A Framework for Fall Detection Based on OpenPose Skeleton and LSTM/GRU Models

Falling is one of the causes of accidental death of elderly people over 65 years old in Taiwan. If the fall incidents are not detected in a timely manner, it could lead to serious injury or even death of those who fell. General fall detection approaches require the users to wear sensors, which could...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences Jg. 11; H. 1; S. 329
Hauptverfasser: Lin, Chuan-Bi, Dong, Ziqian, Kuan, Wei-Kai, Huang, Yung-Fa
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.01.2021
Schlagworte:
ISSN:2076-3417, 2076-3417
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Falling is one of the causes of accidental death of elderly people over 65 years old in Taiwan. If the fall incidents are not detected in a timely manner, it could lead to serious injury or even death of those who fell. General fall detection approaches require the users to wear sensors, which could be cumbersome for the users to put on, and misalignment of sensors could lead to erroneous readings. In this paper, we propose using computer vision and applied machine-learning algorithms to detect fall without any sensors. We applied OpenPose real-time multi-person 2D pose estimation to detect movement of a subject using two datasets of 570 × 30 frames recorded in five different rooms from eight different viewing angles. The system retrieves the locations of 25 joint points of the human body and detects human movement through detecting the joint point location changes. The system is able to effectively identify the joints of the human body as well as filtering ambient environmental noise for an improved accuracy. The use of joint points instead of images improves the training time effectively as well as eliminating the effects of traditional image-based approaches such as blurriness, light, and shadows. This paper uses single-view images to reduce equipment costs. We experimented with time series recurrent neural network, long- and short-term memory, and gated recurrent unit models to learn the changes in human joint points in continuous time. The experimental results show that the fall detection accuracy of the proposed model is 98.2%, which outperforms the baseline 88.9% with 9.3% improvement.
AbstractList Falling is one of the causes of accidental death of elderly people over 65 years old in Taiwan. If the fall incidents are not detected in a timely manner, it could lead to serious injury or even death of those who fell. General fall detection approaches require the users to wear sensors, which could be cumbersome for the users to put on, and misalignment of sensors could lead to erroneous readings. In this paper, we propose using computer vision and applied machine-learning algorithms to detect fall without any sensors. We applied OpenPose real-time multi-person 2D pose estimation to detect movement of a subject using two datasets of 570 × 30 frames recorded in five different rooms from eight different viewing angles. The system retrieves the locations of 25 joint points of the human body and detects human movement through detecting the joint point location changes. The system is able to effectively identify the joints of the human body as well as filtering ambient environmental noise for an improved accuracy. The use of joint points instead of images improves the training time effectively as well as eliminating the effects of traditional image-based approaches such as blurriness, light, and shadows. This paper uses single-view images to reduce equipment costs. We experimented with time series recurrent neural network, long- and short-term memory, and gated recurrent unit models to learn the changes in human joint points in continuous time. The experimental results show that the fall detection accuracy of the proposed model is 98.2%, which outperforms the baseline 88.9% with 9.3% improvement.
