Multi-objective scheduling of Scientific Workflows in multisite clouds

Clouds appear as appropriate infrastructures for executing Scientific Workflows (SWfs). A cloud is typically made of several sites (or data centers), each with its own resources and data. Thus, it becomes important to be able to execute some SWfs at more than one cloud site because of the geographic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Future generation computer systems Jg. 63; S. 76 - 95
Hauptverfasser: Liu, Ji, Pacitti, Esther, Valduriez, Patrick, de Oliveira, Daniel, Mattoso, Marta
Format: Journal Article Verlag
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.10.2016
Elsevier
Schlagworte:
ISSN:0167-739X, 1872-7115
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Clouds appear as appropriate infrastructures for executing Scientific Workflows (SWfs). A cloud is typically made of several sites (or data centers), each with its own resources and data. Thus, it becomes important to be able to execute some SWfs at more than one cloud site because of the geographical distribution of data or available resources among different cloud sites. Therefore, a major problem is how to execute a SWf in a multisite cloud, while reducing execution time and monetary costs. In this paper, we propose a general solution based on multi-objective scheduling in order to execute SWfs in a multisite cloud. The solution consists of a multi-objective cost model including execution time and monetary costs, a Single Site Virtual Machine (VM) Provisioning approach (SSVP) and ActGreedy, a multisite scheduling approach. We present an experimental evaluation, based on the execution of the SciEvol SWf in Microsoft Azure cloud. The results reveal that our scheduling approach significantly outperforms two adapted baseline algorithms (which we propose by adapting two existing algorithms) and the scheduling time is reasonable compared with genetic and brute-force algorithms. The results also show that our cost model is accurate and that SSVP can generate better VM provisioning plans compared with an existing approach. •A multi-objective cost model that includes execution time and monetary costs.•A Single Site VM Provisioning (SSVP) approach, to generate VM provisioning plans.•ActGreedy, an efficient scheduling algorithm for SWf execution in multisite cloud.•An extensive experimental evaluation in Microsoft Azure using the SciEvol SWf.
AbstractList Clouds appear as appropriate infrastructures for executing Scientific Workflows (SWfs). A cloud is typically made of several sites (or data centers), each with its own resources and data. Thus, it becomes important to be able to execute some SWfs at more than one cloud site because of the geographical distribution of data or available resources among different cloud sites. Therefore, a major problem is how to execute a SWf in a multisite cloud, while reducing execution time and monetary costs. In this paper, we propose a general solution based on multi-objective scheduling in order to execute SWfs in a multisite cloud. The solution consists of a multi-objective cost model including execution time and monetary costs, a Single Site Virtual Machine (VM) Provisioning approach (SSVP) and ActGreedy, a multisite scheduling approach. We present an experimental evaluation, based on the execution of the SciEvol SWf in Microsoft Azure cloud. The results reveal that our scheduling approach significantly outperforms two adapted baseline algorithms (which we propose by adapting two existing algorithms) and the scheduling time is reasonable compared with genetic and brute-force algorithms. The results also show that our cost model is accurate and that SSVP can generate better VM provisioning plans compared with an existing approach. Work partially funded by EU H2020 Programme and MCTI/RNP-Brazil (HPC4E grant agreement number 689772), CNPq, FAPERJ, and INRIA (MUSIC project), Microsoft (ZcloudFlow project) and performed in the context of the Computational Biology Institute (www.ibc-montpellier.fr). We would like to thank Kary Ocaña for her help in modeling and executing the SciEvol SWf. Peer Reviewed
Clouds appear as appropriate infrastructures for executing Scientific Workflows (SWfs). A cloud is typically made of several sites(or data centers), each with its own resources and data. Thus, it becomes important to be able to execute some SWfs at more than one cloud site because of the geographical distribution of data or available resources among dierent cloud sites. Therefore, a major problem is how to execute a SWf in a multisite cloud, while reducing execution time and monetary costs. In this paper, we propose a general solution based on multi-objective scheduling in order to execute SWfs in a multisite cloud. The solution includes a multiobjective cost model including execution time and monetary costs, a Single Site Virtual Machine (VM) Provisioning approach (SSVP) and ActGreedy, a multisite scheduling approach. We present an experimental evaluation, based on the execution of the SciEvol SWf in Microsoft Azure cloud. The results reveal that our scheduling approach significantly outperforms two adapted baseline algorithms (which we propose by adapting two existing algorithms) and the scheduling time is reasonable compared with genetic and brute-force algorithms. The results also show that our cost model is accurate and that SSVP can generate better VM provisioning plans compared with an existing approach.
Clouds appear as appropriate infrastructures for executing Scientific Workflows (SWfs). A cloud is typically made of several sites (or data centers), each with its own resources and data. Thus, it becomes important to be able to execute some SWfs at more than one cloud site because of the geographical distribution of data or available resources among different cloud sites. Therefore, a major problem is how to execute a SWf in a multisite cloud, while reducing execution time and monetary costs. In this paper, we propose a general solution based on multi-objective scheduling in order to execute SWfs in a multisite cloud. The solution consists of a multi-objective cost model including execution time and monetary costs, a Single Site Virtual Machine (VM) Provisioning approach (SSVP) and ActGreedy, a multisite scheduling approach. We present an experimental evaluation, based on the execution of the SciEvol SWf in Microsoft Azure cloud. The results reveal that our scheduling approach significantly outperforms two adapted baseline algorithms (which we propose by adapting two existing algorithms) and the scheduling time is reasonable compared with genetic and brute-force algorithms. The results also show that our cost model is accurate and that SSVP can generate better VM provisioning plans compared with an existing approach. •A multi-objective cost model that includes execution time and monetary costs.•A Single Site VM Provisioning (SSVP) approach, to generate VM provisioning plans.•ActGreedy, an efficient scheduling algorithm for SWf execution in multisite cloud.•An extensive experimental evaluation in Microsoft Azure using the SciEvol SWf.
Author Liu, Ji
de Oliveira, Daniel
Mattoso, Marta
Pacitti, Esther
Valduriez, Patrick
Author_xml – sequence: 1
  givenname: Ji
  orcidid: 0000-0003-4710-5697
  surname: Liu
  fullname: Liu, Ji
  email: ji.liu@inria.fr
  organization: Inria, Microsoft-Inria Joint Centre, LIRMM and University of Montpellier, France
– sequence: 2
  givenname: Esther
  surname: Pacitti
  fullname: Pacitti, Esther
  organization: Inria, Microsoft-Inria Joint Centre, LIRMM and University of Montpellier, France
– sequence: 3
  givenname: Patrick
  surname: Valduriez
  fullname: Valduriez, Patrick
  organization: Inria, Microsoft-Inria Joint Centre, LIRMM and University of Montpellier, France
– sequence: 4
  givenname: Daniel
  surname: de Oliveira
  fullname: de Oliveira, Daniel
  organization: Institute of Computing, Fluminense Federal University, Niteroi, Brazil
– sequence: 5
  givenname: Marta
  surname: Mattoso
  fullname: Mattoso, Marta
  organization: COPPE, Federal University of Rio de Janeiro, Brazil
BackLink https://hal-lirmm.ccsd.cnrs.fr/lirmm-01342203$$DView record in HAL
BookMark eNqFkE1r3DAQhkVJoZu0_6AH34ud0YdXdg6FEJoP2JBDW9qbkOVRMxuvVSR5Q_597W7IIYf2MAyD3mdGPMfsaAwjMvaRQ8WBr0-3lZ_yFLES81SBqoCrN2zFGy1KzXl9xFbzgy61bH--Y8cpbQGAa8lX7PJ2GjKVoduiy7THIrl77KeBxl9F8MVXRzhm8uSKHyE--CE8poLGYrdQiTIWbghTn96zt94OCT889xP2_fLLt4vrcnN3dXNxvimdkpBL5bp27UD5tvO9951CZSU6r5XgTQMSO-ToOYha2L7xnayh6ZRWTSsd1OtenrBPh733djC_I-1sfDLBkrk-35iB4m5ngEslBMg9n9P8kHZpciaiw-hs_pt_GZYSoIURWrTrembUMxNDShH9yxkOZrFttuZg2yy2Daj5opqxs1eYo2wzhTFHS8P_4M8HGGd1e8Jo0uLdYU_zP7PpA_17wR_686DR
CitedBy_id crossref_primary_10_1016_j_asoc_2020_106411
crossref_primary_10_1007_s00521_020_04834_6
crossref_primary_10_1007_s10115_024_02285_2
crossref_primary_10_1016_j_comnet_2020_107340
crossref_primary_10_1007_s12652_022_03885_y
crossref_primary_10_1002_cpe_6193
crossref_primary_10_1109_TKDE_2018_2867857
crossref_primary_10_1016_j_future_2023_05_032
crossref_primary_10_1142_S2196888820500104
crossref_primary_10_1016_j_future_2021_03_012
crossref_primary_10_1007_s10115_022_01664_x
crossref_primary_10_1016_j_eswa_2022_116824
crossref_primary_10_1007_s11227_018_2726_6
crossref_primary_10_1109_TPDS_2018_2793254
crossref_primary_10_1007_s10723_022_09625_y
crossref_primary_10_1007_s10723_020_09533_z
crossref_primary_10_1007_s10586_019_02920_6
crossref_primary_10_1016_j_jksuci_2024_102170
crossref_primary_10_1109_TCC_2021_3136577
crossref_primary_10_1080_01605682_2023_2195426
crossref_primary_10_1016_j_jnca_2016_08_029
crossref_primary_10_1080_12460125_2020_1855701
crossref_primary_10_1109_TSC_2020_2975774
crossref_primary_10_3390_s22041674
crossref_primary_10_1016_j_future_2019_01_051
crossref_primary_10_1002_cpe_5590
crossref_primary_10_1007_s10723_018_09471_x
crossref_primary_10_1109_TSC_2020_2965106
crossref_primary_10_1007_s40171_024_00419_7
crossref_primary_10_1109_ACCESS_2024_3509218
crossref_primary_10_1109_TITS_2020_3011952
crossref_primary_10_1007_s00521_020_04878_8
crossref_primary_10_1109_TPDS_2021_3134247
Cites_doi 10.1145/2807591.2807636
10.1109/TAC.1963.1105511
10.1109/CANET.2007.4401694
10.1016/j.future.2008.06.012
10.1002/cpe.3003
10.1109/CLUSTER.2014.6968789
10.1109/eScience.2013.40
10.1016/j.jpdc.2009.05.002
10.1109/ICPP.2015.93
10.1145/1084805.1084816
10.1007/s00158-003-0368-6
10.1016/S0950-5849(02)00025-3
10.1109/IPDPS.2008.4536445
10.1109/71.993206
10.1016/j.future.2012.12.019
10.2218/ijdc.v7i2.232
10.1109/IPDPS.2007.370305
10.1109/e-Science.2009.49
10.1002/cpe.3032
10.1007/s10723-012-9227-2
10.1109/TCC.2014.2303077
10.1109/HCW.1999.765094
10.1016/j.jpdc.2013.12.004
ContentType Journal Article
Publication
Contributor Barcelona Supercomputing Center
Contributor_xml – sequence: 1
  fullname: Barcelona Supercomputing Center
Copyright 2016 Elsevier B.V.
Attribution-NonCommercial-NoDerivs 4.0 International License https://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2016 Elsevier B.V.
– notice: Attribution-NonCommercial-NoDerivs 4.0 International License https://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
XX2
1XC
VOOES
DOI 10.1016/j.future.2016.04.014
DatabaseName CrossRef
Recercat
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7115
EndPage 95
ExternalDocumentID oai:HAL:lirmm-01342203v1
oai_recercat_cat_2072_272965
10_1016_j_future_2016_04_014
S0167739X16300917
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
XX2
1XC
VOOES
ID FETCH-LOGICAL-c430t-4cb96c04f9bfdffb4e4a3ecf74218803ebe1ef10252ad8fb3508b474893c056d3
ISICitedReferencesCount 49
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000379637900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-739X
IngestDate Tue Oct 14 20:40:14 EDT 2025
Fri Nov 07 13:34:57 EST 2025
Sat Nov 29 02:59:40 EST 2025
Tue Nov 18 22:03:00 EST 2025
Fri Feb 23 02:30:14 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Scientific workflow management system
Multisite cloud
Parallel execution
Multi-objective scheduling
Scientific workflow
multi-objective scheduling
parallel execution
multisite cloud
scientific workflow management system
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c430t-4cb96c04f9bfdffb4e4a3ecf74218803ebe1ef10252ad8fb3508b474893c056d3
ORCID 0000-0003-4710-5697
0000-0001-9346-7651
0000-0002-0870-3371
0000-0001-6506-7538
0000-0003-1370-9943
OpenAccessLink https://hal-lirmm.ccsd.cnrs.fr/lirmm-01342203
PageCount 20
ParticipantIDs hal_primary_oai_HAL_lirmm_01342203v1
csuc_recercat_oai_recercat_cat_2072_272965
crossref_primary_10_1016_j_future_2016_04_014
crossref_citationtrail_10_1016_j_future_2016_04_014
elsevier_sciencedirect_doi_10_1016_j_future_2016_04_014
PublicationCentury 2000
PublicationDate 2016-10-01
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Future generation computer systems
PublicationYear 2016
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Amazon ec2, Amazon elastic compute cloud (Amazon ec2).
W. Chen, R.F. Da Silva, E. Deelman, R. Sakellariou, Balanced task clustering in scientific workflows, in: IEEE 9th Int. Conf. on e-Science, 2013, pp. 188–195.
Ogasawara, Dias, Silva, Chirigati, de~Oliveira, Porto, Valduriez, Mattoso (br000140) 2013; 25
Liu, Pacitti, Valduriez, Mattoso (br000010) 2015
de~Oliveira, Ocaña, Baião, Mattoso (br000025) 2012; 10
J. Liu, E. Pacitti, P. Valduriez, M. Mattoso, Parallelization of Scientific Workflows in the Cloud, Research Report RR-8565, 2014.
Montage.
Topcuouglu, Hariri, Wu (br000065) 2002; 13
C. Anglano, M. Canonico, Scheduling algorithms for multiple bag-of-task applications on desktop grids: A knowledge-free approach, in: 22nd IEEE Int. Symposium on Parallel and Distributed Processing, IPDPS, 2008, pp. 1–8.
Littauer, Ram, Ludäscher, Michener, Koskela (br000180) 2012; 7
Marler, Arora (br000110) 2004; 26
Chang, Son, Kim (br000145) 2002; 44
K. Etminani, M. Naghibzadeh, A min-min max–min selective algorihtm for grid task scheduling, in: The Third IEEE/IFIP Int. Conf. in Central Asia on Internet, ICI 2007, 2007, pp. 1–7.
Mohammadi, Prodan, Fahringer (br000085) 2014; 74
I. Sardiña, C. Boeres, L. de A. Drummond, An efficient weighted bi-objective scheduling algorithm for heterogeneous systems, in: Euro-Par 2009—Parallel Processing Workshops, vol. 6043, 2010, pp. 102–111.
Deelman, Gannon, Shields, Taylor (br000005) 2009; 25
De Oliveira, Ocaña, Ogasawara, Dias, GonçAlves, Baião, Mattoso (br000115) 2013; 29
Özsu, Valduriez (br000135) 2011
M. Maheswaran, S. Ali, H.J. Siegel, D. Hensgen, R.F. Freund, Dynamic matching and scheduling of a class of independent tasks onto heterogeneous computing systems, in: 8th Heterogeneous Computing Workshop, 1999, p. 30.
Rahman, Hassan, Ranjan, Buyya (br000055) 2013; 25
Sequence identifier.
Oma genome database.
Z. Yu, W. Shi, An adaptive rescheduling strategy for grid workflow applications, in: IEEE Int. Parallel and Distributed Processing Symposium, IPDPS, 2007, pp. 1–8.
R. Coutinho, L. Drummond, Y. Frota, D. de Oliveira, K. Ocana, Evaluating grasp-based cloud dimensioning for comparative genomics: A practical approach, in: 2014 IEEE Int. Conf. on Cluster Computing, CLUSTER, 2014, pp. 371–379.
.
Microsoft Azure.
Computing capacity for a CPU.
Duan, Prodan, Li (br000040) 2014; 2
S. Blagodurov, A. Fedorova, E. Vinnik, T. Dwyer, F. Hermenier, Multi-objective job placement in clusters, in: Proceedings of the Int. Conf. for High Performance Computing, Networking, Storage and Analysis, SC, 2015, pp. 66:1–66:12.
Zadeh (br000105) 1963; 8
Sun, Chen (br000150) 2010; 70
Ocan¯a, de~Oliveira, Horta, Dias, Ogasawara, Mattoso (br000030) 2012; vol. 7409
M.A. Rodriguez, R. Buyya, A responsive Knapsack-based algorithm for resource provisioning and scheduling of scientific workflows in clouds, in: 44th Int. Conf. on Parallel Processing, ICPP, 2015.
S. Smanchat, M. Indrawan, S. Ling, C. Enticott, D. Abramson, Scheduling multiple parameter sweep workflow instances on the grid, in: 5th IEEE Int. Conf. on e-Science, 2009, pp. 300–306.
Wieczorek, Prodan, Fahringer (br000075) 2005; 34
J. Liu, V. Silva, E. Pacitti, P. Valduriez, M. Mattoso, Scientific workflow partitioning in multi-site clouds, in: BigDataCloud’2014: 3rd Workshop on Big Data Management in Clouds in conjunction with Euro-Par 2014, 2014, p. 12.
J. Yu, R. Buyya, C.K. Tham, Cost-based scheduling of scientific workflow applications on utility grids, in: First Int. Conf. on e-Science and Grid Computing, 2005, pp. 140–147.
Ogasawara (10.1016/j.future.2016.04.014_br000140) 2013; 25
Topcuouglu (10.1016/j.future.2016.04.014_br000065) 2002; 13
10.1016/j.future.2016.04.014_br000080
10.1016/j.future.2016.04.014_br000095
10.1016/j.future.2016.04.014_br000050
Mohammadi (10.1016/j.future.2016.04.014_br000085) 2014; 74
Sun (10.1016/j.future.2016.04.014_br000150) 2010; 70
10.1016/j.future.2016.04.014_br000170
10.1016/j.future.2016.04.014_br000155
10.1016/j.future.2016.04.014_br000175
10.1016/j.future.2016.04.014_br000130
de~Oliveira (10.1016/j.future.2016.04.014_br000025) 2012; 10
Ocan¯a (10.1016/j.future.2016.04.014_br000030) 2012; vol. 7409
10.1016/j.future.2016.04.014_br000015
Zadeh (10.1016/j.future.2016.04.014_br000105) 1963; 8
10.1016/j.future.2016.04.014_br000035
Deelman (10.1016/j.future.2016.04.014_br000005) 2009; 25
Marler (10.1016/j.future.2016.04.014_br000110) 2004; 26
Wieczorek (10.1016/j.future.2016.04.014_br000075) 2005; 34
Rahman (10.1016/j.future.2016.04.014_br000055) 2013; 25
Littauer (10.1016/j.future.2016.04.014_br000180) 2012; 7
10.1016/j.future.2016.04.014_br000070
10.1016/j.future.2016.04.014_br000090
10.1016/j.future.2016.04.014_br000160
10.1016/j.future.2016.04.014_br000060
10.1016/j.future.2016.04.014_br000045
10.1016/j.future.2016.04.014_br000100
Liu (10.1016/j.future.2016.04.014_br000010) 2015
Chang (10.1016/j.future.2016.04.014_br000145) 2002; 44
10.1016/j.future.2016.04.014_br000165
10.1016/j.future.2016.04.014_br000120
10.1016/j.future.2016.04.014_br000020
Özsu (10.1016/j.future.2016.04.014_br000135) 2011
10.1016/j.future.2016.04.014_br000125
De Oliveira (10.1016/j.future.2016.04.014_br000115) 2013; 29
Duan (10.1016/j.future.2016.04.014_br000040) 2014; 2
References_xml – volume: 8
  start-page: 59
  year: 1963
  end-page: 60
  ident: br000105
  article-title: Optimality and non-scalar-valued performance criteria
  publication-title: IEEE Trans. Automat. Control
– volume: 26
  start-page: 369
  year: 2004
  end-page: 395
  ident: br000110
  article-title: Survey of multi-objective optimization methods for engineering
  publication-title: Struct. Multidiscip. Optim.
– reference: Oma genome database.
– reference: W. Chen, R.F. Da Silva, E. Deelman, R. Sakellariou, Balanced task clustering in scientific workflows, in: IEEE 9th Int. Conf. on e-Science, 2013, pp. 188–195.
– volume: 29
  start-page: 1816
  year: 2013
  end-page: 1825
  ident: br000115
  article-title: Performance evaluation of parallel strategies in public clouds: A study with phylogenomic workflows
  publication-title: Future Gener. Comput. Syst.
– volume: 13
  start-page: 260
  year: 2002
  end-page: 274
  ident: br000065
  article-title: Performance-effective and low-complexity task scheduling for heterogeneous computing
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– reference: Z. Yu, W. Shi, An adaptive rescheduling strategy for grid workflow applications, in: IEEE Int. Parallel and Distributed Processing Symposium, IPDPS, 2007, pp. 1–8.
– volume: 34
  start-page: 56
  year: 2005
  end-page: 62
  ident: br000075
  article-title: Scheduling of scientific workflows in the ASKALON grid environment
  publication-title: SIGMOD Rec.
– volume: 10
  start-page: 521
  year: 2012
  end-page: 552
  ident: br000025
  article-title: A provenance-based adaptive scheduling heuristic for parallel scientific workflows in clouds
  publication-title: J. Grid Comput.
– year: 2011
  ident: br000135
  article-title: Principles of Distributed Database Systems
– reference: S. Smanchat, M. Indrawan, S. Ling, C. Enticott, D. Abramson, Scheduling multiple parameter sweep workflow instances on the grid, in: 5th IEEE Int. Conf. on e-Science, 2009, pp. 300–306.
– reference: Amazon ec2, Amazon elastic compute cloud (Amazon ec2).
– reference: R. Coutinho, L. Drummond, Y. Frota, D. de Oliveira, K. Ocana, Evaluating grasp-based cloud dimensioning for comparative genomics: A practical approach, in: 2014 IEEE Int. Conf. on Cluster Computing, CLUSTER, 2014, pp. 371–379.
– start-page: 1
  year: 2015
  end-page: 37
  ident: br000010
  article-title: A survey of data-intensive scientific workflow management
  publication-title: J. Grid Comput.
– reference: J. Liu, V. Silva, E. Pacitti, P. Valduriez, M. Mattoso, Scientific workflow partitioning in multi-site clouds, in: BigDataCloud’2014: 3rd Workshop on Big Data Management in Clouds in conjunction with Euro-Par 2014, 2014, p. 12.
– volume: 74
  start-page: 2152
  year: 2014
  end-page: 2165
  ident: br000085
  article-title: Multi-objective list scheduling of workflow applications in distributed computing infrastructures
  publication-title: J. Parallel Distrib. Comput.
– reference: J. Yu, R. Buyya, C.K. Tham, Cost-based scheduling of scientific workflow applications on utility grids, in: First Int. Conf. on e-Science and Grid Computing, 2005, pp. 140–147.
– reference: J. Liu, E. Pacitti, P. Valduriez, M. Mattoso, Parallelization of Scientific Workflows in the Cloud, Research Report RR-8565, 2014.
– volume: vol. 7409
  start-page: 179
  year: 2012
  end-page: 191
  ident: br000030
  article-title: Exploring molecular evolution reconstruction using a parallel cloud based scientific workflow
  publication-title: Advances in Bioinformatics and Computational Biology
– reference: Sequence identifier.
– reference: Microsoft Azure.
– reference: K. Etminani, M. Naghibzadeh, A min-min max–min selective algorihtm for grid task scheduling, in: The Third IEEE/IFIP Int. Conf. in Central Asia on Internet, ICI 2007, 2007, pp. 1–7.
– volume: 25
  start-page: 2327
  year: 2013
  end-page: 2341
  ident: br000140
  article-title: Chiron: a parallel engine for algebraic scientific workflows
  publication-title: Concurr. Comput.:Pract. Exp.
– reference: .
– reference: S. Blagodurov, A. Fedorova, E. Vinnik, T. Dwyer, F. Hermenier, Multi-objective job placement in clusters, in: Proceedings of the Int. Conf. for High Performance Computing, Networking, Storage and Analysis, SC, 2015, pp. 66:1–66:12.
– reference: M. Maheswaran, S. Ali, H.J. Siegel, D. Hensgen, R.F. Freund, Dynamic matching and scheduling of a class of independent tasks onto heterogeneous computing systems, in: 8th Heterogeneous Computing Workshop, 1999, p. 30.
– volume: 44
  start-page: 405
  year: 2002
  end-page: 417
  ident: br000145
  article-title: Critical path identification in the context of a workflow
  publication-title: Inf. Softw. Technol.
– volume: 25
  start-page: 528
  year: 2009
  end-page: 540
  ident: br000005
  article-title: Workflows and e-science: An overview of workflow system features and capabilities
  publication-title: Future Gener. Comput. Syst.
– volume: 25
  start-page: 1816
  year: 2013
  end-page: 1842
  ident: br000055
  article-title: Adaptive workflow scheduling for dynamic grid and cloud computing environment
  publication-title: Concurr. Comput.:Pract. Exp.
– reference: I. Sardiña, C. Boeres, L. de A. Drummond, An efficient weighted bi-objective scheduling algorithm for heterogeneous systems, in: Euro-Par 2009—Parallel Processing Workshops, vol. 6043, 2010, pp. 102–111.
– reference: C. Anglano, M. Canonico, Scheduling algorithms for multiple bag-of-task applications on desktop grids: A knowledge-free approach, in: 22nd IEEE Int. Symposium on Parallel and Distributed Processing, IPDPS, 2008, pp. 1–8.
– reference: M.A. Rodriguez, R. Buyya, A responsive Knapsack-based algorithm for resource provisioning and scheduling of scientific workflows in clouds, in: 44th Int. Conf. on Parallel Processing, ICPP, 2015.
– volume: 2
  start-page: 29
  year: 2014
  end-page: 42
  ident: br000040
  article-title: Multi-objective game theoretic schedulingof bag-of-tasks workflows on hybrid clouds
  publication-title: IEEE Trans. Cloud Comput.
– reference: Computing capacity for a CPU.
– reference: Montage.
– volume: 7
  start-page: 92
  year: 2012
  end-page: 100
  ident: br000180
  article-title: Trends in use of scientific workflows: Insights from a public repository and recommendations for best practice
  publication-title: Int. J. Digit. Curat.
– volume: 70
  start-page: 183
  year: 2010
  end-page: 188
  ident: br000150
  article-title: Reevaluating Amdahl’s law in the multicore era
  publication-title: J. Parallel Distrib. Comput.
– ident: 10.1016/j.future.2016.04.014_br000100
  doi: 10.1145/2807591.2807636
– volume: 8
  start-page: 59
  issue: 1
  year: 1963
  ident: 10.1016/j.future.2016.04.014_br000105
  article-title: Optimality and non-scalar-valued performance criteria
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.1963.1105511
– ident: 10.1016/j.future.2016.04.014_br000080
  doi: 10.1109/CANET.2007.4401694
– ident: 10.1016/j.future.2016.04.014_br000155
– volume: 25
  start-page: 528
  issue: 5
  year: 2009
  ident: 10.1016/j.future.2016.04.014_br000005
  article-title: Workflows and e-science: An overview of workflow system features and capabilities
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2008.06.012
– volume: 25
  start-page: 1816
  issue: 13
  year: 2013
  ident: 10.1016/j.future.2016.04.014_br000055
  article-title: Adaptive workflow scheduling for dynamic grid and cloud computing environment
  publication-title: Concurr. Comput.:Pract. Exp.
  doi: 10.1002/cpe.3003
– ident: 10.1016/j.future.2016.04.014_br000095
  doi: 10.1109/CLUSTER.2014.6968789
– ident: 10.1016/j.future.2016.04.014_br000130
  doi: 10.1109/eScience.2013.40
– volume: 70
  start-page: 183
  issue: 2
  year: 2010
  ident: 10.1016/j.future.2016.04.014_br000150
  article-title: Reevaluating Amdahl’s law in the multicore era
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2009.05.002
– ident: 10.1016/j.future.2016.04.014_br000015
– ident: 10.1016/j.future.2016.04.014_br000090
  doi: 10.1109/ICPP.2015.93
– ident: 10.1016/j.future.2016.04.014_br000120
– ident: 10.1016/j.future.2016.04.014_br000035
– ident: 10.1016/j.future.2016.04.014_br000170
– ident: 10.1016/j.future.2016.04.014_br000165
– volume: vol. 7409
  start-page: 179
  year: 2012
  ident: 10.1016/j.future.2016.04.014_br000030
  article-title: Exploring molecular evolution reconstruction using a parallel cloud based scientific workflow
– volume: 34
  start-page: 56
  issue: 3
  year: 2005
  ident: 10.1016/j.future.2016.04.014_br000075
  article-title: Scheduling of scientific workflows in the ASKALON grid environment
  publication-title: SIGMOD Rec.
  doi: 10.1145/1084805.1084816
– volume: 26
  start-page: 369
  issue: 6
  year: 2004
  ident: 10.1016/j.future.2016.04.014_br000110
  article-title: Survey of multi-objective optimization methods for engineering
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-003-0368-6
– year: 2011
  ident: 10.1016/j.future.2016.04.014_br000135
– volume: 44
  start-page: 405
  issue: 7
  year: 2002
  ident: 10.1016/j.future.2016.04.014_br000145
  article-title: Critical path identification in the context of a workflow
  publication-title: Inf. Softw. Technol.
  doi: 10.1016/S0950-5849(02)00025-3
– ident: 10.1016/j.future.2016.04.014_br000045
  doi: 10.1109/IPDPS.2008.4536445
– volume: 13
  start-page: 260
  issue: 3
  year: 2002
  ident: 10.1016/j.future.2016.04.014_br000065
  article-title: Performance-effective and low-complexity task scheduling for heterogeneous computing
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/71.993206
– volume: 29
  start-page: 1816
  issue: 7
  year: 2013
  ident: 10.1016/j.future.2016.04.014_br000115
  article-title: Performance evaluation of parallel strategies in public clouds: A study with phylogenomic workflows
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2012.12.019
– ident: 10.1016/j.future.2016.04.014_br000125
– start-page: 1
  year: 2015
  ident: 10.1016/j.future.2016.04.014_br000010
  article-title: A survey of data-intensive scientific workflow management
  publication-title: J. Grid Comput.
– ident: 10.1016/j.future.2016.04.014_br000160
– volume: 7
  start-page: 92
  issue: 2
  year: 2012
  ident: 10.1016/j.future.2016.04.014_br000180
  article-title: Trends in use of scientific workflows: Insights from a public repository and recommendations for best practice
  publication-title: Int. J. Digit. Curat.
  doi: 10.2218/ijdc.v7i2.232
– ident: 10.1016/j.future.2016.04.014_br000070
  doi: 10.1109/IPDPS.2007.370305
– ident: 10.1016/j.future.2016.04.014_br000060
  doi: 10.1109/e-Science.2009.49
– volume: 25
  start-page: 2327
  issue: 16
  year: 2013
  ident: 10.1016/j.future.2016.04.014_br000140
  article-title: Chiron: a parallel engine for algebraic scientific workflows
  publication-title: Concurr. Comput.:Pract. Exp.
  doi: 10.1002/cpe.3032
– volume: 10
  start-page: 521
  issue: 3
  year: 2012
  ident: 10.1016/j.future.2016.04.014_br000025
  article-title: A provenance-based adaptive scheduling heuristic for parallel scientific workflows in clouds
  publication-title: J. Grid Comput.
  doi: 10.1007/s10723-012-9227-2
– volume: 2
  start-page: 29
  issue: 1
  year: 2014
  ident: 10.1016/j.future.2016.04.014_br000040
  article-title: Multi-objective game theoretic schedulingof bag-of-tasks workflows on hybrid clouds
  publication-title: IEEE Trans. Cloud Comput.
  doi: 10.1109/TCC.2014.2303077
– ident: 10.1016/j.future.2016.04.014_br000175
– ident: 10.1016/j.future.2016.04.014_br000050
  doi: 10.1109/HCW.1999.765094
– ident: 10.1016/j.future.2016.04.014_br000020
– volume: 74
  start-page: 2152
  issue: 3
  year: 2014
  ident: 10.1016/j.future.2016.04.014_br000085
  article-title: Multi-objective list scheduling of workflow applications in distributed computing infrastructures
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2013.12.004
SSID ssj0001731
Score 2.3962016
Snippet Clouds appear as appropriate infrastructures for executing Scientific Workflows (SWfs). A cloud is typically made of several sites (or data centers), each with...
Clouds appear as appropriate infrastructures for executing Scientific Workflows (SWfs). A cloud is typically made of several sites(or data centers), each with...
SourceID hal
csuc
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 76
SubjectTerms Algorismes computacionals
Algorithms and architectures for advanced scientific computing
Cicle de treball
Computer Science
Enginyeria electrònica
Multi-objective scheduling
Multisite cloud
Parallel execution
Parallel processing (Electronic computers)
Processament en paral·lel (Ordinadors)
Scientific workflow
Scientific workflow management system
Workflow computing systems
Àrees temàtiques de la UPC
Title Multi-objective scheduling of Scientific Workflows in multisite clouds
URI https://dx.doi.org/10.1016/j.future.2016.04.014
https://recercat.cat/handle/2072/272965
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01342203
Volume 63
WOSCitedRecordID wos000379637900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001731
  issn: 0167-739X
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLe6jgMXvhHlSznsRBWU2G6cHCu0aaBpIDFQb5bj2KJVlkxZW_YX8Hfz_BFnWw8DJA6N2qStLb_n937v-X0gdDDDwhwWsVjjEhsDJY1LUYk4FyJhLK-IKhPbbIKdnuaLRfFlNPrV58Jsa9Y0-dVVcfFfSQ33gNgmdfYvyB3-FG7AeyA6XIHscP0jwtuU2rgtV06UTcF8BXVS--hmu5dtfJD1k-u6_WkjYm1goTlJnsq63bjs39C-09YdMc2WlecX6XtB-ELQAZefLDeWLZbDyZQ0ZyBW4l4arNk_-C5qkyHp_de2T0DIGarU9HMNU192YsiCv-6eSLMQ6OZ9Zjt5M86NCeKZEdtEF7SQE705A6yfuuTOXjZ74eeEK8uuqWnXmnNHAThfxOq9q8hiQvcyW8rWZareKq391czDTCM1hcfAcN1D-5jNinyM9ucfDxefgk5Pme9s6efdJ2HaSMHdsW6AnLG83MgbWGfvR--1tyjm7BF64M2PaO7Y5jEaqeYJeti39oi8pH-Kjm5xUTRwUdTqaOCiKHBRtGyiwEWR46Jn6NvR4dmH49i33IglJck6prIsMplQXZS60rqkigqipGYUm8J9sHNVqjSAUtjjVa5LAvi-pLaCkQQoXZHnaNy0jXqBIoWxSpkUxQwsjDwTRQXGhMzBPlKaUKEniPRrxKWvR2_aotS8Dzxccbey3KwsTyiHlZ2gOPzqwtVjueP778zyc4APqpNizU059fDBvHDCMMdgY2azCWI9kbgHoA5YcmCvO4Y5AJqGGZlBjucnvF525-fwnFCME7JNX_7zAK_Q_WF3vUbjdbdRb9A9uQWqdm89u_4GGXi8kw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+scheduling+of+Scientific+Workflows+in+multisite+clouds&rft.jtitle=Future+generation+computer+systems&rft.au=Liu%2C+Ji&rft.au=Pacitti%2C+Esther&rft.au=Valduriez%2C+Patrick&rft.au=de+Oliveira%2C+Daniel&rft.date=2016-10-01&rft.pub=Elsevier+B.V&rft.issn=0167-739X&rft.eissn=1872-7115&rft.volume=63&rft.spage=76&rft.epage=95&rft_id=info:doi/10.1016%2Fj.future.2016.04.014&rft.externalDocID=S0167739X16300917
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon