Integrating AI for infectious disease prediction: A hybrid ANN-XGBoost model for leishmaniasis in Pakistan
•A hybrid ANN-XGBoost model was developed to predict leishmaniasis incidence in four high-endemic districts of KP, Pakistan.•The model outperformed traditional methods (ARIMA, LSTM, ANN, XGBoost) with superior accuracy (MAE: 82.2, RMSE: 111.6, MAPE: 10.6).•Forecastig predicts an average of 1017 new...
Saved in:
| Published in: | Acta tropica Vol. 266; p. 107628 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Netherlands
Elsevier B.V
01.06.2025
|
| Subjects: | |
| ISSN: | 0001-706X, 1873-6254, 1873-6254 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •A hybrid ANN-XGBoost model was developed to predict leishmaniasis incidence in four high-endemic districts of KP, Pakistan.•The model outperformed traditional methods (ARIMA, LSTM, ANN, XGBoost) with superior accuracy (MAE: 82.2, RMSE: 111.6, MAPE: 10.6).•Forecastig predicts an average of 1017 new monthly cases by December 2025, emphasizing the public health threat.•The study offers vital insights for enhancing disease management strategies and mitigating leishmaniasis spread in KP.
Addressing leishmaniasis infection remains a substantial challenge in KP-Pakistan due to the increased infection prevalence. Understanding its spreading tool offerings is a major challenge. We essentially design effective approaches to pinpoint its emergence and implement upgraded management strategies. This study aims to assess the prevalence of leishmaniasis infection in KP's four high-endemic districts (Bannu, Karark, Lakki Marwat, and Dera Ismail Khan) and estimate the potential future incidence. We executed a broad logical evaluation on data obtained from the pertinent district health departments of KP, using a novel hybrid ANN-XGBoost approach. We assessed its performance by equating it with frequently used models for infectious disease forecasting over time, comprising the ARIMA, LSTM, ANN, and XGBoost. We evaluated the model's precision using manifold indicators: MAE, RMSE, and MAPE. We developed the models using Python 3.11 software. The results show that the hybrid model outperformed all other models, attaining an MAE score of 82.2, an RMSE of 111.6, and a MAPE of 10.6, validating superior forecast accuracy. According to our proposed model, about 1,017 new leishmaniasis cases are expected per month by December 2025. These findings provide valuable insights for disease monitoring and intervention in KP. Advanced machine learning techniques can help policymakers improve resource mapping and come up with targeted management measures to stop the spread of leishmaniasis. Subsequent research should include other environmental and socio-economic variables influencing illness spread to improve predictive models. |
|---|---|
| AbstractList | Addressing leishmaniasis infection remains a substantial challenge in KP-Pakistan due to the increased infection prevalence. Understanding its spreading tool offerings is a major challenge. We essentially design effective approaches to pinpoint its emergence and implement upgraded management strategies. This study aims to assess the prevalence of leishmaniasis infection in KP's four high-endemic districts (Bannu, Karark, Lakki Marwat, and Dera Ismail Khan) and estimate the potential future incidence. We executed a broad logical evaluation on data obtained from the pertinent district health departments of KP, using a novel hybrid ANN-XGBoost approach. We assessed its performance by equating it with frequently used models for infectious disease forecasting over time, comprising the ARIMA, LSTM, ANN, and XGBoost. We evaluated the model's precision using manifold indicators: MAE, RMSE, and MAPE. We developed the models using Python 3.11 software. The results show that the hybrid model outperformed all other models, attaining an MAE score of 82.2, an RMSE of 111.6, and a MAPE of 10.6, validating superior forecast accuracy. According to our proposed model, about 1,017 new leishmaniasis cases are expected per month by December 2025. These findings provide valuable insights for disease monitoring and intervention in KP. Advanced machine learning techniques can help policymakers improve resource mapping and come up with targeted management measures to stop the spread of leishmaniasis. Subsequent research should include other environmental and socio-economic variables influencing illness spread to improve predictive models.Addressing leishmaniasis infection remains a substantial challenge in KP-Pakistan due to the increased infection prevalence. Understanding its spreading tool offerings is a major challenge. We essentially design effective approaches to pinpoint its emergence and implement upgraded management strategies. This study aims to assess the prevalence of leishmaniasis infection in KP's four high-endemic districts (Bannu, Karark, Lakki Marwat, and Dera Ismail Khan) and estimate the potential future incidence. We executed a broad logical evaluation on data obtained from the pertinent district health departments of KP, using a novel hybrid ANN-XGBoost approach. We assessed its performance by equating it with frequently used models for infectious disease forecasting over time, comprising the ARIMA, LSTM, ANN, and XGBoost. We evaluated the model's precision using manifold indicators: MAE, RMSE, and MAPE. We developed the models using Python 3.11 software. The results show that the hybrid model outperformed all other models, attaining an MAE score of 82.2, an RMSE of 111.6, and a MAPE of 10.6, validating superior forecast accuracy. According to our proposed model, about 1,017 new leishmaniasis cases are expected per month by December 2025. These findings provide valuable insights for disease monitoring and intervention in KP. Advanced machine learning techniques can help policymakers improve