Author Lin, Chuan-Bi
Dong, Ziqian
Kuan, Wei-Kai
Huang, Yung-Fa
Author_xml – sequence: 1
  givenname: Chuan-Bi
  orcidid: 0000-0001-9090-6583
  surname: Lin
  fullname: Lin, Chuan-Bi
– sequence: 2
  givenname: Ziqian
  orcidid: 0000-0003-3937-1311
  surname: Dong
  fullname: Dong, Ziqian
– sequence: 3
  givenname: Wei-Kai
  surname: Kuan
  fullname: Kuan, Wei-Kai
– sequence: 4
  givenname: Yung-Fa
  surname: Huang
  fullname: Huang, Yung-Fa
BookMark eNptUMtOwzAQtBBIvHriByxxRKV2Nk3iI68CUqsiCmdrY29QSoiDnQrx97gUoQqxl13Nzs6s5pDttq4lxk6kOAdQYoRdJ6WQAhK1ww4SkWdDSGW-uzXvs0EISxFLSSikOGCzCz7x-EYfzr_yynk-wabh19ST6WvX8ksMZHkc5h21Dy4QX7xSQ31EsLV8uniajW4fn_nMWWrCMdursAk0-OlH7Hly83R1N5zOb--vLqZDk4Loh6kUNrdSiQrGpoBSFEJUtsTUgFVZbjPMJUFWJQqgJImpKmxmCUyZWJtmKRyx-42udbjUna_f0H9qh7X-Bpx_0ej72jSkE5KgVEFGZln0VaVNSihIIJRV3GDUOt1odd69ryj0eulWvo3v62Q8VqlMirGIrLMNy3gXgqfq11UKvY5fb8Uf2fIP29Q9rgPtPdbNvzdfwgyGug
CitedBy_id crossref_primary_10_3390_electronics13234733
crossref_primary_10_1371_journal_pone_0325253
crossref_primary_10_1109_ACCESS_2023_3299323
crossref_primary_10_3390_app12063087
crossref_primary_10_1155_2022_7835241
crossref_primary_10_3390_electronics12163513
crossref_primary_10_3390_electronics14132636
crossref_primary_10_3390_info13080363
crossref_primary_10_1007_s00500_023_09295_2
crossref_primary_10_1016_j_compbiomed_2022_105626
crossref_primary_10_1016_j_engappai_2024_108592
crossref_primary_10_3390_app12052678
crossref_primary_10_3390_s22145449
crossref_primary_10_3390_s23187896
crossref_primary_10_3390_su14105872
crossref_primary_10_1109_ACCESS_2023_3289402
crossref_primary_10_3390_s22124544
crossref_primary_10_1016_j_heliyon_2024_e39977
crossref_primary_10_1109_JSEN_2025_3593126
crossref_primary_10_3390_app122111031
crossref_primary_10_1109_JSEN_2024_3404031
crossref_primary_10_3390_s24237448
crossref_primary_10_3390_app12199671
crossref_primary_10_3390_bioengineering10080891
crossref_primary_10_3390_s21248378
crossref_primary_10_1155_2022_5827056
crossref_primary_10_1007_s11423_025_10452_7
crossref_primary_10_3390_ijerph192113762
crossref_primary_10_1038_s41598_025_98433_x
crossref_primary_10_3390_electronics14142837
crossref_primary_10_1007_s11554_025_01687_x
crossref_primary_10_1109_TCSVT_2023_3303258
crossref_primary_10_3390_app15010409
crossref_primary_10_1016_j_robot_2024_104755
crossref_primary_10_1109_ACCESS_2024_3443618
crossref_primary_10_1109_ACCESS_2023_3307138
crossref_primary_10_3390_ijerph19127139
crossref_primary_10_3390_s24248051
crossref_primary_10_1016_j_eswa_2022_118681
crossref_primary_10_3390_s22113991
crossref_primary_10_1016_j_knosys_2025_113038
crossref_primary_10_3390_s21196485
crossref_primary_10_1049_ipr2_12667
crossref_primary_10_1016_j_engappai_2024_109809
crossref_primary_10_1080_19393555_2025_2517597
crossref_primary_10_3390_app142411970
crossref_primary_10_1109_ACCESS_2024_3401651
crossref_primary_10_3390_electronics12010029
crossref_primary_10_1038_s41598_024_71545_6
crossref_primary_10_1155_2022_4363442
crossref_primary_10_1109_ACCESS_2022_3203174
crossref_primary_10_1007_s13369_022_06684_x
crossref_primary_10_1016_j_knosys_2023_110992
crossref_primary_10_3390_electronics13081541
crossref_primary_10_1051_matecconf_202235503010
crossref_primary_10_1016_j_procs_2021_12_305
crossref_primary_10_1080_20476965_2024_2395574
crossref_primary_10_1016_j_gaitpost_2025_01_001
Cites_doi 10.1109/ICSIIT.2017.49
10.1109/AIAM48774.2019.00113
10.1109/IIH-MSP.2013.21
10.1109/INCIT.2019.8912080
10.1109/YAC.2016.7804912
10.21437/Interspeech.2010-343
10.1159/000445831
10.1109/TASLP.2016.2623559
10.3115/v1/D14-1179
10.1109/ICCMC.2019.8819830
10.1109/BigMM.2016.22
10.1109/ICCE46568.2020.9043000
10.1109/IWAIT.2018.8369778
10.1109/CVPR.2016.533
10.1016/j.cmpb.2014.09.005
10.1007/978-3-030-61746-2_10
10.1109/JBHI.2014.2312180
10.1109/ACCESS.2018.2861331
10.1109/CVPR.2017.143
10.1109/ACCESS.2020.2969453
10.1109/JSEN.2019.2898891
10.1109/ACCESS.2020.2967845
10.1109/ICASSP.2018.8462544
10.1162/neco.1997.9.8.1735
10.1109/JBHI.2019.2907498
10.1109/ACCESS.2018.2881237
10.23919/MVA.2017.7986795
10.1109/ACCESS.2019.2947518
10.1109/EMBC.2016.7591833
10.1109/MeMeA49120.2020.9137110
10.1109/WACV.2018.00135
ContentType Journal Article
Copyright 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.3390/app11010329
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_2e13998ec1664109bd2b38e0a3bf139a
10_3390_app11010329
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c430t-410d7d190f35c83b0800fdba4c3d967d6a71e36f2933be1a498d6de3cb2dd4643
IEDL.DBID DOA
ISICitedReferencesCount 75
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000605819700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Tue Oct 14 19:07:09 EDT 2025
Sun Nov 09 07:46:30 EST 2025
Sat Nov 29 07:19:46 EST 2025
Tue Nov 18 21:31:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c430t-410d7d190f35c83b0800fdba4c3d967d6a71e36f2933be1a498d6de3cb2dd4643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9090-6583
0000-0003-3937-1311
OpenAccessLink https://doaj.org/article/2e13998ec1664109bd2b38e0a3bf139a
PQID 2559412850
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_2e13998ec1664109bd2b38e0a3bf139a
proquest_journals_2559412850
crossref_primary_10_3390_app11010329
crossref_citationtrail_10_3390_app11010329
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Taramasco (ref_14) 2018; 6
ref_36
ref_13
ref_35
ref_34
Bahureksa (ref_6) 2017; 63
ref_33
ref_32
Clemente (ref_15) 2020; 24
Wu (ref_27) 2017; 25
Tsai (ref_21) 2019; 7
ref_18
ref_17
Hochreiter (ref_31) 1997; 9
ref_39
ref_16
ref_38
ref_37
Nho (ref_11) 2020; 8
Lotfi (ref_19) 2018; 6
Hussain (ref_12) 2019; 19
ref_25
ref_24
ref_22
ref_20
ref_1
ref_3
ref_2
ref_29
ref_28
Jun (ref_30) 2020; 8
Stone (ref_10) 2015; 19
ref_26
ref_9
ref_8
ref_5
ref_4
ref_7
Kwolek (ref_23) 2014; 117
References_xml – ident: ref_20
  doi: 10.1109/ICSIIT.2017.49
– ident: ref_33
  doi: 10.1109/AIAM48774.2019.00113
– ident: ref_17
  doi: 10.1109/IIH-MSP.2013.21
– ident: ref_28
  doi: 10.1109/INCIT.2019.8912080
– ident: ref_35
  doi: 10.1109/YAC.2016.7804912
– ident: ref_29
  doi: 10.21437/Interspeech.2010-343
– ident: ref_5
– ident: ref_3
– volume: 63
  start-page: 67
  year: 2017
  ident: ref_6
  article-title: The Impact of Mild Cognitive Impairment on Gait and Balance: A Systematic Review and Meta-Analysis of Studies Using Instrumented Assessment
  publication-title: Gerontology
  doi: 10.1159/000445831
– volume: 25
  start-page: 102
  year: 2017
  ident: ref_27
  article-title: A Reverberation-Time-Aware Approach to Speech Dereverberation Based on Deep Neural Networks
  publication-title: IEEE/Acm Trans. Audiospeechlang. Process.
  doi: 10.1109/TASLP.2016.2623559
– ident: ref_37
  doi: 10.3115/v1/D14-1179
– ident: ref_36
  doi: 10.1109/ICCMC.2019.8819830
– ident: ref_18
  doi: 10.1109/BigMM.2016.22
– ident: ref_16
  doi: 10.1109/ICCE46568.2020.9043000
– ident: ref_39
– ident: ref_9
  doi: 10.1109/IWAIT.2018.8369778
– ident: ref_22
  doi: 10.1109/CVPR.2016.533
– volume: 117
  start-page: 489
  year: 2014
  ident: ref_23
  article-title: Human Fall Detection on Embedded Platform Using Depth Maps and Wireless Accelerometer
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2014.09.005
– ident: ref_8
  doi: 10.1007/978-3-030-61746-2_10
– ident: ref_1
– volume: 19
  start-page: 290
  year: 2015
  ident: ref_10
  article-title: Fall Detection in Homes of Older Adults Using the Microsoft Kinect
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2014.2312180
– volume: 6
  start-page: 43563
  year: 2018
  ident: ref_14
  article-title: A Novel Monitoring System for Fall Detection in Older People
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2861331
– ident: ref_25
  doi: 10.1109/CVPR.2017.143
– volume: 8
  start-page: 40389
  year: 2020
  ident: ref_11
  article-title: Cluster-Analysis-Based User-Adaptive Fall Detection Using Fusion of Heart Rate Sensor and Accelerometer in a Wearable Device
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2969453
– volume: 19
  start-page: 4528
  year: 2019
  ident: ref_12
  article-title: Activity-Aware Fall Detection and Recognition Based on Wearable Sensors
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2898891
– volume: 8
  start-page: 19196
  year: 2020
  ident: ref_30
  article-title: Feature Extraction Using an RNN Autoencoder for Skeleton-Based Abnormal Gait Recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2967845
– ident: ref_32
  doi: 10.1109/ICASSP.2018.8462544
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_31
  article-title: Long Short-Term Memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref_4
– ident: ref_2
– volume: 24
  start-page: 524
  year: 2020
  ident: ref_15
  article-title: Smart Seismic Sensing for Indoor Fall Detection, Location, and Notification
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2019.2907498
– volume: 6
  start-page: 70272
  year: 2018
  ident: ref_19
  article-title: Supporting Independent Living for Older Adults; Employing A Visual Based Fall Detection Through Analysing the Motion and Shape of the Human Body
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2881237
– ident: ref_24
  doi: 10.23919/MVA.2017.7986795
– volume: 7
  start-page: 153049
  year: 2019
  ident: ref_21
  article-title: Implementation of Fall Detection System Based on 3D Skeleton for Deep Learning Technique
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2947518
– ident: ref_13
– ident: ref_38
– ident: ref_26
  doi: 10.1109/EMBC.2016.7591833
– ident: ref_7
  doi: 10.1109/MeMeA49120.2020.9137110
– ident: ref_34
  doi: 10.1109/WACV.2018.00135
SSID ssj0000913810
Score 2.5039752
Snippet Falling is one of the causes of accidental death of elderly people over 65 years old in Taiwan. If the fall incidents are not detected in a timely manner, it...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 329
SubjectTerms 2D pose estimation
Cameras
Datasets
fall detection
gated recurrent units
long short-term memory
Neural networks
openpose
recurrent neural network
Sensors
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9NAEB1By4EegLRFhAa0hxxaJCu2196sT6iBhB7aKEobKTdrv1whLCeN0_5-ZpxN2grEhZvl3cPaszPzZnb2DUCXrgYIjI8DYxwPkkzLQMdUBKBlGipjuOPNReHL_ngs5_Ns4hNutS-r3NrExlDbhaEceY-gb4LGNA2_Lu8C6hpFp6u-hcZL2CemMtzn-4PheDLdZVmI9VJG4eZiHsf4ns6F0eMRjVz2zBU1jP1_GOTGy4ze_u_63sEbjy_Z-WZDtOCFqw7h4Anr4CG0vD7X7NSTTp8dwdU5G23rtBgCWTZSZcm-u3VTqlWxAXo7y_CBKlAmi9qx61_osRA5MlVZdnl9c9X7MZ0x6q1W1scwGw1vvl0EvtVCYBIeroMkCm3fIjgoeGok14QjC6tVYrjNRN8K1Y8cFwWCA65dpJJMWmEdNzq2NkFU8x72qkXlPgCzMjVEky8sQq3Ccp3ExqQp2gkljIhkG75s_3puPA85tcMoc4xHSET5ExG1obubvNzQb_x92oDEt5tCnNnNi8XqNvcqmMcO0W4mnYmEwO_NtI01ly5UXBc4otrQ2Uo294pc549i_fjv4RN4HVO5S5Od6cDeenXvPsEr87D-Wa8--335G66c6fQ
  priority: 102
  providerName: ProQuest
Title A Framework for Fall Detection Based on OpenPose Skeleton and LSTM/GRU Models
URI https://www.proquest.com/docview/2559412850
https://doaj.org/article/2e13998ec1664109bd2b38e0a3bf139a
Volume 11
WOSCitedRecordID wos000605819700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB5EPehBrA-sj7IHDyoEk2yy2T1atSq0JWgLegrZR0AsUUz19zu7SUtFwYu3PBYSJrP7fbOZ-Qbg2JYGMIyPPaUM9SIhuSdDmwQgeeznSlFDXaFwPxkO-eOjSBdafdmcsFoeuDbceWiQowhuVMBYFPhC6lBSbvycygLvOGrkJ2IhmHJrsAisdFVdkEcxrrf_gxHprHyc-AZBTqn_x0Ls0KW3CRsNLSQX9eu0YMmUW7C-IBa4Ba1mGlbkpNGKPt2GwQXpzdKrCPJP0ssnE3Jlpi7DqiRdBClN8MAmjqSvlSEPLwg0SPhIXmrSfxgNzm_ux8S2RJtUOzDuXY8ub72mQ4KnIupPPTSITjRiekFjxam09K_QMo8U1YIlmuVJYCgrENOpNEEeCa6ZNlTJUOsIycguLJevpdkDonmsrLo908iQCk1lFCoVxzi9c6ZYwNtwNjNaphr5cNvFYpJhGGEtnC1YuA3H88FvtWrG78O61vrzIVbq2l1AB8gaB8j-coA2HM6-XdbMvyqzgVKE0Bv7-__xjANYC20ui9t6OYTl6fuHOYJV9Tl9rt47sNK9Hqb3HeeCeJbeDdKnL46X3ZA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED6NDgl4ADZAFDbww5AAKVoSO67zgKaNUVatrSrWSdtT8K9ME1U6mrKJf4q_kbs0KUMg3vbAWxRbkRx_vu9s390HsEWpARL3x4G1ngciNSowMQUBGJWE2lrueZUo3O8Mh-rkJB2twI8mF4bCKhubWBlqN7V0Rr5Nrq9AY5qEOxdfA1KNotvVRkJjAYtD__0Kt2zlu94-zu-rOO5-GL8_CGpVgcAKHs4DEYWu45AHc55YxQ25TLkzWljuUtlxUnciz2WOPMiNj7RIlZPOc2ti5wQSOH73FqwKAnsLVke9weh0eapDVTZVFC4SATlPQ7qHRoalsnXpb9RXKQT8QQAVq3Uf_G__4yHcr_1ntrsA_Bqs-GId7l2rqrgOa7W9Ktnruqj2m0cw2GXdJg6NoaPOunoyYft-XoWiFWwP2dwxfKAIm9G09OzoCzIyesZMF471j8aD7Y-fjhlpx03Kx3B8I4N8Aq1iWvinwJxKLMkASIeuZO64EbG1SYJ2UEsrI9WGt80sZ7aus05yH5MM91sEiewaJNqwtex8sSgv8vduewSXZReqCV69mM7OstrEZLFHbz5V3kZS4nhT42LDlQ81Nzm26DZsNEjKakNVZr9g9OzfzS_hzsF40M_6veHhc7gbU2hPdRK1Aa357JvfhNv2cn5ezl7Ua4LB55uG3U8iO0c-
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL0aHULjAdgAUTbAD0MCpKhJnLjOA0LbSqBaW0Vsk8ZT8FcmRJWOpjDx1_h13Jsm3RCItz3wFsVWJMfH9xzb9wNgl0IDBO6PPWMc96JES0-H5ASgZewrY7jjdaDwqD-ZyNPTJFuDn20sDLlVtjaxNtR2ZuiMvEfSN0JjGvu9onGLyAbpm_OvHlWQopvWtpzGEiKH7scFbt-q18MBzvXzMEzfHh-895oKA56JuL_wosC3fYucWPDYSK5JPhVWq8hwm4i-FaofOC4K5ESuXaCiRFphHTc6tDZCMsfv3oB1lORR2IH1bDjOPq5OeCjjpgz8ZVAg54lPd9LItpTCLvmNButqAX-QQc1w6d3_-d_cgzuNrmZ7y4WwCWuu3ILbV7ItbsFmY8cq9qJJtv3yPoz3WNr6pzEU8CxV0ykbuEXtolayfWR5y_CBPG-yWeXY0RdkalTMTJWWjY6Ox713H04Y1ZSbVg_g5FoG-RA65ax0j4BZGRsqDyAsSszCch2FxsQx2kcljAhkF161M56bJv86lQGZ5rgPI3jkV-DRhd1V5_Nl2pG_d9sn6Ky6UK7w-sVsfpY3picPHar8RDoTCIHjTbQNNZfOV1wX2KK6sNOiKm8MWJVfQurxv5ufwS3EWj4aTg63YSMkj5_6gGoHOov5N_cEbprvi8_V_GmzPBh8um7U_QJIi0_-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Framework+for+Fall+Detection+Based+on+OpenPose+Skeleton+and+LSTM%2FGRU+Models&rft.jtitle=Applied+sciences&rft.au=Chuan-Bi+Lin&rft.au=Ziqian+Dong&rft.au=Wei-Kai+Kuan&rft.au=Yung-Fa+Huang&rft.date=2021-01-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=11&rft.issue=1&rft.spage=329&rft_id=info:doi/10.3390%2Fapp11010329&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2e13998ec1664109bd2b38e0a3bf139a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon