Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action
The investigation of novel nanoparticles with antimicrobial activity has grown in recent years due to the increased incidence of nosocomial infections occurring during hospitalization and food poisoning derived from foodborne pathogens. Antimicrobial agents are necessary in various fields in which b...
Gespeichert in:
| Veröffentlicht in: | Beilstein journal of nanotechnology Jg. 11; H. 1; S. 1450 - 1469 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Trakehner Str. 7-9, 60487 Frankfurt am Main, Germany
Beilstein-Institut
25.09.2020
|
| Schlagworte: | |
| ISSN: | 2190-4286, 2190-4286 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The investigation of novel nanoparticles with antimicrobial activity has grown in recent years due to the increased incidence of nosocomial infections occurring during hospitalization and food poisoning derived from foodborne pathogens. Antimicrobial agents are necessary in various fields in which biological contamination occurs. For example, in food packaging they are used to control food contamination by microbes, in the medical field the microbial agents are important for reducing the risk of contamination in invasive and routine interventions, and in the textile industry, they can limit the growth of microorganisms due to sweat. The combination of nanotechnology with materials that have an intrinsic antimicrobial activity can result in the development of novel antimicrobial substances. Specifically, metal-based nanoparticles have attracted much interest due to their broad effectiveness against pathogenic microorganisms due to their high surface area and high reactivity. The aim of this review was to explore the state-of-the-art in metal-based nanoparticles, focusing on their synthesis methods, types, and their antimicrobial action. Different techniques used to synthesize metal-based nanoparticles were discussed, including chemical and physical methods and “green synthesis” methods that are free of chemical agents. Although the most studied nanoparticles with antimicrobial properties are metallic or metal-oxide nanoparticles, other types of nanoparticles, such as superparamagnetic iron-oxide nanoparticles and silica-releasing systems also exhibit antimicrobial properties. Finally, since the quantification and understanding of the antimicrobial action of metal-based nanoparticles are key topics, several methods for evaluating in vitro antimicrobial activity and the most common antimicrobial mechanisms (e.g., cell damage and changes in the expression of metabolic genes) were discussed in this review. |
|---|---|
| AbstractList | The investigation of novel nanoparticles with antimicrobial activity has grown in recent years due to the increased incidence of nosocomial infections occurring during hospitalization and food poisoning derived from foodborne pathogens. Antimicrobial agents are necessary in various fields in which biological contamination occurs. For example, in food packaging they are used to control food contamination by microbes, in the medical field the microbial agents are important for reducing the risk of contamination in invasive and routine interventions, and in the textile industry, they can limit the growth of microorganisms due to sweat. The combination of nanotechnology with materials that have an intrinsic antimicrobial activity can result in the development of novel antimicrobial substances. Specifically, metal-based nanoparticles have attracted much interest due to their broad effectiveness against pathogenic microorganisms due to their high surface area and high reactivity. The aim of this review was to explore the state-of-the-art in metal-based nanoparticles, focusing on their synthesis methods, types, and their antimicrobial action. Different techniques used to synthesize metal-based nanoparticles were discussed, including chemical and physical methods and “green synthesis” methods that are free of chemical agents. Although the most studied nanoparticles with antimicrobial properties are metallic or metal-oxide nanoparticles, other types of nanoparticles, such as superparamagnetic iron-oxide nanoparticles and silica-releasing systems also exhibit antimicrobial properties. Finally, since the quantification and understanding of the antimicrobial action of metal-based nanoparticles are key topics, several methods for evaluating in vitro antimicrobial activity and the most common antimicrobial mechanisms (e.g., cell damage and changes in the expression of metabolic genes) were discussed in this review. The investigation of novel nanoparticles with antimicrobial activity has grown in recent years due to the increased incidence of nosocomial infections occurring during hospitalization and food poisoning derived from foodborne pathogens. Antimicrobial agents are necessary in various fields in which biological contamination occurs. For example, in food packaging they are used to control food contamination by microbes, in the medical field the microbial agents are important for reducing the risk of contamination in invasive and routine interventions, and in the textile industry, they can limit the growth of microorganisms due to sweat. The combination of nanotechnology with materials that have an intrinsic antimicrobial activity can result in the development of novel antimicrobial substances. Specifically, metal-based nanoparticles have attracted much interest due to their broad effectiveness against pathogenic microorganisms due to their high surface area and high reactivity. The aim of this review was to explore the state-of-the-art in metal-based nanoparticles, focusing on their synthesis methods, types, and their antimicrobial action. Different techniques used to synthesize metal-based nanoparticles were discussed, including chemical and physical methods and "green synthesis" methods that are free of chemical agents. Although the most studied nanoparticles with antimicrobial properties are metallic or metal-oxide nanoparticles, other types of nanoparticles, such as superparamagnetic iron-oxide nanoparticles and silica-releasing systems also exhibit antimicrobial properties. Finally, since the quantification and understanding of the antimicrobial action of metal-based nanoparticles are key topics, several methods for evaluating in vitro antimicrobial activity and the most common antimicrobial mechanisms (e.g., cell damage and changes in the expression of metabolic genes) were discussed in this review.The investigation of novel nanoparticles with antimicrobial activity has grown in recent years due to the increased incidence of nosocomial infections occurring during hospitalization and food poisoning derived from foodborne pathogens. Antimicrobial agents are necessary in various fields in which biological contamination occurs. For example, in food packaging they are used to control food contamination by microbes, in the medical field the microbial agents are important for reducing the risk of contamination in invasive and routine interventions, and in the textile industry, they can limit the growth of microorganisms due to sweat. The combination of nanotechnology with materials that have an intrinsic antimicrobial activity can result in the development of novel antimicrobial substances. Specifically, metal-based nanoparticles have attracted much interest due to their broad effectiveness against pathogenic microorganisms due to their high surface area and high reactivity. The aim of this review was to explore the state-of-the-art in metal-based nanoparticles, focusing on their synthesis methods, types, and their antimicrobial action. Different techniques used to synthesize metal-based nanoparticles were discussed, including chemical and physical methods and "green synthesis" methods that are free of chemical agents. Although the most studied nanoparticles with antimicrobial properties are metallic or metal-oxide nanoparticles, other types of nanoparticles, such as superparamagnetic iron-oxide nanoparticles and silica-releasing systems also exhibit antimicrobial properties. Finally, since the quantification and understanding of the antimicrobial action of metal-based nanoparticles are key topics, several methods for evaluating in vitro antimicrobial activity and the most common antimicrobial mechanisms (e.g., cell damage and changes in the expression of metabolic genes) were discussed in this review. |
| Author | Escrig, Juan de Dicastillo, Carol Lopez Vidal, Cristian Patiño Streitt, Camilo Martínez, Fernanda B Guerrero Correa, Matías |
| AuthorAffiliation | 2 Center for the Development of Nanoscience and Nanotechnology (CEDENNA), 9170124 Santiago, Chile 3 Department of Physics, University of Santiago de Chile (USACH), Av. Ecuador 3493, 9170124 Santiago, Chile 1 Center of Innovation in Packaging (LABEN), University of Santiago de Chile (USACH), Obispo Umaña 050, 9170201 Santiago, Chile |
| AuthorAffiliation_xml | – name: 1 Center of Innovation in Packaging (LABEN), University of Santiago de Chile (USACH), Obispo Umaña 050, 9170201 Santiago, Chile – name: 2 Center for the Development of Nanoscience and Nanotechnology (CEDENNA), 9170124 Santiago, Chile – name: 3 Department of Physics, University of Santiago de Chile (USACH), Av. Ecuador 3493, 9170124 Santiago, Chile |
| Author_xml | – sequence: 1 givenname: Matías orcidid: 0000-0001-5776-8094 surname: Guerrero Correa fullname: Guerrero Correa, Matías – sequence: 2 givenname: Fernanda B surname: Martínez fullname: Martínez, Fernanda B – sequence: 3 givenname: Cristian Patiño surname: Vidal fullname: Vidal, Cristian Patiño – sequence: 4 givenname: Camilo surname: Streitt fullname: Streitt, Camilo – sequence: 5 givenname: Juan orcidid: 0000-0002-3958-8185 surname: Escrig fullname: Escrig, Juan – sequence: 6 givenname: Carol Lopez orcidid: 0000-0003-0067-9765 surname: de Dicastillo fullname: de Dicastillo, Carol Lopez |
| BookMark | eNptkU1v1DAQhi1URD_okXuOHMjizyTmgFRVQCtV4gJna-xMWq8Se7G9rfbf42UXqUVYsjwav_NoZt5zchJiQELeMboSfcc_2nWAEFeMrRjXr8gZZ5q2kg_dybP4lFzmvKb1SMoHPbwhp0JQrmUvz8h4FYpfvEvRepibBQvMrYWMY7NHbyAV72bMnxpoEj56fGpiaMoD-tTkXahB9vlDU3YbzA2Esd7nPHDFx_CWvJ5gznh5fC_Iz69fflzftHffv91eX921TgpaWtX1YKce-oFzK9BZVL0cKIw9Y2M3sQHVBLob0aHSPRXcKaGGiWHXaTEhExfk9sAdI6zNJvkF0s5E8OZPIqZ7c5zHKKCMD2CtpU520gKyUXDKkSNqoYfK-nxgbbZ2wdFhKAnmF9CXP8E_mPv4aHrFuVS6At4fASn-2mIuZvHZ4TxDwLjNhkupuRLVlioVB2ldW84JJ-N8gf3mKtnPhlGzt9sc7DaMmWp3rWr_qfrb3P_1vwEOX7Ed |
| CitedBy_id | crossref_primary_10_3390_ijms231911957 crossref_primary_10_1007_s10118_023_3029_9 crossref_primary_10_3390_nano12142371 crossref_primary_10_1007_s13399_023_04739_z crossref_primary_10_3390_nano14141182 crossref_primary_10_1016_j_jwpe_2025_107541 crossref_primary_10_1007_s40089_021_00358_6 crossref_primary_10_1111_jace_18002 crossref_primary_10_3389_fmicb_2025_1527473 crossref_primary_10_1007_s12668_024_01530_w crossref_primary_10_1134_S0036023622602781 crossref_primary_10_3390_metabo13050625 crossref_primary_10_1016_j_molliq_2022_120094 crossref_primary_10_3389_fnano_2024_1346069 crossref_primary_10_1002_adem_202500936 crossref_primary_10_1016_j_jinorgbio_2022_111938 crossref_primary_10_1177_15280837251322535 crossref_primary_10_1002_slct_202100618 crossref_primary_10_1007_s10904_024_03571_w crossref_primary_10_1080_09205063_2024_2365047 crossref_primary_10_1016_j_fbio_2025_106347 crossref_primary_10_1007_s13346_022_01216_4 crossref_primary_10_1016_j_inoche_2023_111636 crossref_primary_10_3390_nano15010010 crossref_primary_10_3390_coatings14020172 crossref_primary_10_1007_s10854_021_07331_1 crossref_primary_10_1016_j_inoche_2024_112750 crossref_primary_10_1007_s00253_025_13589_w crossref_primary_10_1016_j_foodchem_2022_135099 crossref_primary_10_1039_D2NR02395D crossref_primary_10_1016_j_surfin_2025_105805 crossref_primary_10_1080_87559129_2024_2368065 crossref_primary_10_3390_jof8070733 crossref_primary_10_3390_pharmaceutics14122599 crossref_primary_10_1111_1751_7915_14549 crossref_primary_10_3389_fbioe_2021_782799 crossref_primary_10_3390_pharmaceutics14112273 crossref_primary_10_1002_slct_202502607 crossref_primary_10_1088_2053_1591_ad8c17 crossref_primary_10_3103_S1068335624602462 crossref_primary_10_47853_FAS_2025_e11 crossref_primary_10_1016_j_ica_2021_120636 crossref_primary_10_3390_app14114612 crossref_primary_10_3390_ma14185454 crossref_primary_10_3390_ijms24032457 crossref_primary_10_4103_apjtb_apjtb_185_24 crossref_primary_10_3390_antibiotics13070623 crossref_primary_10_36107_hfb_2024_i4_s242 crossref_primary_10_3390_antibiotics12060968 crossref_primary_10_3390_molecules26175426 crossref_primary_10_3390_pharmaceutics13111795 crossref_primary_10_1134_S0036023621080064 crossref_primary_10_3390_biom13071092 crossref_primary_10_1038_s41598_022_23615_w crossref_primary_10_3390_ph18070976 crossref_primary_10_1080_03639045_2022_2075007 crossref_primary_10_3390_nano13202775 crossref_primary_10_1016_j_afres_2025_100860 crossref_primary_10_3390_ijms25168915 crossref_primary_10_1016_j_ijfoodmicro_2024_110959 crossref_primary_10_1016_j_actbio_2022_02_027 crossref_primary_10_1016_j_surfin_2025_107004 crossref_primary_10_1016_j_matchemphys_2025_131299 crossref_primary_10_1080_10408436_2025_2483676 crossref_primary_10_1134_S1068162024060025 crossref_primary_10_3762_bjnano_12_59 crossref_primary_10_1002_pc_29628 crossref_primary_10_1093_femsle_fnad138 crossref_primary_10_1016_j_eurpolymj_2023_112418 crossref_primary_10_1080_09506608_2023_2193784 crossref_primary_10_1080_87559129_2025_2541849 crossref_primary_10_3390_molecules27030845 crossref_primary_10_1007_s42770_024_01410_1 crossref_primary_10_1016_j_apsusc_2025_162590 crossref_primary_10_1016_j_cej_2024_155422 crossref_primary_10_1002_cmdc_202300262 crossref_primary_10_1016_j_aej_2025_04_002 crossref_primary_10_1016_j_susmat_2024_e00942 crossref_primary_10_1080_00387010_2025_2486180 crossref_primary_10_1039_D5CP01880C crossref_primary_10_12944_CRNFSJ_10_1_01 crossref_primary_10_1039_D5NA00037H crossref_primary_10_1016_j_jddst_2024_105542 crossref_primary_10_1155_jnt_8412675 crossref_primary_10_3389_fcimb_2025_1528583 crossref_primary_10_3389_fimmu_2021_684605 crossref_primary_10_3390_ma16041460 crossref_primary_10_1007_s12668_024_01494_x crossref_primary_10_1186_s12985_024_02315_z crossref_primary_10_1016_j_inoche_2024_113809 crossref_primary_10_3390_ma18020382 crossref_primary_10_1016_j_bioadv_2023_213723 crossref_primary_10_1515_ijmr_2023_0243 crossref_primary_10_4028_p_c80drd crossref_primary_10_3390_molecules28155650 crossref_primary_10_1038_s41598_024_56503_6 crossref_primary_10_13005_bpj_2587 crossref_primary_10_1016_j_ijbiomac_2024_130515 crossref_primary_10_1016_j_nwnano_2025_100145 crossref_primary_10_3389_fmats_2024_1449614 crossref_primary_10_1007_s12602_024_10327_y crossref_primary_10_1039_D2RA04557E crossref_primary_10_1007_s10904_024_03078_4 crossref_primary_10_3389_fbioe_2024_1342340 crossref_primary_10_32604_phyton_2024_049612 crossref_primary_10_1007_s42864_022_00196_9 crossref_primary_10_3390_molecules30020291 crossref_primary_10_1016_j_cis_2025_103626 crossref_primary_10_1016_j_jmbbm_2023_106315 crossref_primary_10_1002_aoc_7467 crossref_primary_10_1016_j_mtchem_2025_102619 crossref_primary_10_1155_2023_9935556 crossref_primary_10_1007_s13204_024_03072_9 crossref_primary_10_3390_app131910934 crossref_primary_10_1007_s13399_023_04847_w |
| Cites_doi | 10.1016/j.tifs.2018.09.021 10.3390/coatings8110391 10.3390/ma9040274 10.1039/c2ce06392a 10.1016/j.tibtech.2012.06.004 10.1016/j.micpath.2017.09.019 10.1070/mc1999v009n04abeh001080 10.3390/nano10030503 10.1039/c8nr02278j 10.1016/j.cdc.2019.100190 10.1016/j.mtchem.2019.07.003 10.1016/j.biomaterials.2009.03.044 10.1002/smll.201302434 10.1128/cmr.17.2.268-280.2004 10.1371/journal.pone.0123084 10.1016/j.actbio.2012.03.002 10.1016/j.snb.2011.05.023 10.1016/j.biomaterials.2011.11.057 10.1016/j.mssp.2018.03.017 10.1007/s10853-019-03727-x 10.1016/j.biomaterials.2009.01.052 10.1021/es060999b 10.1007/s10570-019-02542-6 10.1039/c5ra19388e 10.1016/j.physe.2018.11.007 10.1016/j.molliq.2016.03.038 10.1007/s13205-014-0210-4 10.1007/s10904-018-01071-2 10.3762/bjnano.10.167 10.1007/978-3-642-18312-6_1 10.1039/c3ce27011d 10.1016/j.heliyon.2019.e02980 10.1007/s12274-016-0984-2 10.1016/j.msec.2015.09.078 10.1016/j.physb.2019.01.040 10.1007/s00775-019-01717-7 10.1016/j.apsusc.2015.02.176 10.1007/s10616-014-9701-8 10.3762/bjnano.7.133 10.1039/c6nr00202a 10.1016/s0169-4332(02)01230-8 10.1016/j.watres.2019.115229 10.1016/b978-0-323-46152-8.00025-1 10.1002/adfm.200500029 10.1016/j.tifs.2020.03.008 10.3390/nano8121009 10.1016/j.bcab.2018.08.002 10.1016/j.wsj.2017.10.001 10.32607/20758251-2014-6-1-35-44 10.1016/j.carbpol.2019.115360 10.1016/j.colsurfa.2004.12.058 10.25141/2475-3432-2017-3.0066 10.1016/j.jallcom.2018.09.190 10.1038/srep24312 10.1016/j.msec.2019.110011 10.1016/s0022-1759(99)00207-0 10.1016/j.optlaseng.2008.05.018 10.1016/j.jpba.2019.112970 10.1073/pnas.96.24.13611 10.1016/j.scriptamat.2018.10.026 10.1016/j.nano.2009.07.002 10.1016/j.jcis.2010.09.041 10.1002/adtp.201700033 10.1016/j.cattod.2018.05.033 10.1016/j.matchemphys.2005.06.045 10.1021/jf0636465 10.3390/nano8020128 10.1158/0008-5472.can-09-2496 10.1016/j.heliyon.2019.e01878 10.1016/s1872-2067(11)60431-2 10.3109/17435390903305260 10.1016/j.carbpol.2019.115187 10.1016/j.onano.2017.07.001 10.1007/s13738-019-01595-5 10.1016/j.matlet.2019.126813 10.1016/j.mseb.2017.12.031 10.1016/j.rinp.2019.102565 10.1016/j.molliq.2015.09.004 10.1016/j.reffit.2017.03.002 10.1016/j.cbi.2016.03.029 10.1016/j.arabjc.2016.04.009 10.4172/2157-7439.1000165 10.1016/b978-0-323-41533-0.00006-4 10.3390/ma8115377 10.1038/s41598-019-52473-2 10.1016/j.matchemphys.2019.01.020 10.5681/apb.2015.003 10.1002/aoc.4950 10.3390/polym9120636 10.1021/la001331s 10.1016/s1010-6030(03)00077-7 10.1016/j.msec.2019.109809 10.1016/j.tibtech.2013.01.003 10.1016/j.nimb.2019.06.039 10.1128/microbiolspec.funk-0035-2016 10.1016/j.fct.2019.110814 10.1515/ntrev-2017-0159 10.1166/jnn.2019.15854 10.15171/ehem.2019.08 10.1016/j.apsusc.2020.145818 10.1016/j.foodchem.2018.07.114 10.1021/cm990315h 10.1016/j.freeradbiomed.2018.04.561 10.1038/srep11033 10.1016/j.onano.2017.07.002 10.1007/978-3-319-13503-8_3 10.1116/1.2815690 10.1016/j.ceramint.2019.05.309 10.1016/j.bcab.2018.05.011 10.1039/b200272h 10.1016/j.carbpol.2019.115349 10.1016/j.mimet.2010.10.010 10.1016/j.jare.2015.02.007 10.1086/381972 10.1021/nn300042m 10.1007/s10876-019-01584-x 10.1016/j.colsurfa.2019.123732 10.1016/j.jaerosci.2006.09.002 10.1080/87559129.2020.1737709 10.1016/j.matchemphys.2008.11.056 10.1016/j.jlumin.2014.02.015 10.1038/nchembio.607 10.1021/la800951v 10.1002/wnan.1592 10.2147/ijn.s134526 10.1515/ijcre-2012-0055 10.1016/j.ceramint.2018.10.054 10.1002/vnl.21606 10.3390/ph9040075 10.1021/la035646u 10.1016/j.jpha.2015.11.005 10.1088/1748-6041/10/1/015001 10.1002/aoc.5298 10.1016/j.coche.2015.01.003 10.1111/jdv.15943 10.1016/j.jscs.2010.06.004 10.1128/aem.71.11.7589-7593.2005 10.1016/j.jiec.2013.12.043 10.1016/s1388-2481(02)00256-4 10.1016/j.matlet.2009.05.068 10.1093/jac/dkr408 10.1016/j.jrras.2015.01.007 10.1166/jbn.2012.1423 10.1039/a900568d 10.1039/c39940000801 10.3390/ijms17091534 10.1002/pc.25414 10.1038/ncomms5947 10.1016/j.lwt.2019.01.023 10.1007/s11671-009-9445-0 10.1021/cm000607e 10.1016/j.btre.2020.e00427 10.1016/j.mimet.2019.105766 10.1520/e2149-13a 10.1016/b978-0-323-46152-8.00024-x 10.1016/j.matchar.2019.109814 10.1016/j.ecolecon.2016.12.019 10.1016/j.sjbs.2019.09.005 10.1155/2014/410423 10.1016/j.matchemphys.2020.123014 10.1021/la701236v 10.1021/ja983361b 10.1007/s10904-019-01166-4 10.1016/j.jpcs.2008.06.143 10.1016/j.foodcont.2010.09.011 10.2147/ijn.s61143 |
| ContentType | Journal Article |
| Copyright | Copyright © 2020, Guerrero Correa et al.; licensee Beilstein-Institut. Copyright © 2020, Guerrero Correa et al. 2020 Guerrero Correa et al. |
| Copyright_xml | – notice: Copyright © 2020, Guerrero Correa et al.; licensee Beilstein-Institut. – notice: Copyright © 2020, Guerrero Correa et al. 2020 Guerrero Correa et al. |
| DBID | AAYXX CITATION 7X8 5PM DOA |
| DOI | 10.3762/bjnano.11.129 |
| DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2190-4286 |
| EndPage | 1469 |
| ExternalDocumentID | oai_doaj_org_article_5a0128abbb0c464bae1d3202e2ee9398 PMC7522459 10_3762_bjnano_11_129 |
| GroupedDBID | 53G 5VS 88I 8FE 8FG AAFWJ AAKDD AAYXX ABUWG ACGFO ACGOD ADBBV ADDVE ADRAZ AENEX AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC BAWUL BCNDV BENPR BFMQW BGLVJ BPHCQ CCPQU CITATION DIK DWQXO FRP GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HYE KQ8 M2P M48 M~E OK1 P62 PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RNS RPM ~9O 7X8 5PM |
| ID | FETCH-LOGICAL-c430t-567abf7a7822b3ecbe57480ad711d6f18e5fa96dece597032c5358f1e6693fe13 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 138 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000575578800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2190-4286 |
| IngestDate | Mon Nov 10 04:25:47 EST 2025 Tue Nov 04 01:58:57 EST 2025 Sun Nov 09 10:06:01 EST 2025 Sat Nov 29 03:42:04 EST 2025 Tue Nov 18 22:05:04 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 This is an Open Access article under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0). Please note that the reuse, redistribution and reproduction in particular requires that the authors and source are credited. The license is subject to the Beilstein Journal of Nanotechnology terms and conditions: (https://www.beilstein-journals.org/bjnano/terms) |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c430t-567abf7a7822b3ecbe57480ad711d6f18e5fa96dece597032c5358f1e6693fe13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-3958-8185 0000-0001-5776-8094 0000-0003-0067-9765 |
| OpenAccessLink | https://doaj.org/article/5a0128abbb0c464bae1d3202e2ee9398 |
| PMID | 33029474 |
| PQID | 2449253000 |
| PQPubID | 23479 |
| PageCount | 20 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_5a0128abbb0c464bae1d3202e2ee9398 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7522459 proquest_miscellaneous_2449253000 crossref_citationtrail_10_3762_bjnano_11_129 crossref_primary_10_3762_bjnano_11_129 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-09-25 |
| PublicationDateYYYYMMDD | 2020-09-25 |
| PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-25 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | Trakehner Str. 7-9, 60487 Frankfurt am Main, Germany |
| PublicationPlace_xml | – name: Trakehner Str. 7-9, 60487 Frankfurt am Main, Germany |
| PublicationTitle | Beilstein journal of nanotechnology |
| PublicationYear | 2020 |
| Publisher | Beilstein-Institut |
| Publisher_xml | – name: Beilstein-Institut |
| References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref168 ref54 ref169 ref170 ref51 ref50 ref171 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref34 Pantic (ref16) 2014; 37 ref37 ref36 ref31 ref148 ref30 ref149 ref33 ref146 ref32 ref39 ref38 ref155 ref156 ref153 ref154 ref151 ref152 ref150 ref24 ref23 ref26 ref25 ref159 ref22 ref157 ref21 ref158 ref28 ref27 ref29 ref166 ref167 ref164 ref165 ref162 ref163 ref160 ref161 ref13 ref12 ref15 ref128 ref14 ref129 ref97 ref126 ref96 ref127 ref11 Camporotondia (ref20) 2013; 2 ref99 ref124 ref10 ref98 ref125 ref17 ref19 ref18 ref93 ref133 ref92 ref134 ref95 ref131 ref94 ref132 ref130 ref91 ref90 ref89 ref139 ref86 ref137 ref85 ref138 ref88 ref135 ref87 ref136 Adibkia (ref8) 2009; 15 ref82 ref144 ref81 ref84 ref142 ref83 ref143 ref140 ref141 ref80 ref79 ref108 ref78 ref109 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref2 ref1 (ref145) 2015; 35 (ref147) 2011; 38 ref71 ref111 ref70 ref112 ref73 ref72 ref110 ref68 ref119 ref67 ref117 ref69 ref118 ref64 ref115 ref63 ref116 ref66 ref113 ref65 ref114 ref60 ref122 ref123 ref62 ref120 ref61 ref121 |
| References_xml | – ident: ref127 doi: 10.1016/j.tifs.2018.09.021 – ident: ref153 doi: 10.3390/coatings8110391 – ident: ref104 doi: 10.3390/ma9040274 – ident: ref69 doi: 10.1039/c2ce06392a – ident: ref2 doi: 10.1016/j.tibtech.2012.06.004 – ident: ref117 doi: 10.1016/j.micpath.2017.09.019 – ident: ref45 doi: 10.1070/mc1999v009n04abeh001080 – ident: ref40 doi: 10.3390/nano10030503 – ident: ref21 doi: 10.1039/c8nr02278j – ident: ref79 doi: 10.1016/j.cdc.2019.100190 – ident: ref78 doi: 10.1016/j.mtchem.2019.07.003 – ident: ref166 doi: 10.1016/j.biomaterials.2009.03.044 – ident: ref155 doi: 10.1002/smll.201302434 – ident: ref149 doi: 10.1128/cmr.17.2.268-280.2004 – ident: ref159 doi: 10.1371/journal.pone.0123084 – ident: ref137 doi: 10.1016/j.actbio.2012.03.002 – ident: ref52 doi: 10.1016/j.snb.2011.05.023 – ident: ref167 doi: 10.1016/j.biomaterials.2011.11.057 – ident: ref90 doi: 10.1016/j.mssp.2018.03.017 – ident: ref105 doi: 10.1007/s10853-019-03727-x – ident: ref141 doi: 10.1016/j.biomaterials.2009.01.052 – ident: ref48 doi: 10.1021/es060999b – ident: ref107 doi: 10.1007/s10570-019-02542-6 – ident: ref9 doi: 10.1039/c5ra19388e – ident: ref60 doi: 10.1016/j.physe.2018.11.007 – ident: ref10 doi: 10.1016/j.molliq.2016.03.038 – ident: ref14 doi: 10.1007/s13205-014-0210-4 – ident: ref108 doi: 10.1007/s10904-018-01071-2 – ident: ref38 doi: 10.3762/bjnano.10.167 – ident: ref83 doi: 10.1007/978-3-642-18312-6_1 – ident: ref47 doi: 10.1039/c3ce27011d – ident: ref168 doi: 10.1016/j.heliyon.2019.e02980 – ident: ref44 doi: 10.1007/s12274-016-0984-2 – ident: ref109 doi: 10.1016/j.msec.2015.09.078 – ident: ref121 doi: 10.1016/j.physb.2019.01.040 – ident: ref130 doi: 10.1007/s00775-019-01717-7 – ident: ref41 doi: 10.1016/j.apsusc.2015.02.176 – ident: ref61 doi: 10.1007/s10616-014-9701-8 – ident: ref25 doi: 10.3762/bjnano.7.133 – ident: ref163 doi: 10.1039/c6nr00202a – ident: ref34 doi: 10.1016/s0169-4332(02)01230-8 – ident: ref171 doi: 10.1016/j.watres.2019.115229 – ident: ref140 doi: 10.1016/b978-0-323-46152-8.00025-1 – ident: ref30 doi: 10.1002/adfm.200500029 – ident: ref158 doi: 10.1016/j.tifs.2020.03.008 – ident: ref97 doi: 10.3390/nano8121009 – ident: ref100 doi: 10.1016/j.bcab.2018.08.002 – ident: ref75 doi: 10.1016/j.wsj.2017.10.001 – ident: ref13 doi: 10.32607/20758251-2014-6-1-35-44 – ident: ref110 doi: 10.1016/j.carbpol.2019.115360 – ident: ref42 doi: 10.1016/j.colsurfa.2004.12.058 – ident: ref85 doi: 10.25141/2475-3432-2017-3.0066 – ident: ref55 doi: 10.1016/j.jallcom.2018.09.190 – volume: 35 start-page: 73 year: 2015 ident: ref145 publication-title: Standards. NCCLS. Clin. Lab. Stand. Inst. – ident: ref73 doi: 10.1038/srep24312 – volume: 38 start-page: 1 year: 2011 ident: ref147 publication-title: Standards. NCCLS. Clin. Lab. Stand. Inst. – ident: ref120 doi: 10.1016/j.msec.2019.110011 – ident: ref150 doi: 10.1016/s0022-1759(99)00207-0 – ident: ref36 doi: 10.1016/j.optlaseng.2008.05.018 – ident: ref80 doi: 10.1016/j.jpba.2019.112970 – ident: ref84 doi: 10.1073/pnas.96.24.13611 – ident: ref37 doi: 10.1016/j.scriptamat.2018.10.026 – ident: ref70 doi: 10.1016/j.nano.2009.07.002 – ident: ref50 doi: 10.1016/j.jcis.2010.09.041 – ident: ref95 doi: 10.1002/adtp.201700033 – ident: ref114 doi: 10.1016/j.cattod.2018.05.033 – ident: ref142 doi: 10.1016/j.matchemphys.2005.06.045 – ident: ref164 doi: 10.1021/jf0636465 – ident: ref39 doi: 10.3390/nano8020128 – ident: ref170 doi: 10.1158/0008-5472.can-09-2496 – ident: ref17 doi: 10.1016/j.heliyon.2019.e01878 – ident: ref29 doi: 10.1016/s1872-2067(11)60431-2 – ident: ref49 doi: 10.3109/17435390903305260 – ident: ref98 doi: 10.1016/j.carbpol.2019.115187 – ident: ref35 doi: 10.1016/j.onano.2017.07.001 – ident: ref4 doi: 10.1007/s13738-019-01595-5 – ident: ref88 doi: 10.1016/j.matlet.2019.126813 – ident: ref118 doi: 10.1016/j.mseb.2017.12.031 – ident: ref89 doi: 10.1016/j.rinp.2019.102565 – ident: ref119 doi: 10.1016/j.molliq.2015.09.004 – ident: ref72 doi: 10.1016/j.reffit.2017.03.002 – ident: ref160 doi: 10.1016/j.cbi.2016.03.029 – ident: ref81 doi: 10.1016/j.arabjc.2016.04.009 – ident: ref11 doi: 10.4172/2157-7439.1000165 – ident: ref77 doi: 10.1016/b978-0-323-41533-0.00006-4 – ident: ref71 doi: 10.3390/ma8115377 – ident: ref103 doi: 10.1038/s41598-019-52473-2 – ident: ref123 doi: 10.1016/j.matchemphys.2019.01.020 – ident: ref18 doi: 10.5681/apb.2015.003 – ident: ref133 doi: 10.1002/aoc.4950 – ident: ref134 doi: 10.3390/polym9120636 – ident: ref65 doi: 10.1021/la001331s – ident: ref56 doi: 10.1016/s1010-6030(03)00077-7 – ident: ref96 doi: 10.1016/j.msec.2019.109809 – ident: ref12 doi: 10.1016/j.tibtech.2013.01.003 – volume: 2 start-page: 283 volume-title: Microbial pathogens and strategies for combating them: science, technology and education year: 2013 ident: ref20 – ident: ref124 doi: 10.1016/j.nimb.2019.06.039 – ident: ref156 doi: 10.1128/microbiolspec.funk-0035-2016 – ident: ref131 doi: 10.1016/j.fct.2019.110814 – ident: ref126 doi: 10.1515/ntrev-2017-0159 – ident: ref101 doi: 10.1166/jnn.2019.15854 – ident: ref111 doi: 10.15171/ehem.2019.08 – ident: ref24 doi: 10.1016/j.apsusc.2020.145818 – ident: ref3 doi: 10.1016/j.foodchem.2018.07.114 – ident: ref32 doi: 10.1021/cm990315h – ident: ref169 doi: 10.1016/j.freeradbiomed.2018.04.561 – ident: ref161 doi: 10.1038/srep11033 – ident: ref92 doi: 10.1016/j.onano.2017.07.002 – ident: ref157 doi: 10.1007/978-3-319-13503-8_3 – ident: ref7 doi: 10.1116/1.2815690 – ident: ref106 doi: 10.1016/j.ceramint.2019.05.309 – ident: ref91 doi: 10.1016/j.bcab.2018.05.011 – ident: ref33 doi: 10.1039/b200272h – ident: ref129 doi: 10.1016/j.carbpol.2019.115349 – volume: 15 start-page: 303 year: 2009 ident: ref8 publication-title: Ulum-i Daroei – ident: ref139 doi: 10.1016/j.mimet.2010.10.010 – ident: ref76 doi: 10.1016/j.jare.2015.02.007 – ident: ref1 doi: 10.1086/381972 – ident: ref138 doi: 10.1021/nn300042m – ident: ref116 doi: 10.1007/s10876-019-01584-x – ident: ref122 doi: 10.1016/j.colsurfa.2019.123732 – ident: ref23 doi: 10.1016/j.jaerosci.2006.09.002 – ident: ref26 doi: 10.1080/87559129.2020.1737709 – ident: ref27 doi: 10.1016/j.matchemphys.2008.11.056 – ident: ref28 doi: 10.1016/j.jlumin.2014.02.015 – ident: ref151 doi: 10.1038/nchembio.607 – ident: ref43 doi: 10.1021/la800951v – ident: ref128 doi: 10.1002/wnan.1592 – ident: ref5 doi: 10.2147/ijn.s134526 – ident: ref68 doi: 10.1515/ijcre-2012-0055 – ident: ref59 doi: 10.1016/j.ceramint.2018.10.054 – ident: ref125 doi: 10.1002/vnl.21606 – ident: ref135 doi: 10.3390/ph9040075 – ident: ref51 doi: 10.1021/la035646u – ident: ref146 doi: 10.1016/j.jpha.2015.11.005 – ident: ref152 doi: 10.1088/1748-6041/10/1/015001 – ident: ref113 doi: 10.1002/aoc.5298 – ident: ref136 doi: 10.1016/j.coche.2015.01.003 – volume: 37 start-page: 15 year: 2014 ident: ref16 publication-title: Reviews on Advanced Materials Science – ident: ref132 doi: 10.1111/jdv.15943 – ident: ref87 doi: 10.1016/j.jscs.2010.06.004 – ident: ref165 doi: 10.1128/aem.71.11.7589-7593.2005 – ident: ref64 doi: 10.1016/j.jiec.2013.12.043 – ident: ref46 doi: 10.1016/s1388-2481(02)00256-4 – ident: ref53 doi: 10.1016/j.matlet.2009.05.068 – ident: ref144 doi: 10.1093/jac/dkr408 – ident: ref94 doi: 10.1016/j.jrras.2015.01.007 – ident: ref143 doi: 10.1166/jbn.2012.1423 – ident: ref63 doi: 10.1039/a900568d – ident: ref67 doi: 10.1039/c39940000801 – ident: ref86 doi: 10.3390/ijms17091534 – ident: ref102 doi: 10.1002/pc.25414 – ident: ref66 doi: 10.1038/ncomms5947 – ident: ref93 doi: 10.1016/j.lwt.2019.01.023 – ident: ref58 doi: 10.1007/s11671-009-9445-0 – ident: ref62 doi: 10.1021/cm000607e – ident: ref6 doi: 10.1016/j.btre.2020.e00427 – ident: ref74 doi: 10.1016/j.mimet.2019.105766 – ident: ref148 doi: 10.1520/e2149-13a – ident: ref19 doi: 10.1016/b978-0-323-46152-8.00024-x – ident: ref22 doi: 10.1016/j.matchar.2019.109814 – ident: ref82 doi: 10.1016/j.ecolecon.2016.12.019 – ident: ref115 doi: 10.1016/j.sjbs.2019.09.005 – ident: ref162 doi: 10.1155/2014/410423 – ident: ref15 doi: 10.1016/j.matchemphys.2020.123014 – ident: ref31 doi: 10.1021/la701236v – ident: ref57 doi: 10.1021/ja983361b – ident: ref99 doi: 10.1007/s10904-019-01166-4 – ident: ref54 doi: 10.1016/j.jpcs.2008.06.143 – ident: ref112 doi: 10.1016/j.foodcont.2010.09.011 – ident: ref154 doi: 10.2147/ijn.s61143 |
| SSID | ssj0000402898 |
| Score | 2.5776334 |
| SecondaryResourceType | review_article |
| Snippet | The investigation of novel nanoparticles with antimicrobial activity has grown in recent years due to the increased incidence of nosocomial infections... |
| SourceID | doaj pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 1450 |
| SubjectTerms | antimicrobial mechanism antimicrobial nanoparticles metallic nanoparticles nanoparticle synthesis Nanoscience Nanotechnology nosocomial infections Review |
| Title | Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action |
| URI | https://www.proquest.com/docview/2449253000 https://pubmed.ncbi.nlm.nih.gov/PMC7522459 https://doaj.org/article/5a0128abbb0c464bae1d3202e2ee9398 |
| Volume | 11 |
| WOSCitedRecordID | wos000575578800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2190-4286 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000402898 issn: 2190-4286 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2190-4286 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000402898 issn: 2190-4286 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Continental Europe Database customDbUrl: eissn: 2190-4286 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000402898 issn: 2190-4286 databaseCode: BFMQW dateStart: 20150101 isFulltext: true titleUrlDefault: https://search.proquest.com/conteurope providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 2190-4286 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000402898 issn: 2190-4286 databaseCode: P5Z dateStart: 20150101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2190-4286 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000402898 issn: 2190-4286 databaseCode: BENPR dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2190-4286 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000402898 issn: 2190-4286 databaseCode: PIMPY dateStart: 20150101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2190-4286 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000402898 issn: 2190-4286 databaseCode: M2P dateStart: 20150101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5B4QAHVF5iC10ZCXFqaF6OY24t6goOuwoIxMIl8itqEPVWzbYS_54ZZ7ckB9RLD3GixEqs8dj-JuP5BuCNNDjnKWGispRxlDfcRloLiVYK-eBknNpYh2QTYrEol0tZDVJ90Z6wnh64F9whVzSFKq11bPIi18ollnJ-u9Q5mckQ5ouoZ2BMhTk4Jw9aSEdHsdKIsYueYBPHU3qof3nlVzhbvEsCtPy3IAXe_hHYHG-VHKw9s114tAGN7Khv7GO44_wTeDigEnwK9siv27M20Cph1TOHoDqiJcoyasX5dgPce6ZYH67CVp4FNwHr_ni86NrugNEf2Y4pb_EYvq8Pf3gG32YnXz98jDYZFCKTZ_E64oVQuhGKYIDOnNGOi7yMlRVJYosmKR1vlCyso2AsHPup4Rkvm8QVhcwal2TPYcevvHsBLBeS28JxbhT5-lxJzH0G4ZpGk65J8gkcbMVYmw29OGW5-F2jmUFSr3upo8lRo9Qn8Pa6-nnPq_G_isfUJ9eViA473EAlqTeyq29Skgm83vZojcOHfCLKu9VlVyO6kSnPUGMmIEZdPfri-IlvTwMRt0DwmnO5dxtNfAkPUjLlyeHFX8HO-uLS7cN9c7Vuu4sp3BXLcgr3jk8W1Rc6z-afv0-DzmM5TyssK_4Tn1Sf5tWPv0KdCcs |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antimicrobial+metal-based+nanoparticles%3A+a+review+on+their+synthesis%2C+types+and+antimicrobial+action&rft.jtitle=Beilstein+journal+of+nanotechnology&rft.au=Guerrero+Correa%2C+Mat%C3%ADas&rft.au=Mart%C3%ADnez%2C+Fernanda+B&rft.au=Vidal%2C+Cristian+Pati%C3%B1o&rft.au=Streitt%2C+Camilo&rft.date=2020-09-25&rft.issn=2190-4286&rft.eissn=2190-4286&rft.volume=11&rft.spage=1450&rft.epage=1469&rft_id=info:doi/10.3762%2Fbjnano.11.129&rft.externalDBID=n%2Fa&rft.externalDocID=10_3762_bjnano_11_129 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-4286&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-4286&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-4286&client=summon |