resource mapping and come up with targeted management measures to stop the spread of leishmaniasis. Subsequent research should include other environmental and socio-economic variables influencing illness spread to improve predictive models. Addressing leishmaniasis infection remains a substantial challenge in KP-Pakistan due to the increased infection prevalence. Understanding its spreading tool offerings is a major challenge. We essentially design effective approaches to pinpoint its emergence and implement upgraded management strategies. This study aims to assess the prevalence of leishmaniasis infection in KP's four high-endemic districts (Bannu, Karark, Lakki Marwat, and Dera Ismail Khan) and estimate the potential future incidence. We executed a broad logical evaluation on data obtained from the pertinent district health departments of KP, using a novel hybrid ANN-XGBoost approach. We assessed its performance by equating it with frequently used models for infectious disease forecasting over time, comprising the ARIMA, LSTM, ANN, and XGBoost. We evaluated the model's precision using manifold indicators: MAE, RMSE, and MAPE. We developed the models using Python 3.11 software. The results show that the hybrid model outperformed all other models, attaining an MAE score of 82.2, an RMSE of 111.6, and a MAPE of 10.6, validating superior forecast accuracy. According to our proposed model, about 1,017 new leishmaniasis cases are expected per month by December 2025. These findings provide valuable insights for disease monitoring and intervention in KP. Advanced machine learning techniques can help policymakers improve resource mapping and come up with targeted management measures to stop the spread of leishmaniasis. Subsequent research should include other environmental and socio-economic variables influencing illness spread to improve predictive models. •A hybrid ANN-XGBoost model was developed to predict leishmaniasis incidence in four high-endemic districts of KP, Pakistan.•The model outperformed traditional methods (ARIMA, LSTM, ANN, XGBoost) with superior accuracy (MAE: 82.2, RMSE: 111.6, MAPE: 10.6).•Forecastig predicts an average of 1017 new monthly cases by December 2025, emphasizing the public health threat.•The study offers vital insights for enhancing disease management strategies and mitigating leishmaniasis spread in KP. Addressing leishmaniasis infection remains a substantial challenge in KP-Pakistan due to the increased infection prevalence. Understanding its spreading tool offerings is a major challenge. We essentially design effective approaches to pinpoint its emergence and implement upgraded management strategies. This study aims to assess the prevalence of leishmaniasis infection in KP's four high-endemic districts (Bannu, Karark, Lakki Marwat, and Dera Ismail Khan) and estimate the potential future incidence. We executed a broad logical evaluation on data obtained from the pertinent district health departments of KP, using a novel hybrid ANN-XGBoost approach. We assessed its performance by equating it with frequently used models for infectious disease forecasting over time, comprising the ARIMA, LSTM, ANN, and XGBoost. We evaluated the model's precision using manifold indicators: MAE, RMSE, and MAPE. We developed the models using Python 3.11 software. The results show that the hybrid model outperformed all other models, attaining an MAE score of 82.2, an RMSE of 111.6, and a MAPE of 10.6, validating superior forecast accuracy. According to our proposed model, about 1,017 new leishmaniasis cases are expected per month by December 2025. These findings provide valuable insights for disease monitoring and intervention in KP. Advanced machine learning techniques can help policymakers improve resource mapping and come up with targeted management measures to stop the spread of leishmaniasis. Subsequent research should include other environmental and socio-economic variables influencing illness spread to improve predictive models. |
| ArticleNumber | 107628 |
| Author | Shah, Adil Niu, Ben Khan, Muhammad Imran Qureshi, Humera |
| Author_xml | – sequence: 1 givenname: Ben surname: Niu fullname: Niu, Ben organization: School of Computer Science and Software Engineering, Shenzhen Institute of Information Technology, Shenzhen, China – sequence: 2 givenname: Humera surname: Qureshi fullname: Qureshi, Humera email: humiimran1745@yahoo.com organization: College of Management, Shenzhen University, Shenzhen, China – sequence: 3 givenname: Muhammad Imran surname: Khan fullname: Khan, Muhammad Imran organization: Division of Biostatistics, Department of Population Health, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia – sequence: 4 givenname: Adil surname: Shah fullname: Shah, Adil organization: Health Department, Peshawar, Khyber Pakhtunkhwa, Pakistan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40280350$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUFv1DAQhS1URLeFv4DMjUsWO47thAtaVrSsVBUOPfRmOc6knSWxF9uL1H-Pt9tKiFNPI4_eeyO_74yc-OCBkA-cLTnj6tN2aV22OYYdOrusWS3LXqu6fUUWvNWiUrVsTsiCMcYrzdTtKTlLaVtetZb1G3LasLplQrIF2W58hrtoM_o7utrQMUSKfgSXMewTHTCBTUB3EQY87PxnuqL3D33Ega6ur6vby68hpEznMMD06J4A0_1sPdqEqWTRn_YXpmz9W_J6tFOCd0_znNxcfLtZf6-uflxu1quryjWC5UpIzqUVSjKpuG5Zy0c9jLIVQvRWy0EOde-6FhresYZpGFnT9-C0bG2j-k6ck4_H2F0Mv_eQspkxOZgm66F8yQjeSa0ayVWRvn-S7vsZBrOLONv4YJ7rKYIvR4GLIaUIo3FYii815GhxMpyZAxCzNf8AMQcg5gikJHT_JTwfeYl3ffRCaesPQjTJIXhXUMQCyAwBX5DyF00zrFE |
| CitedBy_id | crossref_primary_10_1016_j_soh_2025_100123 |
| Cites_doi | 10.1016/j.eswa.2023.121490 10.1093/trstmh/trad086 10.1016/0001-706X(95)92834-3 10.1016/j.jinf.2022.12.021 10.1371/journal.pntd.0010749 10.1016/S0020-7519(00)00141-7 10.3390/tropicalmed8020128 10.1016/j.actatropica.2004.09.007 10.1038/323533a0 10.1093/jme/tjx130 10.1016/j.tmaid.2019.101516 10.1007/s00436-022-07438-2 10.1007/s44197-024-00189-6 10.1016/j.jinf.2020.01.019 10.1016/S0001-706X(00)00179-0 10.1186/s12917-021-02830-z 10.1016/j.actatropica.2022.106704 10.1016/j.jinf.2020.11.007 10.1371/journal.pgph.0000495 10.46903/gjms/19.01.964 10.1016/j.renene.2023.01.113 10.1515/chem-2021-0091 10.1016/j.imu.2020.100508 10.3201/eid2401.170358 10.1007/s12639-020-01250-4 10.1016/j.jinf.2021.09.004 10.1016/j.scitotenv.2023.169684 10.4103/0972-9062.134785 10.1016/j.apjtm.2017.07.015 10.1145/2939672.2939785 10.1016/j.actatropica.2019.105147 10.18576/amis/180113 10.1162/089976600300015015 10.1017/S0031182022001640 10.1016/j.jinf.2021.08.011 10.1016/j.actatropica.2017.04.035 10.5897/AJB10.1987 10.1016/j.rinp.2021.104462 10.1016/j.actatropica.2025.107579 |
| ContentType | Journal Article |
| Copyright | 2025 Copyright © 2025. Published by Elsevier B.V. |
| Copyright_xml | – notice: 2025 – notice: Copyright © 2025. Published by Elsevier B.V. |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.actatropica.2025.107628 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Sciences (General) |
| EISSN | 1873-6254 |
| ExternalDocumentID | 40280350 10_1016_j_actatropica_2025_107628 S0001706X25001056 |
| Genre | Journal Article |
| GeographicLocations | Pakistan |
| GeographicLocations_xml | – name: Pakistan |
| GroupedDBID | --- --K --M -~X .GJ .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ 9JM AAAJQ AAEDT AAEDW AAFTH AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACIEU ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGEKW AGHFR AGQPQ AGRNS AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CJTIS CNWQP CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEJ HLV HMG HMK HMO HTE HVGLF HZ~ IHE J1W K-O KOM L7B LUGTX LW9 M29 M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SAE SCC SDF SDG SDP SES SEW SIN SPCBC SSH SSI SSZ T5K UHS WUQ ZGI ZXP ~G- ~KM 9DU AAYXX ACLOT CITATION EFKBS EFLBG ~HD CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c430t-35115a365056178081f7df58333ba75d5d2bc98e4190407ef04bbec758a46b93 |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001493828600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0001-706X 1873-6254 |
| IngestDate | Fri Oct 03 00:17:13 EDT 2025 Mon Jul 21 05:34:54 EDT 2025 Tue Nov 18 22:01:41 EST 2025 Sat Nov 29 07:00:29 EST 2025 Sat Jun 28 18:15:27 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Infection Pakistan Leishmaniasis Khyber pakhtunkhwa Prediction |
| Language | English |
| License | This is an open access article under the CC BY license. Copyright © 2025. Published by Elsevier B.V. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c430t-35115a365056178081f7df58333ba75d5d2bc98e4190407ef04bbec758a46b93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.actatropica.2025.107628 |
| PMID | 40280350 |
| PQID | 3195764516 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_3195764516 pubmed_primary_40280350 crossref_citationtrail_10_1016_j_actatropica_2025_107628 crossref_primary_10_1016_j_actatropica_2025_107628 elsevier_sciencedirect_doi_10_1016_j_actatropica_2025_107628 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-01 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Acta tropica |
| PublicationTitleAlternate | Acta Trop |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Luo, Zhang, Fu, Rao (bib0033) 2021; 27 Iradukunda, Che, Uwineza, Bayingana, Bin-Imam, Niyonzima (bib0019) 2019 Nawaz, Din, Khan, Khan, Ali, Din, Aslam (bib0034) 2020; 44 Khan, Qureshi, Bae, Shah, Ahmad, Ahmad, Asim (bib0026) 2024; 14 Patz, Graczyk, Geller, Vittor (bib0037) 2000; 30 Guma (bib0013) 2024; 18 Yaghoobi-Ershadi, Javadian, Tahvildare-Bidruni (bib0046) 1995; 59 Zahraei-Ramazani, Saghafipour, Mehdi Sedaghat, Absavaran, Azarm (bib0048) 2017; 54 Khan, Wahid, Khan (bib0023) 2019; 199 Hakem, El Khiat, Ezzahidi, Bouhout, Ait Ali, El Houate, Boutaayamou (bib0015) 2025; 264 Arif, Kalsoom, Shah, Badshah, Hasan, Rehman, Khan (bib0003) 2022; 121 Khan, Qureshi, Khattak, Awan (bib0027) 2022; 84 Ullah, Khan, Niaz, Al-Garadi, Nasreen, Swelum, Ben Said (bib0042) 2024; 118 Yurchenko, Chistyakov, Akhmadishina, Lukashev, Sádlová, Strelkova (bib0047) 2023; 150 Khan, Ali, Khan, Norin, Rooman, Akbar, Khan, Haleem, Khan, Ali (bib0028) 2021; 17 Ullah, Yen, Niaz, Nasreen, Tsai, Rodriguez-Vivas, Khan, Tsai (bib0043) 2023; 8 Azizi, Fakoorziba, Jalali, Moemenbellah-Fard (bib0006) 2012; 29 Khan, Afzal, Ahmed (bib0021) 2019; 32 Kumar, Srivastava, Maity (bib0030) 2024; 237 Bamorovat, Sharifi, Aflatoonian, Salarkia, Agha Kuchak Afshari, Pourkhosravani, Karamoozian, Khosravi, Aflatoonian, Sharifi, Divsalar, Amiri, Shirzadi (bib0007) 2024; 913 Sultan, Sanaullah, Shahid, Sumaira, Muhammad, Jan, Afshan, Mansoor, Sumera, Mubashir (bib0041) 2013; 10 Zareen, Khan, Adnan, Haleem, Ali, Alnomasy (bib0049) 2021; 19 . Alzahrani, Guma (bib0002) 2024; 9 Nkiruka, Prasad, Clement (bib0035) 2021; 22 Khan, Qureshi, Bae, Awan, Saadia, Khattak (bib0025) 2023; 86 Rahman, Chowdhury, Amrin (bib0038) 2022; 2 Hussain, Munir, Khan, Khan, Ayaz, Jamal, Ahmed, Aziz, Watany, Kasbari (bib0018) 2018; 24 Hussain, Munir, Ayaz, Khattak, Khan, Muhammad, Anees, Rahman, Qasim, Jamal, Ahmed, Rahim, Mazhar, Watanay, Kasbari (bib0016) 2017; 10 Li, Dong, Chang, Chen, Wang, Zhuang, Yan (bib0031) 2023; 205 Es-Sette, Ajaoud, Bichaud, Hamdi, Mellouki, Charrel, Lemrani (bib0012) 2014; 51 Jabeen, Jamil, Aamer, Mumtaz, Muhammad (bib54) 2022; 4 Shabanpour, Razavi-Termeh, Sadeghi-Niaraki, Choi, Abuhmed (bib0040) 2022; 112 Vadmal, Glidden, Han, Carvalho, Castellanos, Mordecai (bib0044) 2023; 17 Donizette, Rocco, Queiroz (bib0011) 2025; 44 Gers, Schmidhuber, Cummins (bib52) 2000; 12 WHO, 2023. Leishmaniasis. Bao, Medland, Fairley, Wu, Shang, Chow, Xu, Ge, Zhuang, Zhang (bib0008) 2021; 82 Colomba, Saporito, Bonura, Campisi, Di Carlo, Panzarella, Caputo, Cascio (bib0009) 2020; 80 