Integrating AI for infectious disease prediction: A hybrid ANN-XGBoost model for leishmaniasis in Pakistan

•A hybrid ANN-XGBoost model was developed to predict leishmaniasis incidence in four high-endemic districts of KP, Pakistan.•The model outperformed traditional methods (ARIMA, LSTM, ANN, XGBoost) with superior accuracy (MAE: 82.2, RMSE: 111.6, MAPE: 10.6).•Forecastig predicts an average of 1017 new...

Full description

Saved in:
Bibliographic Details
Published in:Acta tropica Vol. 266; p. 107628
Main Authors: Niu, Ben, Qureshi, Humera, Khan, Muhammad Imran, Shah, Adil
Format: Journal Article
Language:English
Published: Netherlands Elsevier B.V 01.06.2025
Subjects:
ISSN:0001-706X, 1873-6254, 1873-6254
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A hybrid ANN-XGBoost model was developed to predict leishmaniasis incidence in four high-endemic districts of KP, Pakistan.•The model outperformed traditional methods (ARIMA, LSTM, ANN, XGBoost) with superior accuracy (MAE: 82.2, RMSE: 111.6, MAPE: 10.6).•Forecastig predicts an average of 1017 new monthly cases by December 2025, emphasizing the public health threat.•The study offers vital insights for enhancing disease management strategies and mitigating leishmaniasis spread in KP. Addressing leishmaniasis infection remains a substantial challenge in KP-Pakistan due to the increased infection prevalence. Understanding its spreading tool offerings is a major challenge. We essentially design effective approaches to pinpoint its emergence and implement upgraded management strategies. This study aims to assess the prevalence of leishmaniasis infection in KP's four high-endemic districts (Bannu, Karark, Lakki Marwat, and Dera Ismail Khan) and estimate the potential future incidence. We executed a broad logical evaluation on data obtained from the pertinent district health departments of KP, using a novel hybrid ANN-XGBoost approach. We assessed its performance by equating it with frequently used models for infectious disease forecasting over time, comprising the ARIMA, LSTM, ANN, and XGBoost. We evaluated the model's precision using manifold indicators: MAE, RMSE, and MAPE. We developed the models using Python 3.11 software. The results show that the hybrid model outperformed all other models, attaining an MAE score of 82.2, an RMSE of 111.6, and a MAPE of 10.6, validating superior forecast accuracy. According to our proposed model, about 1,017 new leishmaniasis cases are expected per month by December 2025. These findings provide valuable insights for disease monitoring and intervention in KP. Advanced machine learning techniques can help policymakers improve resource mapping and come up with targeted management measures to stop the spread of leishmaniasis. Subsequent research should include other environmental and socio-economic variables influencing illness spread to improve predictive models.
AbstractList Addressing leishmaniasis infection remains a substantial challenge in KP-Pakistan due to the increased infection prevalence. Understanding its spreading tool offerings is a major challenge. We essentially design effective approaches to pinpoint its emergence and implement upgraded management strategies. This study aims to assess the prevalence of leishmaniasis infection in KP's four high-endemic districts (Bannu, Karark, Lakki Marwat, and Dera Ismail Khan) and estimate the potential future incidence. We executed a broad logical evaluation on data obtained from the pertinent district health departments of KP, using a novel hybrid ANN-XGBoost approach. We assessed its performance by equating it with frequently used models for infectious disease forecasting over time, comprising the ARIMA, LSTM, ANN, and XGBoost. We evaluated the model's precision using manifold indicators: MAE, RMSE, and MAPE. We developed the models using Python 3.11 software. The results show that the hybrid model outperformed all other models, attaining an MAE score of 82.2, an RMSE of 111.6, and a MAPE of 10.6, validating superior forecast accuracy. According to our proposed model, about 1,017 new leishmaniasis cases are expected per month by December 2025. These findings provide valuable insights for disease monitoring and intervention in KP. Advanced machine learning techniques can help policymakers improve resource mapping and come up with targeted management measures to stop the spread of leishmaniasis. Subsequent research should include other environmental and socio-economic variables influencing illness spread to improve predictive models.Addressing leishmaniasis infection remains a substantial challenge in KP-Pakistan due to the increased infection prevalence. Understanding its spreading tool offerings is a major challenge. We essentially design effective approaches to pinpoint its emergence and implement upgraded management strategies. This study aims to assess the prevalence of leishmaniasis infection in KP's four high-endemic districts (Bannu, Karark, Lakki Marwat, and Dera Ismail Khan) and estimate the potential future incidence. We executed a broad logical evaluation on data obtained from the pertinent district health departments of KP, using a novel hybrid ANN-XGBoost approach. We assessed its performance by equating it with frequently used models for infectious disease forecasting over time, comprising the ARIMA, LSTM, ANN, and XGBoost. We evaluated the model's precision using manifold indicators: MAE, RMSE, and MAPE. We developed the models using Python 3.11 software. The results show that the hybrid model outperformed all other models, attaining an MAE score of 82.2, an RMSE of 111.6, and a MAPE of 10.6, validating superior forecast accuracy. According to our proposed model, about 1,017 new leishmaniasis cases are expected per month by December 2025. These findings provide valuable insights for disease monitoring and intervention in KP. Advanced machine learning techniques can help policymakers improve resource mapping and come up with targeted management measures to stop the spread of leishmaniasis. Subsequent research should include other environmental and socio-economic variables influencing illness spread to improve predictive models.
Addressing leishmaniasis infection remains a substantial challenge in KP-Pakistan due to the increased infection prevalence. Understanding its spreading tool offerings is a major challenge. We essentially design effective approaches to pinpoint its emergence and implement upgraded management strategies. This study aims to assess the prevalence of leishmaniasis infection in KP's four high-endemic districts (Bannu, Karark, Lakki Marwat, and Dera Ismail Khan) and estimate the potential future incidence. We executed a broad logical evaluation on data obtained from the pertinent district health departments of KP, using a novel hybrid ANN-XGBoost approach. We assessed its performance by equating it with frequently used models for infectious disease forecasting over time, comprising the ARIMA, LSTM, ANN, and XGBoost. We evaluated the model's precision using manifold indicators: MAE, RMSE, and MAPE. We developed the models using Python 3.11 software. The results show that the hybrid model outperformed all other models, attaining an MAE score of 82.2, an RMSE of 111.6, and a MAPE of 10.6, validating superior forecast accuracy. According to our proposed model, about 1,017 new leishmaniasis cases are expected per month by December 2025. These findings provide valuable insights for disease monitoring and intervention in KP. Advanced machine learning techniques can help policymakers improve resource mapping and come up with targeted management measures to stop the spread of leishmaniasis. Subsequent research should include other environmental and socio-economic variables influencing illness spread to improve predictive models.
•A hybrid ANN-XGBoost model was developed to predict leishmaniasis incidence in four high-endemic districts of KP, Pakistan.•The model outperformed traditional methods (ARIMA, LSTM, ANN, XGBoost) with superior accuracy (MAE: 82.2, RMSE: 111.6, MAPE: 10.6).•Forecastig predicts an average of 1017 new monthly cases by December 2025, emphasizing the public health threat.•The study offers vital insights for enhancing disease management strategies and mitigating leishmaniasis spread in KP. Addressing leishmaniasis infection remains a substantial challenge in KP-Pakistan due to the increased infection prevalence. Understanding its spreading tool offerings is a major challenge. We essentially design effective approaches to pinpoint its emergence and implement upgraded management strategies. This study aims to assess the prevalence of leishmaniasis infection in KP's four high-endemic districts (Bannu, Karark, Lakki Marwat, and Dera Ismail Khan) and estimate the potential future incidence. We executed a broad logical evaluation on data obtained from the pertinent district health departments of KP, using a novel hybrid ANN-XGBoost approach. We assessed its performance by equating it with frequently used models for infectious disease forecasting over time, comprising the ARIMA, LSTM, ANN, and XGBoost. We evaluated the model's precision using manifold indicators: MAE, RMSE, and MAPE. We developed the models using Python 3.11 software. The results show that the hybrid model outperformed all other models, attaining an MAE score of 82.2, an RMSE of 111.6, and a MAPE of 10.6, validating superior forecast accuracy. According to our proposed model, about 1,017 new leishmaniasis cases are expected per month by December 2025. These findings provide valuable insights for disease monitoring and intervention in KP. Advanced machine learning techniques can help policymakers improve resource mapping and come up with targeted management measures to stop the spread of leishmaniasis. Subsequent research should include other environmental and socio-economic variables influencing illness spread to improve predictive models.
ArticleNumber 107628
Author Shah, Adil
Niu, Ben
Khan, Muhammad Imran
Qureshi, Humera
Author_xml – sequence: 1
  givenname: Ben
  surname: Niu
  fullname: Niu, Ben
  organization: School of Computer Science and Software Engineering, Shenzhen Institute of Information Technology, Shenzhen, China
– sequence: 2
  givenname: Humera
  surname: Qureshi
  fullname: Qureshi, Humera
  email: humiimran1745@yahoo.com
  organization: College of Management, Shenzhen University, Shenzhen, China
– sequence: 3
  givenname: Muhammad Imran
  surname: Khan
  fullname: Khan, Muhammad Imran
  organization: Division of Biostatistics, Department of Population Health, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
– sequence: 4
  givenname: Adil
  surname: Shah
  fullname: Shah, Adil
  organization: Health Department, Peshawar, Khyber Pakhtunkhwa, Pakistan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40280350$$D View this record in MEDLINE/PubMed
BookMark eNqNkUFv1DAQhS1URLeFv4DMjUsWO47thAtaVrSsVBUOPfRmOc6knSWxF9uL1H-Pt9tKiFNPI4_eeyO_74yc-OCBkA-cLTnj6tN2aV22OYYdOrusWS3LXqu6fUUWvNWiUrVsTsiCMcYrzdTtKTlLaVtetZb1G3LasLplQrIF2W58hrtoM_o7utrQMUSKfgSXMewTHTCBTUB3EQY87PxnuqL3D33Ega6ur6vby68hpEznMMD06J4A0_1sPdqEqWTRn_YXpmz9W_J6tFOCd0_znNxcfLtZf6-uflxu1quryjWC5UpIzqUVSjKpuG5Zy0c9jLIVQvRWy0EOde-6FhresYZpGFnT9-C0bG2j-k6ck4_H2F0Mv_eQspkxOZgm66F8yQjeSa0ayVWRvn-S7vsZBrOLONv4YJ7rKYIvR4GLIaUIo3FYii815GhxMpyZAxCzNf8AMQcg5gikJHT_JTwfeYl3ffRCaesPQjTJIXhXUMQCyAwBX5DyF00zrFE
CitedBy_id crossref_primary_10_1016_j_soh_2025_100123
Cites_doi 10.1016/j.eswa.2023.121490
10.1093/trstmh/trad086
10.1016/0001-706X(95)92834-3
10.1016/j.jinf.2022.12.021
10.1371/journal.pntd.0010749
10.1016/S0020-7519(00)00141-7
10.3390/tropicalmed8020128
10.1016/j.actatropica.2004.09.007
10.1038/323533a0
10.1093/jme/tjx130
10.1016/j.tmaid.2019.101516
10.1007/s00436-022-07438-2
10.1007/s44197-024-00189-6
10.1016/j.jinf.2020.01.019
10.1016/S0001-706X(00)00179-0
10.1186/s12917-021-02830-z
10.1016/j.actatropica.2022.106704
10.1016/j.jinf.2020.11.007
10.1371/journal.pgph.0000495
10.46903/gjms/19.01.964
10.1016/j.renene.2023.01.113
10.1515/chem-2021-0091
10.1016/j.imu.2020.100508
10.3201/eid2401.170358
10.1007/s12639-020-01250-4
10.1016/j.jinf.2021.09.004
10.1016/j.scitotenv.2023.169684
10.4103/0972-9062.134785
10.1016/j.apjtm.2017.07.015
10.1145/2939672.2939785
10.1016/j.actatropica.2019.105147
10.18576/amis/180113
10.1162/089976600300015015
10.1017/S0031182022001640
10.1016/j.jinf.2021.08.011
10.1016/j.actatropica.2017.04.035
10.5897/AJB10.1987
10.1016/j.rinp.2021.104462
10.1016/j.actatropica.2025.107579
ContentType Journal Article
Copyright 2025
Copyright © 2025. Published by Elsevier B.V.
Copyright_xml – notice: 2025
– notice: Copyright © 2025. Published by Elsevier B.V.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.actatropica.2025.107628
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Sciences (General)
EISSN 1873-6254
ExternalDocumentID 40280350
10_1016_j_actatropica_2025_107628
S0001706X25001056
Genre Journal Article
GeographicLocations Pakistan
GeographicLocations_xml – name: Pakistan
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
9JM
AAAJQ
AAEDT
AAEDW
AAFTH
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARKO
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACIEU
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGEKW
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CJTIS
CNWQP
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEJ
HLV
HMG
HMK
HMO
HTE
HVGLF
HZ~
IHE
J1W
K-O
KOM
L7B
LUGTX
LW9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAE
SCC
SDF
SDG
SDP
SES
SEW
SIN
SPCBC
SSH
SSI
SSZ
T5K
UHS
WUQ
ZGI
ZXP
~G-
~KM
9DU
AAYXX
ACLOT
CITATION
EFKBS
EFLBG
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c430t-35115a365056178081f7df58333ba75d5d2bc98e4190407ef04bbec758a46b93
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001493828600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0001-706X
1873-6254
IngestDate Fri Oct 03 00:17:13 EDT 2025
Mon Jul 21 05:34:54 EDT 2025
Tue Nov 18 22:01:41 EST 2025
Sat Nov 29 07:00:29 EST 2025
Sat Jun 28 18:15:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Infection
Pakistan
Leishmaniasis
Khyber pakhtunkhwa
Prediction
Language English
License This is an open access article under the CC BY license.
Copyright © 2025. Published by Elsevier B.V.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c430t-35115a365056178081f7df58333ba75d5d2bc98e4190407ef04bbec758a46b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.actatropica.2025.107628
PMID 40280350
PQID 3195764516
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3195764516
pubmed_primary_40280350
crossref_citationtrail_10_1016_j_actatropica_2025_107628
crossref_primary_10_1016_j_actatropica_2025_107628
elsevier_sciencedirect_doi_10_1016_j_actatropica_2025_107628
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Acta tropica
PublicationTitleAlternate Acta Trop
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Luo, Zhang, Fu, Rao (bib0033) 2021; 27
Iradukunda, Che, Uwineza, Bayingana, Bin-Imam, Niyonzima (bib0019) 2019
Nawaz, Din, Khan, Khan, Ali, Din, Aslam (bib0034) 2020; 44
Khan, Qureshi, Bae, Shah, Ahmad, Ahmad, Asim (bib0026) 2024; 14
Patz, Graczyk, Geller, Vittor (bib0037) 2000; 30
Guma (bib0013) 2024; 18
Yaghoobi-Ershadi, Javadian, Tahvildare-Bidruni (bib0046) 1995; 59
Zahraei-Ramazani, Saghafipour, Mehdi Sedaghat, Absavaran, Azarm (bib0048) 2017; 54
Khan, Wahid, Khan (bib0023) 2019; 199
Hakem, El Khiat, Ezzahidi, Bouhout, Ait Ali, El Houate, Boutaayamou (bib0015) 2025; 264
Arif, Kalsoom, Shah, Badshah, Hasan, Rehman, Khan (bib0003) 2022; 121
Khan, Qureshi, Khattak, Awan (bib0027) 2022; 84
Ullah, Khan, Niaz, Al-Garadi, Nasreen, Swelum, Ben Said (bib0042) 2024; 118
Yurchenko, Chistyakov, Akhmadishina, Lukashev, Sádlová, Strelkova (bib0047) 2023; 150
Khan, Ali, Khan, Norin, Rooman, Akbar, Khan, Haleem, Khan, Ali (bib0028) 2021; 17
Ullah, Yen, Niaz, Nasreen, Tsai, Rodriguez-Vivas, Khan, Tsai (bib0043) 2023; 8
Azizi, Fakoorziba, Jalali, Moemenbellah-Fard (bib0006) 2012; 29
Khan, Afzal, Ahmed (bib0021) 2019; 32
Kumar, Srivastava, Maity (bib0030) 2024; 237
Bamorovat, Sharifi, Aflatoonian, Salarkia, Agha Kuchak Afshari, Pourkhosravani, Karamoozian, Khosravi, Aflatoonian, Sharifi, Divsalar, Amiri, Shirzadi (bib0007) 2024; 913
Sultan, Sanaullah, Shahid, Sumaira, Muhammad, Jan, Afshan, Mansoor, Sumera, Mubashir (bib0041) 2013; 10
Zareen, Khan, Adnan, Haleem, Ali, Alnomasy (bib0049) 2021; 19
.
Alzahrani, Guma (bib0002) 2024; 9
Nkiruka, Prasad, Clement (bib0035) 2021; 22
Khan, Qureshi, Bae, Awan, Saadia, Khattak (bib0025) 2023; 86
Rahman, Chowdhury, Amrin (bib0038) 2022; 2
Hussain, Munir, Khan, Khan, Ayaz, Jamal, Ahmed, Aziz, Watany, Kasbari (bib0018) 2018; 24
Hussain, Munir, Ayaz, Khattak, Khan, Muhammad, Anees, Rahman, Qasim, Jamal, Ahmed, Rahim, Mazhar, Watanay, Kasbari (bib0016) 2017; 10
Li, Dong, Chang, Chen, Wang, Zhuang, Yan (bib0031) 2023; 205
Es-Sette, Ajaoud, Bichaud, Hamdi, Mellouki, Charrel, Lemrani (bib0012) 2014; 51
Jabeen, Jamil, Aamer, Mumtaz, Muhammad (bib54) 2022; 4
Shabanpour, Razavi-Termeh, Sadeghi-Niaraki, Choi, Abuhmed (bib0040) 2022; 112
Vadmal, Glidden, Han, Carvalho, Castellanos, Mordecai (bib0044) 2023; 17
Donizette, Rocco, Queiroz (bib0011) 2025; 44
Gers, Schmidhuber, Cummins (bib52) 2000; 12
WHO, 2023. Leishmaniasis.
Bao, Medland, Fairley, Wu, Shang, Chow, Xu, Ge, Zhuang, Zhang (bib0008) 2021; 82
Colomba, Saporito, Bonura, Campisi, Di Carlo, Panzarella, Caputo, Cascio (bib0009) 2020; 80
Rashid, Rehman, Usman, Younas, Bilal, Jamil, Khan, Khan, Wahid, Ullah, Ullah, Afridi, Khan, Ullah (bib0039) 2021; 19
Lopes, Trindade, Bezerra, Belo, Magalhães, Carneiro, Barbosa (bib0032) 2023; 237
Daszak, Cunningham, Hyatt (bib0010) 2001; 78
Rumelhart, Hinton, Williams (bib51) 1986; 323
Hussain, Munir, Jamal, Ayaz, Akhoundi, Mohamed (bib0017) 2017; 172
Chen, T., Guestrin, C., 2016. XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794.
Bishop (bib50) 1995
Khan, Qureshi, Ambachew, Pan, Ye (bib0024) 2018; 47
Guma, Musa, Alkhathami, Saadehm, Qazza (bib0014) 2023
Awan, Malik, Khan, Khattak, Ahmed, Hassan, Qureshi, Afzal (bib0005) 2022; 84
Parvizi, Mauricio, Aransay, Miles, Ready (bib0036) 2005; 93
Awan (10.1016/j.actatropica.2025.107628_bib0005) 2022; 84
Ullah (10.1016/j.actatropica.2025.107628_bib0042) 2024; 118
Azizi (10.1016/j.actatropica.2025.107628_bib0006) 2012; 29
Donizette (10.1016/j.actatropica.2025.107628_bib0011) 2025; 44
Yurchenko (10.1016/j.actatropica.2025.107628_bib0047) 2023; 150
Colomba (10.1016/j.actatropica.2025.107628_bib0009) 2020; 80
Khan (10.1016/j.actatropica.2025.107628_bib0028) 2021; 17
Khan (10.1016/j.actatropica.2025.107628_bib0027) 2022; 84
Bao (10.1016/j.actatropica.2025.107628_bib0008) 2021; 82
Yaghoobi-Ershadi (10.1016/j.actatropica.2025.107628_bib0046) 1995; 59
Gers (10.1016/j.actatropica.2025.107628_bib52) 2000; 12
10.1016/j.actatropica.2025.107628_bib0045
Daszak (10.1016/j.actatropica.2025.107628_bib0010) 2001; 78
Patz (10.1016/j.actatropica.2025.107628_bib0037) 2000; 30
Hussain (10.1016/j.actatropica.2025.107628_bib0016) 2017; 10
Khan (10.1016/j.actatropica.2025.107628_bib0021) 2019; 32
Rashid (10.1016/j.actatropica.2025.107628_bib0039) 2021; 19
Arif (10.1016/j.actatropica.2025.107628_bib0003) 2022; 121
Luo (10.1016/j.actatropica.2025.107628_bib0033) 2021; 27
Khan (10.1016/j.actatropica.2025.107628_bib0024) 2018; 47
Khan (10.1016/j.actatropica.2025.107628_bib0026) 2024; 14
Rumelhart (10.1016/j.actatropica.2025.107628_bib51) 1986; 323
Hakem (10.1016/j.actatropica.2025.107628_bib0015) 2025; 264
Shabanpour (10.1016/j.actatropica.2025.107628_bib0040) 2022; 112
Zareen (10.1016/j.actatropica.2025.107628_bib0049) 2021; 19
Jabeen (10.1016/j.actatropica.2025.107628_bib54) 2022; 4
Lopes (10.1016/j.actatropica.2025.107628_bib0032) 2023; 237
Rahman (10.1016/j.actatropica.2025.107628_bib0038) 2022; 2
Nawaz (10.1016/j.actatropica.2025.107628_bib0034) 2020; 44
Sultan (10.1016/j.actatropica.2025.107628_bib0041) 2013; 10
Ullah (10.1016/j.actatropica.2025.107628_bib0043) 2023; 8
Hussain (10.1016/j.actatropica.2025.107628_bib0017) 2017; 172
Hussain (10.1016/j.actatropica.2025.107628_bib0018) 2018; 24
Guma (10.1016/j.actatropica.2025.107628_bib0014) 2023
Khan (10.1016/j.actatropica.2025.107628_bib0025) 2023; 86
Li (10.1016/j.actatropica.2025.107628_bib0031) 2023; 205
Kumar (10.1016/j.actatropica.2025.107628_bib0030) 2024; 237
Bishop (10.1016/j.actatropica.2025.107628_bib50) 1995
Parvizi (10.1016/j.actatropica.2025.107628_bib0036) 2005; 93
Nkiruka (10.1016/j.actatropica.2025.107628_bib0035) 2021; 22
Bamorovat (10.1016/j.actatropica.2025.107628_bib0007) 2024; 913
Zahraei-Ramazani (10.1016/j.actatropica.2025.107628_bib0048) 2017; 54
Iradukunda (10.1016/j.actatropica.2025.107628_bib0019) 2019
Alzahrani (10.1016/j.actatropica.2025.107628_bib0002) 2024; 9
Guma (10.1016/j.actatropica.2025.107628_bib0013) 2024; 18
Vadmal (10.1016/j.actatropica.2025.107628_bib0044) 2023; 17
Es-Sette (10.1016/j.actatropica.2025.107628_bib0012) 2014; 51
10.1016/j.actatropica.2025.107628_bib53
Khan (10.1016/j.actatropica.2025.107628_bib0023) 2019; 199
References_xml – volume: 199
  year: 2019
  ident: bib0023
  article-title: Habitat characterization of sand fly vectors of leishmaniasis in Khyber Pakhtunkhwa, Pakistan
  publication-title: Acta Trop.
– volume: 54
  start-page: 1525
  year: 2017
  end-page: 1530
  ident: bib0048
  article-title: Molecular identification of phlebotomus caucasicus and Phlebotomus mongolensis (Diptera: psychodidae) in a hyperendemic area of zoonotic cutaneous leishmaniasis in Iran
  publication-title: J. Med. Entomol.
– volume: 913
  year: 2024
  ident: bib0007
  article-title: A prospective longitudinal study on the elimination trend of rural cutaneous leishmaniasis in southeastern Iran: climate change, population displacement, and agricultural transition from 1991 to 2021
  publication-title: Sci. Total Environ.
– volume: 237
  year: 2024
  ident: bib0030
  article-title: Modeling climate change impacts on vector-borne disease using machine learning models: case study of Visceral leishmaniasis (Kala-azar) from Indian state of Bihar
  publication-title: Expert Syst. Appl.
– volume: 82
  start-page: 48
  year: 2021
  end-page: 59
  ident: bib0008
  article-title: Predicting the diagnosis of HIV and sexually transmitted infections among men who have sex with men using machine learning approaches
  publication-title: J. Infect.
– volume: 22
  year: 2021
  ident: bib0035
  article-title: Prediction of malaria incidence using climate variability and machine learning
  publication-title: Inform. Med. Unlocked
– volume: 14
  start-page: 234
  year: 2024
  end-page: 242
  ident: bib0026
  article-title: Dynamics of Malaria Incidence in Khyber Pakhtunkhwa, Pakistan: unveiling Rapid Growth Patterns and Forecasting Future Trends
  publication-title: J Epidemiol. Glob. Health
– volume: 118
  start-page: 273
  year: 2024
  end-page: 286
  ident: bib0042
  article-title: Epidemiological survey, molecular profiling and phylogenetic analysis of cutaneous leishmaniasis in Khyber Pakhtunkhwa, Pakistan
  publication-title: Trans. Royal Soc. Trop. Med. Hyg.
– year: 1995
  ident: bib50
  publication-title: Neural Networks for Pattern Recognition
– volume: 205
  start-page: 574
  year: 2023
  end-page: 582
  ident: bib0031
  article-title: Dynamic hybrid modeling of fuel ethanol fermentation process by integrating biomass concentration XGBoost model and kinetic parameter artificial neural network model into mechanism model
  publication-title: Renew. Energy
– volume: 10
  start-page: 718
  year: 2017
  end-page: 721
  ident: bib0016
  article-title: First report on molecular characterization of Leishmania species from cutaneous leishmaniasis patients in southern Khyber Pakhtunkhwa province of Pakistan
  publication-title: Asian Pac. J. Trop. Med.
– volume: 172
  start-page: 147
  year: 2017
  end-page: 155
  ident: bib0017
  article-title: Epidemic outbreak of anthroponotic cutaneous leishmaniasis in Kohat District, Khyber Pakhtunkhwa, Pakistan
  publication-title: Acta Trop.
– volume: 84
  start-page: 248
  year: 2022
  end-page: 288
  ident: bib0027
  article-title: Predicting COVID-19 incidence in Pakistan: it’s time to act now!
  publication-title: J. Infect.
– volume: 112
  year: 2022
  ident: bib0040
  article-title: Integration of machine learning algorithms and GIS-based approaches to cutaneous leishmaniasis prevalence risk mapping
  publication-title: Int/ J. Appl. Earth Obs. Geoinf.
– volume: 323
  start-page: 533
  year: 1986
  end-page: 536
  ident: bib51
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
– volume: 17
  year: 2023
  ident: bib0044
  article-title: Data-driven predictions of potential Leishmania vectors in the Americas
  publication-title: PLoS Negl. Trop. Dis.
– volume: 44
  year: 2025
  ident: bib0011
  article-title: Predicting leishmaniasis outbreaks in Brazil using machine learning models based on disease surveillance and meteorological data
  publication-title: Oper. Res. Health Care
– volume: 2
  year: 2022
  ident: bib0038
  article-title: Accuracy comparison of ARIMA and XGBoost forecasting models in predicting the incidence of COVID-19 in Bangladesh
  publication-title: PLOS Glob. Public Health
– volume: 30
  start-page: 1395
  year: 2000
  end-page: 1405
  ident: bib0037
  article-title: Effects of environmental change on emerging parasitic diseases
  publication-title: Int. J. Parasitol.
– volume: 4
  year: 2022
  ident: bib54
  article-title: Impact of climate change on the epidemiology of vector-borne diseases in Pakistan
  publication-title: Glob. Biosecurity
– volume: 18
  start-page: 125
  year: 2024
  end-page: 132
  ident: bib0013
  article-title: Comparative analysis of time series prediction models for visceral leishmaniasis: based on SARIMA and LSTM
  publication-title: Appl. Math. Inf. Sci.
– volume: 8
  start-page: 128
  year: 2023
  ident: bib0043
  article-title: Distribution and Risk of Cutaneous Leishmaniasis in Khyber Pakhtunkhwa, Pakistan
  publication-title: Trop. Med. Infect. Dis.
– volume: 86
  start-page: 256
  year: 2023
  end-page: 308
  ident: bib0025
  article-title: Predicting monkeypox incidence: fear is not over!
  publication-title: J. Infect.
– volume: 237
  year: 2023
  ident: bib0032
  article-title: Epidemiological profile, spatial patterns and priority areas for surveillance and control of leishmaniasis in Brazilian border strip, 2009–2017
  publication-title: Acta Trop.
– volume: 150
  start-page: 129
  year: 2023
  end-page: 136
  ident: bib0047
  article-title: Revisiting epidemiology of leishmaniasis in central Asia: lessons learnt
  publication-title: Parasitology
– reference: WHO, 2023. Leishmaniasis.
– start-page: 1
  year: 2019
  end-page: 7
  ident: bib0019
  article-title: Malaria Disease Prediction Based on Machine Learning
  publication-title: 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP)
– volume: 29
  start-page: 1
  year: 2012
  end-page: 8
  ident: bib0006
  article-title: First molecular detection of Leishmania major within naturally infected Phlebotomus salehi from a zoonotic cutaneous leishmaniasis focus in southern Iran
  publication-title: Trop. Biomed.
– volume: 12
  start-page: 2451
  year: 2000
  end-page: 2471
  ident: bib52
  article-title: Learning to forget: continual prediction with LSTM
  publication-title: Neural Comput.
