64
ref115
ref63
ref116
ref66
ref113
ref65
ref114
ref60
ref122
ref123
ref62
ref120
ref61
ref121
References_xml – ident: ref127
  doi: 10.1016/j.tifs.2018.09.021
– ident: ref153
  doi: 10.3390/coatings8110391
– ident: ref104
  doi: 10.3390/ma9040274
– ident: ref69
  doi: 10.1039/c2ce06392a
– ident: ref2
  doi: 10.1016/j.tibtech.2012.06.004
– ident: ref117
  doi: 10.1016/j.micpath.2017.09.019
– ident: ref45
  doi: 10.1070/mc1999v009n04abeh001080
– ident: ref40
  doi: 10.3390/nano10030503
– ident: ref21
  doi: 10.1039/c8nr02278j
– ident: ref79
  doi: 10.1016/j.cdc.2019.100190
– ident: ref78
  doi: 10.1016/j.mtchem.2019.07.003
– ident: ref166
  doi: 10.1016/j.biomaterials.2009.03.044
– ident: ref155
  doi: 10.1002/smll.201302434
– ident: ref149
  doi: 10.1128/cmr.17.2.268-280.2004
– ident: ref159
  doi: 10.1371/journal.pone.0123084
– ident: ref137
  doi: 10.1016/j.actbio.2012.03.002
– ident: ref52
  doi: 10.1016/j.snb.2011.05.023
– ident: ref167
  doi: 10.1016/j.biomaterials.2011.11.057
– ident: ref90
  doi: 10.1016/j.mssp.2018.03.017
– ident: ref105
  doi: 10.1007/s10853-019-03727-x
– ident: ref141
  doi: 10.1016/j.biomaterials.2009.01.052
– ident: ref48
  doi: 10.1021/es060999b
– ident: ref107
  doi: 10.1007/s10570-019-02542-6
– ident: ref9
  doi: 10.1039/c5ra19388e
– ident: ref60
  doi: 10.1016/j.physe.2018.11.007
– ident: ref10
  doi: 10.1016/j.molliq.2016.03.038
– ident: ref14
  doi: 10.1007/s13205-014-0210-4
– ident: ref108
  doi: 10.1007/s10904-018-01071-2
– ident: ref38
  doi: 10.3762/bjnano.10.167
– ident: ref83
  doi: 10.1007/978-3-642-18312-6_1
– ident: ref47
  doi: 10.1039/c3ce27011d
– ident: ref168
  doi: 10.1016/j.heliyon.2019.e02980
– ident: ref44
  doi: 10.1007/s12274-016-0984-2
– ident: ref109
  doi: 10.1016/j.msec.2015.09.078
– ident: ref121
  doi: 10.1016/j.physb.2019.01.040
– ident: ref130
  doi: 10.1007/s00775-019-01717-7
– ident: ref41
  doi: 10.1016/j.apsusc.2015.02.176
– ident: ref61
  doi: 10.1007/s10616-014-9701-8
– ident: ref25
  doi: 10.3762/bjnano.7.133
– ident: ref163
  doi: 10.1039/c6nr00202a
– ident: ref34
  doi: 10.1016/s0169-4332(02)01230-8
– ident: ref171
  doi: 10.1016/j.watres.2019.115229
– ident: ref140
  doi: 10.1016/b978-0-323-46152-8.00025-1
– ident: ref30
  doi: 10.1002/adfm.200500029
– ident: ref158
  doi: 10.1016/j.tifs.2020.03.008
– ident: ref97
  doi: 10.3390/nano8121009
– ident: ref100
  doi: 10.1016/j.bcab.2018.08.002
– ident: ref75
  doi: 10.1016/j.wsj.2017.10.001
– ident: ref13
  doi: 10.32607/20758251-2014-6-1-35-44
– ident: ref110
  doi: 10.1016/j.carbpol.2019.115360
– ident: ref42
  doi: 10.1016/j.colsurfa.2004.12.058
– ident: ref85
  doi: 10.25141/2475-3432-2017-3.0066
– ident: ref55
  doi: 10.1016/j.jallcom.2018.09.190
– volume: 35
  start-page: 73
  year: 2015
  ident: ref145
  publication-title: Standards. NCCLS. Clin. Lab. Stand. Inst.
– ident: ref73
  doi: 10.1038/srep24312
– volume: 38
  start-page: 1
  year: 2011
  ident: ref147
  publication-title: Standards. NCCLS. Clin. Lab. Stand. Inst.
– ident: ref120
  doi: 10.1016/j.msec.2019.110011
– ident: ref150
  doi: 10.1016/s0022-1759(99)00207-0
– ident: ref36
  doi: 10.1016/j.optlaseng.2008.05.018
– ident: ref80
  doi: 10.1016/j.jpba.2019.112970
– ident: ref84
  doi: 10.1073/pnas.96.24.13611
– ident: ref37
  doi: 10.1016/j.scriptamat.2018.10.026
– ident: ref70
  doi: 10.1016/j.nano.2009.07.002
– ident: ref50
  doi: 10.1016/j.jcis.2010.09.041
– ident: ref95
  doi: 10.1002/adtp.201700033
– ident: ref114
  doi: 10.1016/j.cattod.2018.05.033
– ident: ref142
  doi: 10.1016/j.matchemphys.2005.06.045
– ident: ref164
  doi: 10.1021/jf0636465
– ident: ref39
  doi: 10.3390/nano8020128
– ident: ref170
  doi: 10.1158/0008-5472.can-09-2496
– ident: ref17
  doi: 10.1016/j.heliyon.2019.e01878
– ident: ref29
  doi: 10.1016/s1872-2067(11)60431-2
– ident: ref49
  doi: 10.3109/17435390903305260
– ident: ref98
  doi: 10.1016/j.carbpol.2019.115187
– ident: ref35
  doi: 10.1016/j.onano.2017.07.001
– ident: ref4
  doi: 10.1007/s13738-019-01595-5
– ident: ref88
  doi: 10.1016/j.matlet.2019.126813
– ident: ref118
  doi: 10.1016/j.mseb.2017.12.031
– ident: ref89
  doi: 10.1016/j.rinp.2019.102565
– ident: ref119
  doi: 10.1016/j.molliq.2015.09.004
– ident: ref72
  doi: 10.1016/j.reffit.2017.03.002
– ident: ref160
  doi: 10.1016/j.cbi.2016.03.029
– ident: ref81
  doi: 10.1016/j.arabjc.2016.04.009
– ident: ref11
  doi: 10.4172/2157-7439.1000165
– ident: ref77
  doi: 10.1016/b978-0-323-41533-0.00006-4
– ident: ref71
  doi: 10.3390/ma8115377
– ident: ref103
  doi: 10.1038/s41598-019-52473-2
– ident: ref123
  doi: 10.1016/j.matchemphys.2019.01.020
– ident: ref18
  doi: 10.5681/apb.2015.003
– ident: ref133
  doi: 10.1002/aoc.4950
– ident: ref134
  doi: 10.3390/polym9120636
– ident: ref65
  doi: 10.1021/la001331s
– ident: ref56
  doi: 10.1016/s1010-6030(03)00077-7
– ident: ref96
  doi: 10.1016/j.msec.2019.109809
– ident: ref12
  doi: 10.1016/j.tibtech.2013.01.003
– volume: 2
  start-page: 283
  volume-title: Microbial pathogens and strategies for combating them: science, technology and education
  year: 2013
  ident: ref20
– ident: ref124
  doi: 10.1016/j.nimb.2019.06.039
– ident: ref156
  doi: 10.1128/microbiolspec.funk-0035-2016
– ident: ref131
  doi: 10.1016/j.fct.2019.110814
– ident: ref126
  doi: 10.1515/ntrev-2017-0159
– ident: ref101
  doi: 10.1166/jnn.2019.15854
– ident: ref111
  doi: 10.15171/ehem.2019.08
– ident: ref24
  doi: 10.1016/j.apsusc.2020.145818
– ident: ref3
  doi: 10.1016/j.foodchem.2018.07.114
– ident: ref32
  doi: 10.1021/cm990315h
– ident: ref169
  doi: 10.1016/j.freeradbiomed.2018.04.561
– ident: ref161
  doi: 10.1038/srep11033
– ident: ref92
  doi: 10.1016/j.onano.2017.07.002
– ident: ref157
  doi: 10.1007/978-3-319-13503-8_3
– ident: ref7
  doi: 10.1116/1.2815690
– ident: ref106
  doi: 10.1016/j.ceramint.2019.05.309
– ident: ref91
  doi: 10.1016/j.bcab.2018.05.011
– ident: ref33
  doi: 10.1039/b200272h
– ident: ref129
  doi: 10.1016/j.carbpol.2019.115349
– volume: 15
  start-page: 303
  year: 2009
  ident: ref8
  publication-title: Ulum-i Daroei
– ident: ref139
  doi: 10.1016/j.mimet.2010.10.010
– ident: ref76
  doi: 10.1016/j.jare.2015.02.007
– ident: ref1
  doi: 10.1086/381972
– ident: ref138
  doi: 10.1021/nn300042m
– ident: ref116
  doi: 10.1007/s10876-019-01584-x
– ident: ref122
  doi: 10.1016/j.colsurfa.2019.123732
– ident: ref23
  doi: 10.1016/j.jaerosci.2006.09.002
– ident: ref26
  doi: 10.1080/87559129.2020.1737709
– ident: ref27
  doi: 10.1016/j.matchemphys.2008.11.056
– ident: ref28
  doi: 10.1016/j.jlumin.2014.02.015
– ident: ref151
  doi: 10.1038/nchembio.607
– ident: ref43
  doi: 10.1021/la800951v
– ident: ref128
  doi: 10.1002/wnan.1592
– ident: ref5
  doi: 10.2147/ijn.s134526
– ident: ref68
  doi: 10.1515/ijcre-2012-0055
– ident: ref59
  doi: 10.1016/j.ceramint.2018.10.054
– ident: ref125
  doi: 10.1002/vnl.21606
– ident: ref135
  doi: 10.3390/ph9040075
– ident: ref51
  doi: 10.1021/la035646u
– ident: ref146
  doi: 10.1016/j.jpha.2015.11.005
– ident: ref152
  doi: 10.1088/1748-6041/10/1/015001
– ident: ref113
  doi: 10.1002/aoc.5298
– ident: ref136
  doi: 10.1016/j.coche.2015.01.003
– volume: 37
  start-page: 15
  year: 2014
  ident: ref16
  publication-title: Reviews on Advanced Materials Science
– ident: ref132
  doi: 10.1111/jdv.15943
– ident: ref87
  doi: 10.1016/j.jscs.2010.06.004
– ident: ref165
  doi: 10.1128/aem.71.11.7589-7593.2005
– ident: ref64
  doi: 10.1016/j.jiec.2013.12.043
– ident: ref46
  doi: 10.1016/s1388-2481(02)00256-4
– ident: ref53
  doi: 10.1016/j.matlet.2009.05.068
– ident: ref144
  doi: 10.1093/jac/dkr408
– ident: ref94
  doi: 10.1016/j.jrras.2015.01.007
– ident: ref143
  doi: 10.1166/jbn.2012.1423
– ident: ref63
  doi: 10.1039/a900568d
– ident: ref67
  doi: 10.1039/c39940000801
– ident: ref86
  doi: 10.3390/ijms17091534
– ident: ref102
  doi: 10.1002/pc.25414
– ident: ref66
  doi: 10.1038/ncomms5947
– ident: ref93
  doi: 10.1016/j.lwt.2019.01.023
– ident: ref58
  doi: 10.1007/s11671-009-9445-0
– ident: ref62
  doi: 10.1021/cm000607e
– ident: ref6
  doi: 10.1016/j.btre.2020.e00427
– ident: ref74
  doi: 10.1016/j.mimet.2019.105766
– ident: ref148
  doi: 10.1520/e2149-13a
– ident: ref19
  doi: 10.1016/b978-0-323-46152-8.00024-x
– ident: ref22
  doi: 10.1016/j.matchar.2019.109814
– ident: ref82
  doi: 10.1016/j.ecolecon.2016.12.019
– ident: ref115
  doi: 10.1016/j.sjbs.2019.09.005
– ident: ref162
  doi: 10.1155/2014/410423
– ident: ref15
  doi: 10.1016/j.matchemphys.2020.123014
– ident: ref31
  doi: 10.1021/la701236v
– ident: ref57
  doi: 10.1021/ja983361b
– ident: ref99
  doi: 10.1007/s10904-019-01166-4
– ident: ref54
  doi: 10.1016/j.jpcs.2008.06.143
– ident: ref112
  doi: 10.1016/j.foodcont.2010.09.011
– ident: ref154
  doi: 10.2147/ijn.s61143
SSID ssj0000402898
Score 2.5776334
SecondaryResourceType review_article
Snippet The investigation of novel nanoparticles with antimicrobial activity has grown in recent years due to the increased incidence of nosocomial infections...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1450
SubjectTerms antimicrobial mechanism
antimicrobial nanoparticles
metallic nanoparticles
nanoparticle synthesis
Nanoscience
Nanotechnology
nosocomial infections
Review
Title Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action
URI https://www.proquest.com/docview/2449253000
https://pubmed.ncbi.nlm.nih.gov/PMC7522459
https://doaj.org/article/5a0128abbb0c464bae1d3202e2ee9398
Volume 11
WOSCitedRecordID wos000575578800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: 开放获取期刊(Open Access Journals)
  customDbUrl:
  eissn: 2190-4286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000402898
  issn: 2190-4286
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2190-4286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000402898
  issn: 2190-4286
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2190-4286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000402898
  issn: 2190-4286
  databaseCode: P5Z
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Continental Europe Database
  customDbUrl:
  eissn: 2190-4286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000402898
  issn: 2190-4286
  databaseCode: BFMQW
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2190-4286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000402898
  issn: 2190-4286
  databaseCode: BENPR
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2190-4286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000402898
  issn: 2190-4286
  databaseCode: PIMPY
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2190-4286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000402898
  issn: 2190-4286
  databaseCode: M2P
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagcIAD4qkuj5WREKeGxrEdJ9xa1BVI7CogHguXyE7GIoh6q2aLxL9nxtktmwPiwiFOlDiONX59k_F8w9gzQzRKEtIk9U2GCoqyidONTkoJXmnhvYjE85_emsWiWC7LaifUF-0JG-iBB8EdaktTqHXOpY3KlbMgWor5DRlAKcvo5ouoZ0eZinOwIgtaDEdHvtKIsfOBYBPHU3bovgcbVjhbvBARWv5ZkCJv_whsjrdK7qw9s9vs1gY08qOhsnfYFQh32c0dKsF7rD0K6-60i7RKmPUUEFQntES1nGpxtt0A95JbPrir8FXg0UzA-18BL_quP-D0R7bnNrR47JY3uD_cZx9nJx9evU42ERSSRsl0nejcWOeNJRjgJDQOtFFFalsjRJtjO4D2tsxbIGcsHPtZo6UuvIA8L6UHIR-wvbAKsM-4k77A4hT4olANKKeFM97oMtX4bi4m7GArxrrZ0ItTlIsfNaoZJPV6kDqqHDVKfcKeX2Y_G3g1_pbxmNrkMhPRYccb2Enqjezqf3WSCXu6bdEahw_ZRGyA1UVfI7opMy2xx0yYGTX16IvjJ6H7Fom4DYJXpcuH_6OKj9iNjFR5Mnjpx2xvfX4BT9j15ue668-n7KpZFlN27fhkUb2n82z-7vM09nlM51mFaaW_4pPqzbz68htkPwph
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antimicrobial+metal-based+nanoparticles%3A+a+review+on+their+synthesis%2C+types+and+antimicrobial+action&rft.jtitle=Beilstein+journal+of+nanotechnology&rft.au=Guerrero+Correa%2C+Mat%C3%ADas&rft.au=Mart%C3%ADnez%2C+Fernanda+B&rft.au=Vidal%2C+Cristian+Pati%C3%B1o&rft.au=Streitt%2C+Camilo&rft.date=2020-09-25&rft.pub=Beilstein-Institut&rft.eissn=2190-4286&rft.volume=11&rft.spage=1450&rft.epage=1469&rft_id=info:doi/10.3762%2Fbjnano.11.129&rft_id=info%3Apmid%2F33029474&rft.externalDocID=PMC7522459
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-4286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-4286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-4286&client=summon