Rashid, Rehman, Usman, Younas, Bilal, Jamil, Khan, Khan, Wahid, Ullah, Ullah, Afridi, Khan, Ullah (bib0039) 2021; 19 Lopes, Trindade, Bezerra, Belo, Magalhães, Carneiro, Barbosa (bib0032) 2023; 237 Daszak, Cunningham, Hyatt (bib0010) 2001; 78 Rumelhart, Hinton, Williams (bib51) 1986; 323 Hussain, Munir, Jamal, Ayaz, Akhoundi, Mohamed (bib0017) 2017; 172 Chen, T., Guestrin, C., 2016. XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794. Bishop (bib50) 1995 Khan, Qureshi, Ambachew, Pan, Ye (bib0024) 2018; 47 Guma, Musa, Alkhathami, Saadehm, Qazza (bib0014) 2023 Awan, Malik, Khan, Khattak, Ahmed, Hassan, Qureshi, Afzal (bib0005) 2022; 84 Parvizi, Mauricio, Aransay, Miles, Ready (bib0036) 2005; 93 Awan (10.1016/j.actatropica.2025.107628_bib0005) 2022; 84 Ullah (10.1016/j.actatropica.2025.107628_bib0042) 2024; 118 Azizi (10.1016/j.actatropica.2025.107628_bib0006) 2012; 29 Donizette (10.1016/j.actatropica.2025.107628_bib0011) 2025; 44 Yurchenko (10.1016/j.actatropica.2025.107628_bib0047) 2023; 150 Colomba (10.1016/j.actatropica.2025.107628_bib0009) 2020; 80 Khan (10.1016/j.actatropica.2025.107628_bib0028) 2021; 17 Khan (10.1016/j.actatropica.2025.107628_bib0027) 2022; 84 Bao (10.1016/j.actatropica.2025.107628_bib0008) 2021; 82 Yaghoobi-Ershadi (10.1016/j.actatropica.2025.107628_bib0046) 1995; 59 Gers (10.1016/j.actatropica.2025.107628_bib52) 2000; 12 10.1016/j.actatropica.2025.107628_bib0045 Daszak (10.1016/j.actatropica.2025.107628_bib0010) 2001; 78 Patz (10.1016/j.actatropica.2025.107628_bib0037) 2000; 30 Hussain (10.1016/j.actatropica.2025.107628_bib0016) 2017; 10 Khan (10.1016/j.actatropica.2025.107628_bib0021) 2019; 32 Rashid (10.1016/j.actatropica.2025.107628_bib0039) 2021; 19 Arif (10.1016/j.actatropica.2025.107628_bib0003) 2022; 121 Luo (10.1016/j.actatropica.2025.107628_bib0033) 2021; 27 Khan (10.1016/j.actatropica.2025.107628_bib0024) 2018; 47 Khan (10.1016/j.actatropica.2025.107628_bib0026) 2024; 14 Rumelhart (10.1016/j.actatropica.2025.107628_bib51) 1986; 323 Hakem (10.1016/j.actatropica.2025.107628_bib0015) 2025; 264 Shabanpour (10.1016/j.actatropica.2025.107628_bib0040) 2022; 112 Zareen (10.1016/j.actatropica.2025.107628_bib0049) 2021; 19 Jabeen (10.1016/j.actatropica.2025.107628_bib54) 2022; 4 Lopes (10.1016/j.actatropica.2025.107628_bib0032) 2023; 237 Rahman (10.1016/j.actatropica.2025.107628_bib0038) 2022; 2 Nawaz (10.1016/j.actatropica.2025.107628_bib0034) 2020; 44 Sultan (10.1016/j.actatropica.2025.107628_bib0041) 2013; 10 Ullah (10.1016/j.actatropica.2025.107628_bib0043) 2023; 8 Hussain (10.1016/j.actatropica.2025.107628_bib0017) 2017; 172 Hussain (10.1016/j.actatropica.2025.107628_bib0018) 2018; 24 Guma (10.1016/j.actatropica.2025.107628_bib0014) 2023 Khan (10.1016/j.actatropica.2025.107628_bib0025) 2023; 86 Li (10.1016/j.actatropica.2025.107628_bib0031) 2023; 205 Kumar (10.1016/j.actatropica.2025.107628_bib0030) 2024; 237 Bishop (10.1016/j.actatropica.2025.107628_bib50) 1995 Parvizi (10.1016/j.actatropica.2025.107628_bib0036) 2005; 93 Nkiruka (10.1016/j.actatropica.2025.107628_bib0035) 2021; 22 Bamorovat (10.1016/j.actatropica.2025.107628_bib0007) 2024; 913 Zahraei-Ramazani (10.1016/j.actatropica.2025.107628_bib0048) 2017; 54 Iradukunda (10.1016/j.actatropica.2025.107628_bib0019) 2019 Alzahrani (10.1016/j.actatropica.2025.107628_bib0002) 2024; 9 Guma (10.1016/j.actatropica.2025.107628_bib0013) 2024; 18 Vadmal (10.1016/j.actatropica.2025.107628_bib0044) 2023; 17 Es-Sette (10.1016/j.actatropica.2025.107628_bib0012) 2014; 51 10.1016/j.actatropica.2025.107628_bib53 Khan (10.1016/j.actatropica.2025.107628_bib0023) 2019; 199 |
| References_xml | – volume: 199 year: 2019 ident: bib0023 article-title: Habitat characterization of sand fly vectors of leishmaniasis in Khyber Pakhtunkhwa, Pakistan publication-title: Acta Trop. – volume: 54 start-page: 1525 year: 2017 end-page: 1530 ident: bib0048 article-title: Molecular identification of phlebotomus caucasicus and Phlebotomus mongolensis (Diptera: psychodidae) in a hyperendemic area of zoonotic cutaneous leishmaniasis in Iran publication-title: J. Med. Entomol. – volume: 913 year: 2024 ident: bib0007 article-title: A prospective longitudinal study on the elimination trend of rural cutaneous leishmaniasis in southeastern Iran: climate change, population displacement, and agricultural transition from 1991 to 2021 publication-title: Sci. Total Environ. – volume: 237 year: 2024 ident: bib0030 article-title: Modeling climate change impacts on vector-borne disease using machine learning models: case study of Visceral leishmaniasis (Kala-azar) from Indian state of Bihar publication-title: Expert Syst. Appl. – volume: 82 start-page: 48 year: 2021 end-page: 59 ident: bib0008 article-title: Predicting the diagnosis of HIV and sexually transmitted infections among men who have sex with men using machine learning approaches publication-title: J. Infect. – volume: 22 year: 2021 ident: bib0035 article-title: Prediction of malaria incidence using climate variability and machine learning publication-title: Inform. Med. Unlocked – volume: 14 start-page: 234 year: 2024 end-page: 242 ident: bib0026 article-title: Dynamics of Malaria Incidence in Khyber Pakhtunkhwa, Pakistan: unveiling Rapid Growth Patterns and Forecasting Future Trends publication-title: J Epidemiol. Glob. Health – volume: 118 start-page: 273 year: 2024 end-page: 286 ident: bib0042 article-title: Epidemiological survey, molecular profiling and phylogenetic analysis of cutaneous leishmaniasis in Khyber Pakhtunkhwa, Pakistan publication-title: Trans. Royal Soc. Trop. Med. Hyg. – year: 1995 ident: bib50 publication-title: Neural Networks for Pattern Recognition – volume: 205 start-page: 574 year: 2023 end-page: 582 ident: bib0031 article-title: Dynamic hybrid modeling of fuel ethanol fermentation process by integrating biomass concentration XGBoost model and kinetic parameter artificial neural network model into mechanism model publication-title: Renew. Energy – volume: 10 start-page: 718 year: 2017 end-page: 721 ident: bib0016 article-title: First report on molecular characterization of Leishmania species from cutaneous leishmaniasis patients in southern Khyber Pakhtunkhwa province of Pakistan publication-title: Asian Pac. J. Trop. Med. – volume: 172 start-page: 147 year: 2017 end-page: 155 ident: bib0017 article-title: Epidemic outbreak of anthroponotic cutaneous leishmaniasis in Kohat District, Khyber Pakhtunkhwa, Pakistan publication-title: Acta Trop. – volume: 84 start-page: 248 year: 2022 end-page: 288 ident: bib0027 article-title: Predicting COVID-19 incidence in Pakistan: it’s time to act now! publication-title: J. Infect. – volume: 112 year: 2022 ident: bib0040 article-title: Integration of machine learning algorithms and GIS-based approaches to cutaneous leishmaniasis prevalence risk mapping publication-title: Int/ J. Appl. Earth Obs. Geoinf. – volume: 323 start-page: 533 year: 1986 end-page: 536 ident: bib51 article-title: Learning representations by back-propagating errors publication-title: Nature – volume: 17 year: 2023 ident: bib0044 article-title: Data-driven predictions of potential Leishmania vectors in the Americas publication-title: PLoS Negl. Trop. Dis. – volume: 44 year: 2025 ident: bib0011 article-title: Predicting leishmaniasis outbreaks in Brazil using machine learning models based on disease surveillance and meteorological data publication-title: Oper. Res. Health Care – volume: 2 year: 2022 ident: bib0038 article-title: Accuracy comparison of ARIMA and XGBoost forecasting models in predicting the incidence of COVID-19 in Bangladesh publication-title: PLOS Glob. Public Health – volume: 30 start-page: 1395 year: 2000 end-page: 1405 ident: bib0037 article-title: Effects of environmental change on emerging parasitic diseases publication-title: Int. J. Parasitol. – volume: 4 year: 2022 ident: bib54 article-title: Impact of climate change on the epidemiology of vector-borne diseases in Pakistan publication-title: Glob. Biosecurity – volume: 18 start-page: 125 year: 2024 end-page: 132 ident: bib0013 article-title: Comparative analysis of time series prediction models for visceral leishmaniasis: based on SARIMA and LSTM publication-title: Appl. Math. Inf. Sci. – volume: 8 start-page: 128 year: 2023 ident: bib0043 article-title: Distribution and Risk of Cutaneous Leishmaniasis in Khyber Pakhtunkhwa, Pakistan publication-title: Trop. Med. Infect. Dis. – volume: 86 start-page: 256 year: 2023 end-page: 308 ident: bib0025 article-title: Predicting monkeypox incidence: fear is not over! publication-title: J. Infect. – volume: 237 year: 2023 ident: bib0032 article-title: Epidemiological profile, spatial patterns and priority areas for surveillance and control of leishmaniasis in Brazilian border strip, 2009–2017 publication-title: Acta Trop. – volume: 150 start-page: 129 year: 2023 end-page: 136 ident: bib0047 article-title: Revisiting epidemiology of leishmaniasis in central Asia: lessons learnt publication-title: Parasitology – reference: WHO, 2023. Leishmaniasis. – start-page: 1 year: 2019 end-page: 7 ident: bib0019 article-title: Malaria Disease Prediction Based on Machine Learning publication-title: 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP) – volume: 29 start-page: 1 year: 2012 end-page: 8 ident: bib0006 article-title: First molecular detection of Leishmania major within naturally infected Phlebotomus salehi from a zoonotic cutaneous leishmaniasis focus in southern Iran publication-title: Trop. Biomed. – volume: 12 start-page: 2451 year: 2000 end-page: 2471 ident: bib52 article-title: Learning to forget: continual prediction with LSTM publication-title: Neural Comput. – start-page: 1 year: 2023 end-page: 6 ident: bib0014 article-title: Prediction of Visceral Leishmaniasis Incidences Utilizing Machine Learning Techniques publication-title: 2023 2nd International Engineering Conference on Electrical, Energy, and Artificial Intelligence (EICEEAI) – volume: 93 start-page: 75 year: 2005 end-page: 83 ident: bib0036 article-title: First detection of Leishmania major in peridomestic Phlebotomus papatasi from Isfahan province, Iran: comparison of nested PCR of nuclear ITS ribosomal DNA and semi-nested PCR of minicircle kinetoplast DNA publication-title: Acta Trop. – reference: Chen, T., Guestrin, C., 2016. XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794. – volume: 10 start-page: 9908 year: 2013 end-page: 9910 ident: bib0041 article-title: Cutaneous leishmaniasis in Karak, Pakistan: report of an outbreak and comparison of diagnostic techniques publication-title: Afr. J. Biotechnol. – volume: 44 start-page: 725 year: 2020 end-page: 729 ident: bib0034 article-title: Epidemiological features of cutaneous leishmaniasis endemic in hilly areas of district Karak, Khyber-Pakhtunkhwa province of Pakistan publication-title: J. Parasit. Dis.: Official Organ Indian Soc. Parasitol. – volume: 32 year: 2019 ident: bib0021 article-title: Leishmaniasis in Pakistan: a call for action publication-title: Travel Med. Infect. Dis. – volume: 264 year: 2025 ident: bib0015 article-title: Incidence and prediction of cutaneous leishmaniasis cases and its related factors in an endemic area of Southeast Morocco: time series analysis publication-title: Acta Trop. – volume: 80 start-page: 578 year: 2020 end-page: 606 ident: bib0009 article-title: Leishmania infection in psoriasis publication-title: J. Infect. – volume: 9 year: 2024 ident: bib0002 article-title: Improving seasonal influenza forecasting using time series machine learning techniques publication-title: J. Inf. Syst. Eng. Manag. – volume: 84 start-page: e6 year: 2022 end-page: e8 ident: bib0005 article-title: Predicting COVID-19 incidence in war-torn Afghanistan: a timely response is required! publication-title: J. Infect. – volume: 19 start-page: 28 year: 2021 end-page: 34 ident: bib0039 article-title: Distribution of cutaneous leishmaniasis by sex, age groups and residence in year 2020 in cutaneous leishmaniasis population of district d.i.khan, Pakistan publication-title: Gomal J. Med. Sci. – volume: 24 start-page: 159 year: 2018 end-page: 161 ident: bib0018 article-title: Epidemiology of Cutaneous Leishmaniasis Outbreak, Waziristan, Pakistan publication-title: Emerg. Infect. Dis. – reference: . – volume: 47 start-page: 1961 year: 2018 end-page: 1962 ident: bib0024 article-title: Predicting Malaria Incidence in Northern and Northwestern, Pakistan publication-title: Iran. J. Public Health – volume: 121 start-page: 991 year: 2022 end-page: 998 ident: bib0003 article-title: Positivity, diagnosis and treatment follow-up of cutaneous leishmaniasis in war-affected areas of Bajaur, Pakistan publication-title: Parasitol. Res. – volume: 78 start-page: 103 year: 2001 end-page: 116 ident: bib0010 article-title: Anthropogenic environmental change and the emergence of infectious diseases in wildlife publication-title: Acta Trop. – volume: 51 start-page: 86 year: 2014 end-page: 90 ident: bib0012 article-title: Phlebotomus sergenti a common vector of Leishmania tropica and Toscana virus in Morocco publication-title: J. Vector Borne Dis. – volume: 59 start-page: 279 year: 1995 end-page: 282 ident: bib0046 article-title: Leishmania major MON-26 isolated from naturally infected Phlebotomus papatasi (Diptera: psychodidae) in Isfahan Province, Iran publication-title: Acta Trop. – volume: 17 start-page: 139 year: 2021 ident: bib0028 article-title: Cystic echinococcosis: an emerging zoonosis in southern regions of Khyber Pakhtunkhwa, Pakistan publication-title: BMC Vet. Res. – volume: 27 year: 2021 ident: bib0033 article-title: Time series prediction of COVID-19 transmission in America using LSTM and XGBoost algorithms publication-title: Results. Phys. – volume: 19 start-page: 1023 year: 2021 end-page: 1028 ident: bib0049 article-title: Antiplasmodial potential of Eucalyptus obliqua leaf methanolic extract against Plasmodium vivax: an in vitro study publication-title: Open. Chem. – volume: 237 year: 2024 ident: 10.1016/j.actatropica.2025.107628_bib0030 article-title: Modeling climate change impacts on vector-borne disease using machine learning models: case study of Visceral leishmaniasis (Kala-azar) from Indian state of Bihar publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.121490 – volume: 118 start-page: 273 issue: 4 year: 2024 ident: 10.1016/j.actatropica.2025.107628_bib0042 article-title: Epidemiological survey, molecular profiling and phylogenetic analysis of cutaneous leishmaniasis in Khyber Pakhtunkhwa, Pakistan publication-title: Trans. Royal Soc. Trop. Med. Hyg. doi: 10.1093/trstmh/trad086 – volume: 112 year: 2022 ident: 10.1016/j.actatropica.2025.107628_bib0040 article-title: Integration of machine learning algorithms and GIS-based approaches to cutaneous leishmaniasis prevalence risk mapping publication-title: Int/ J. Appl. Earth Obs. Geoinf. – volume: 59 start-page: 279 issue: 4 year: 1995 ident: 10.1016/j.actatropica.2025.107628_bib0046 article-title: Leishmania major MON-26 isolated from naturally infected Phlebotomus papatasi (Diptera: psychodidae) in Isfahan Province, Iran publication-title: Acta Trop. doi: 10.1016/0001-706X(95)92834-3 – volume: 86 start-page: 256 issue: 3 year: 2023 ident: 10.1016/j.actatropica.2025.107628_bib0025 article-title: Predicting monkeypox incidence: fear is not over! publication-title: J. Infect. doi: 10.1016/j.jinf.2022.12.021 – volume: 17 issue: 2 year: 2023 ident: 10.1016/j.actatropica.2025.107628_bib0044 article-title: Data-driven predictions of potential Leishmania vectors in the Americas publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0010749 – volume: 30 start-page: 1395 issue: 12–13 year: 2000 ident: 10.1016/j.actatropica.2025.107628_bib0037 article-title: Effects of environmental change on emerging parasitic diseases publication-title: Int. J. Parasitol. doi: 10.1016/S0020-7519(00)00141-7 – volume: 8 start-page: 128 issue: 2 year: 2023 ident: 10.1016/j.actatropica.2025.107628_bib0043 article-title: Distribution and Risk of Cutaneous Leishmaniasis in Khyber Pakhtunkhwa, Pakistan publication-title: Trop. Med. Infect. Dis. doi: 10.3390/tropicalmed8020128 – volume: 93 start-page: 75 issue: 1 year: 2005 ident: 10.1016/j.actatropica.2025.107628_bib0036 article-title: First detection of Leishmania major in peridomestic Phlebotomus papatasi from Isfahan province, Iran: comparison of nested PCR of nuclear ITS ribosomal DNA and semi-nested PCR of minicircle kinetoplast DNA publication-title: Acta Trop. doi: 10.1016/j.actatropica.2004.09.007 – volume: 323 start-page: 533 year: 1986 ident: 10.1016/j.actatropica.2025.107628_bib51 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – volume: 4 issue: 1 year: 2022 ident: 10.1016/j.actatropica.2025.107628_bib54 article-title: Impact of climate change on the epidemiology of vector-borne diseases in Pakistan publication-title: Glob. Biosecurity – volume: 54 start-page: 1525 issue: 6 year: 2017 ident: 10.1016/j.actatropica.2025.107628_bib0048 article-title: Molecular identification of phlebotomus caucasicus and Phlebotomus mongolensis (Diptera: psychodidae) in a hyperendemic area of zoonotic cutaneous leishmaniasis in Iran publication-title: J. Med. Entomol. doi: 10.1093/jme/tjx130 – volume: 32 year: 2019 ident: 10.1016/j.actatropica.2025.107628_bib0021 article-title: Leishmaniasis in Pakistan: a call for action publication-title: Travel Med. Infect. Dis. doi: 10.1016/j.tmaid.2019.101516 – start-page: 1 year: 2019 ident: 10.1016/j.actatropica.2025.107628_bib0019 article-title: Malaria Disease Prediction Based on Machine Learning – volume: 121 start-page: 991 issue: 3 year: 2022 ident: 10.1016/j.actatropica.2025.107628_bib0003 article-title: Positivity, diagnosis and treatment follow-up of cutaneous leishmaniasis in war-affected areas of Bajaur, Pakistan publication-title: Parasitol. Res. doi: 10.1007/s00436-022-07438-2 – year: 1995 ident: 10.1016/j.actatropica.2025.107628_bib50 – volume: 14 start-page: 234 issue: 1 year: 2024 ident: 10.1016/j.actatropica.2025.107628_bib0026 article-title: Dynamics of Malaria Incidence in Khyber Pakhtunkhwa, Pakistan: unveiling Rapid Growth Patterns and Forecasting Future Trends publication-title: J Epidemiol. Glob. Health doi: 10.1007/s44197-024-00189-6 – volume: 80 start-page: 578 issue: 5 year: 2020 ident: 10.1016/j.actatropica.2025.107628_bib0009 article-title: Leishmania infection in psoriasis publication-title: J. Infect. doi: 10.1016/j.jinf.2020.01.019 – volume: 78 start-page: 103 issue: 2 year: 2001 ident: 10.1016/j.actatropica.2025.107628_bib0010 article-title: Anthropogenic environmental change and the emergence of infectious diseases in wildlife publication-title: Acta Trop. doi: 10.1016/S0001-706X(00)00179-0 – volume: 17 start-page: 139 issue: 1 year: 2021 ident: 10.1016/j.actatropica.2025.107628_bib0028 article-title: Cystic echinococcosis: an emerging zoonosis in southern regions of Khyber Pakhtunkhwa, Pakistan publication-title: BMC Vet. Res. doi: 10.1186/s12917-021-02830-z – start-page: 1 year: 2023 ident: 10.1016/j.actatropica.2025.107628_bib0014 article-title: Prediction of Visceral Leishmaniasis Incidences Utilizing Machine Learning Techniques – volume: 237 year: 2023 ident: 10.1016/j.actatropica.2025.107628_bib0032 article-title: Epidemiological profile, spatial patterns and priority areas for surveillance and control of leishmaniasis in Brazilian border strip, 2009–2017 publication-title: Acta Trop. doi: 10.1016/j.actatropica.2022.106704 – volume: 82 start-page: 48 issue: 1 year: 2021 ident: 10.1016/j.actatropica.2025.107628_bib0008 article-title: Predicting the diagnosis of HIV and sexually transmitted infections among men who have sex with men using machine learning approaches publication-title: J. Infect. doi: 10.1016/j.jinf.2020.11.007 – volume: 2 issue: 5 year: 2022 ident: 10.1016/j.actatropica.2025.107628_bib0038 article-title: Accuracy comparison of ARIMA and XGBoost forecasting models in predicting the incidence of COVID-19 in Bangladesh publication-title: PLOS Glob. Public Health doi: 10.1371/journal.pgph.0000495 – volume: 19 start-page: 28 issue: 1 year: 2021 ident: 10.1016/j.actatropica.2025.107628_bib0039 article-title: Distribution of cutaneous leishmaniasis by sex, age groups and residence in year 2020 in cutaneous leishmaniasis population of district d.i.khan, Pakistan publication-title: Gomal J. Med. Sci. doi: 10.46903/gjms/19.01.964 – volume: 205 start-page: 574 year: 2023 ident: 10.1016/j.actatropica.2025.107628_bib0031 article-title: Dynamic hybrid modeling of fuel ethanol fermentation process by integrating biomass concentration XGBoost model and kinetic parameter artificial neural network model into mechanism model publication-title: Renew. Energy doi: 10.1016/j.renene.2023.01.113 – volume: 19 start-page: 1023 issue: 1 year: 2021 ident: 10.1016/j.actatropica.2025.107628_bib0049 article-title: Antiplasmodial potential of Eucalyptus obliqua leaf methanolic extract against Plasmodium vivax: an in vitro study publication-title: Open. Chem. doi: 10.1515/chem-2021-0091 – ident: 10.1016/j.actatropica.2025.107628_bib0045 – volume: 22 year: 2021 ident: 10.1016/j.actatropica.2025.107628_bib0035 article-title: Prediction of malaria incidence using climate variability and machine learning publication-title: Inform. Med. Unlocked doi: 10.1016/j.imu.2020.100508 – volume: 29 start-page: 1 issue: 1 year: 2012 ident: 10.1016/j.actatropica.2025.107628_bib0006 article-title: First molecular detection of Leishmania major within naturally infected Phlebotomus salehi from a zoonotic cutaneous leishmaniasis focus in southern Iran publication-title: Trop. Biomed. – volume: 24 start-page: 159 issue: 1 year: 2018 ident: 10.1016/j.actatropica.2025.107628_bib0018 article-title: Epidemiology of Cutaneous Leishmaniasis Outbreak, Waziristan, Pakistan publication-title: Emerg. Infect. Dis. doi: 10.3201/eid2401.170358 – volume: 9 issue: 4 year: 2024 ident: 10.1016/j.actatropica.2025.107628_bib0002 article-title: Improving seasonal influenza forecasting using time series machine learning techniques publication-title: J. Inf. Syst. Eng. Manag. – volume: 47 start-page: 1961 issue: 12 year: 2018 ident: 10.1016/j.actatropica.2025.107628_bib0024 article-title: Predicting Malaria Incidence in Northern and Northwestern, Pakistan publication-title: Iran. J. Public Health – volume: 44 start-page: 725 issue: 4 year: 2020 ident: 10.1016/j.actatropica.2025.107628_bib0034 article-title: Epidemiological features of cutaneous leishmaniasis endemic in hilly areas of district Karak, Khyber-Pakhtunkhwa province of Pakistan publication-title: J. Parasit. Dis.: Official Organ Indian Soc. Parasitol. doi: 10.1007/s12639-020-01250-4 – volume: 84 start-page: e6 issue: 1 year: 2022 ident: 10.1016/j.actatropica.2025.107628_bib0005 article-title: Predicting COVID-19 incidence in war-torn Afghanistan: a timely response is required! publication-title: J. Infect. doi: 10.1016/j.jinf.2021.09.004 – volume: 913 year: 2024 ident: 10.1016/j.actatropica.2025.107628_bib0007 article-title: A prospective longitudinal study on the elimination trend of rural cutaneous leishmaniasis in southeastern Iran: climate change, population displacement, and agricultural transition from 1991 to 2021 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2023.169684 – volume: 51 start-page: 86 issue: 2 year: 2014 ident: 10.1016/j.actatropica.2025.107628_bib0012 article-title: Phlebotomus sergenti a common vector of Leishmania tropica and Toscana virus in Morocco publication-title: J. Vector Borne Dis. doi: 10.4103/0972-9062.134785 – volume: 10 start-page: 718 issue: 7 year: 2017 ident: 10.1016/j.actatropica.2025.107628_bib0016 article-title: First report on molecular characterization of Leishmania species from cutaneous leishmaniasis patients in southern Khyber Pakhtunkhwa province of Pakistan publication-title: Asian Pac. J. Trop. Med. doi: 10.1016/j.apjtm.2017.07.015 – ident: 10.1016/j.actatropica.2025.107628_bib53 doi: 10.1145/2939672.2939785 – volume: 199 year: 2019 ident: 10.1016/j.actatropica.2025.107628_bib0023 article-title: Habitat characterization of sand fly vectors of leishmaniasis in Khyber Pakhtunkhwa, Pakistan publication-title: Acta Trop. doi: 10.1016/j.actatropica.2019.105147 – volume: 18 start-page: 125 issue: 1 year: 2024 ident: 10.1016/j.actatropica.2025.107628_bib0013 article-title: Comparative analysis of time series prediction models for visceral leishmaniasis: based on SARIMA and LSTM publication-title: Appl. Math. Inf. Sci. doi: 10.18576/amis/180113 – volume: 12 start-page: 2451 year: 2000 ident: 10.1016/j.actatropica.2025.107628_bib52 article-title: Learning to forget: continual prediction with LSTM publication-title: Neural Comput. doi: 10.1162/089976600300015015 – volume: 150 start-page: 129 issue: 2 year: 2023 ident: 10.1016/j.actatropica.2025.107628_bib0047 article-title: Revisiting epidemiology of leishmaniasis in central Asia: lessons learnt publication-title: Parasitology doi: 10.1017/S0031182022001640 – volume: 84 start-page: 248 issue: 2 year: 2022 ident: 10.1016/j.actatropica.2025.107628_bib0027 article-title: Predicting COVID-19 incidence in Pakistan: it’s time to act now! publication-title: J. Infect. doi: 10.1016/j.jinf.2021.08.011 – volume: 172 start-page: 147 year: 2017 ident: 10.1016/j.actatropica.2025.107628_bib0017 article-title: Epidemic outbreak of anthroponotic cutaneous leishmaniasis in Kohat District, Khyber Pakhtunkhwa, Pakistan publication-title: Acta Trop. doi: 10.1016/j.actatropica.2017.04.035 – volume: 10 start-page: 9908 issue: 48 year: 2013 ident: 10.1016/j.actatropica.2025.107628_bib0041 article-title: Cutaneous leishmaniasis in Karak, Pakistan: report of an outbreak and comparison of diagnostic techniques publication-title: Afr. J. Biotechnol. doi: 10.5897/AJB10.1987 – volume: 44 year: 2025 ident: 10.1016/j.actatropica.2025.107628_bib0011 article-title: Predicting leishmaniasis outbreaks in Brazil using machine learning models based on disease surveillance and meteorological data publication-title: Oper. Res. Health Care – volume: 27 year: 2021 ident: 10.1016/j.actatropica.2025.107628_bib0033 article-title: Time series prediction of COVID-19 transmission in America using LSTM and XGBoost algorithms publication-title: Results. Phys. doi: 10.1016/j.rinp.2021.104462 – volume: 264 year: 2025 ident: 10.1016/j.actatropica.2025.107628_bib0015 article-title: Incidence and prediction of cutaneous leishmaniasis cases and its related factors in an endemic area of Southeast Morocco: time series analysis publication-title: Acta Trop. doi: 10.1016/j.actatropica.2025.107579 |
| SSID | ssj0012752 |
| Score | 2.444285 |
| Snippet | •A hybrid ANN-XGBoost model was developed to predict leishmaniasis incidence in four high-endemic districts of KP, Pakistan.•The model outperformed traditional... Addressing leishmaniasis infection remains a substantial challenge in KP-Pakistan due to the increased infection prevalence. Understanding its spreading tool... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 107628 |
| SubjectTerms | Boosting Machine Learning Algorithms Forecasting - methods Humans Incidence Infection Khyber pakhtunkhwa Leishmaniasis Leishmaniasis - epidemiology Models, Statistical Pakistan Pakistan - epidemiology Prediction Prevalence |
| Title | Integrating AI for infectious disease prediction: A hybrid ANN-XGBoost model for leishmaniasis in Pakistan |
| URI | https://dx.doi.org/10.1016/j.actatropica.2025.107628 https://www.ncbi.nlm.nih.gov/pubmed/40280350 https://www.proquest.com/docview/3195764516 |
| Volume | 266 |
| WOSCitedRecordID | wos001493828600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6254 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012752 issn: 0001-706X databaseCode: AIEXJ dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELa6Dk28IDZglMHkSTyAqkxpY8cx4iWgAQVWgahQ3yLHSZRWbVq16bT9DfzTnGPnx0AVBYmXKIp6rtP7er6zv7tD6DknoScEkVYUE8ciLOaWsBNuUZJI7khAUJH1_v0zGw698Zh_abV-lLkwVzOWZd71NV_-V1XDM1C2Sp39C3VXg8IDuAelwxXUDtedFD8wBSCK_Y5BQSMsGVebdXkgo2oDRBNZMjv8bnqjUre6_nBojd-_WSzWuW6SU8jP4sk6VYUyhCpfMslKvzNrura-zEU3Xy2WDfbPcLIpAFTnm33dQHyf6lbZKvWz-uinVG_FXm5SMZ-LqDuYr2rkfktFsf_jR4YSYjYq-rQmVFXGt2cxu2hcWBnfvts0nxCLujpX_DfLrjcZpoCyXJh3OVffcl7L3K6m_csqV3EPS1rbNGgMFaihAj3UHtrvM8q9Ntr3Bxfjj9WhFDzVxefNexygs5ouuGVe29ydbeFM4daM7qN7Jh7BvsbRIWrF2RE6uDSMiyN0aIz_Gr8wFcpfPkDTBsawP8CAEVxjDBuM4Rpjr7CPNcJwA2G4QFghfQthMBYuEfYQjd5djN5-sEzTDksSx85VZkiPCsdVnnWPqb4uCYsSldvnhILRiEb9UHIvJuCJEpvFiU1CsCMQtgrihtx5hNrZIosfI0wpZQmXbiglRP1wS6MkSXqudHkSwbLYQV750wbSFLRXfVVmwR9V3EH9SnSpq7rsIvS61F9g3FPtdgaA0V3Ez0qdB2DC1bmcyGLQSgCrIET9qmN2Bx1rMFSzIor64FD7yb_M-ATdrf-IT1E7X23iZ-iOvMon69Up2mNj79SA_Cf3acxM |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+AI+for+infectious+disease+prediction%3A+A+hybrid+ANN-XGBoost+model+for+leishmaniasis+in+Pakistan&rft.jtitle=Acta+tropica&rft.au=Niu%2C+Ben&rft.au=Qureshi%2C+Humera&rft.au=Khan%2C+Muhammad+Imran&rft.au=Shah%2C+Adil&rft.date=2025-06-01&rft.issn=0001-706X&rft.volume=266&rft.spage=107628&rft_id=info:doi/10.1016%2Fj.actatropica.2025.107628&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_actatropica_2025_107628 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-706X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-706X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-706X&client=summon |