– start-page: 1
  year: 2023
  end-page: 6
  ident: bib0014
  article-title: Prediction of Visceral Leishmaniasis Incidences Utilizing Machine Learning Techniques
  publication-title: 2023 2nd International Engineering Conference on Electrical, Energy, and Artificial Intelligence (EICEEAI)
– volume: 93
  start-page: 75
  year: 2005
  end-page: 83
  ident: bib0036
  article-title: First detection of Leishmania major in peridomestic Phlebotomus papatasi from Isfahan province, Iran: comparison of nested PCR of nuclear ITS ribosomal DNA and semi-nested PCR of minicircle kinetoplast DNA
  publication-title: Acta Trop.
– reference: Chen, T., Guestrin, C., 2016. XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794.
– volume: 10
  start-page: 9908
  year: 2013
  end-page: 9910
  ident: bib0041
  article-title: Cutaneous leishmaniasis in Karak, Pakistan: report of an outbreak and comparison of diagnostic techniques
  publication-title: Afr. J. Biotechnol.
– volume: 44
  start-page: 725
  year: 2020
  end-page: 729
  ident: bib0034
  article-title: Epidemiological features of cutaneous leishmaniasis endemic in hilly areas of district Karak, Khyber-Pakhtunkhwa province of Pakistan
  publication-title: J. Parasit. Dis.: Official Organ Indian Soc. Parasitol.
– volume: 32
  year: 2019
  ident: bib0021
  article-title: Leishmaniasis in Pakistan: a call for action
  publication-title: Travel Med. Infect. Dis.
– volume: 264
  year: 2025
  ident: bib0015
  article-title: Incidence and prediction of cutaneous leishmaniasis cases and its related factors in an endemic area of Southeast Morocco: time series analysis
  publication-title: Acta Trop.
– volume: 80
  start-page: 578
  year: 2020
  end-page: 606
  ident: bib0009
  article-title: Leishmania infection in psoriasis
  publication-title: J. Infect.
– volume: 9
  year: 2024
  ident: bib0002
  article-title: Improving seasonal influenza forecasting using time series machine learning techniques
  publication-title: J. Inf. Syst. Eng. Manag.
– volume: 84
  start-page: e6
  year: 2022
  end-page: e8
  ident: bib0005
  article-title: Predicting COVID-19 incidence in war-torn Afghanistan: a timely response is required!
  publication-title: J. Infect.
– volume: 19
  start-page: 28
  year: 2021
  end-page: 34
  ident: bib0039
  article-title: Distribution of cutaneous leishmaniasis by sex, age groups and residence in year 2020 in cutaneous leishmaniasis population of district d.i.khan, Pakistan
  publication-title: Gomal J. Med. Sci.
– volume: 24
  start-page: 159
  year: 2018
  end-page: 161
  ident: bib0018
  article-title: Epidemiology of Cutaneous Leishmaniasis Outbreak, Waziristan, Pakistan
  publication-title: Emerg. Infect. Dis.
– reference: .
– volume: 47
  start-page: 1961
  year: 2018
  end-page: 1962
  ident: bib0024
  article-title: Predicting Malaria Incidence in Northern and Northwestern, Pakistan
  publication-title: Iran. J. Public Health
– volume: 121
  start-page: 991
  year: 2022
  end-page: 998
  ident: bib0003
  article-title: Positivity, diagnosis and treatment follow-up of cutaneous leishmaniasis in war-affected areas of Bajaur, Pakistan
  publication-title: Parasitol. Res.
– volume: 78
  start-page: 103
  year: 2001
  end-page: 116
  ident: bib0010
  article-title: Anthropogenic environmental change and the emergence of infectious diseases in wildlife
  publication-title: Acta Trop.
– volume: 51
  start-page: 86
  year: 2014
  end-page: 90
  ident: bib0012
  article-title: Phlebotomus sergenti a common vector of Leishmania tropica and Toscana virus in Morocco
  publication-title: J. Vector Borne Dis.
– volume: 59
  start-page: 279
  year: 1995
  end-page: 282
  ident: bib0046
  article-title: Leishmania major MON-26 isolated from naturally infected Phlebotomus papatasi (Diptera: psychodidae) in Isfahan Province, Iran
  publication-title: Acta Trop.
– volume: 17
  start-page: 139
  year: 2021
  ident: bib0028
  article-title: Cystic echinococcosis: an emerging zoonosis in southern regions of Khyber Pakhtunkhwa, Pakistan
  publication-title: BMC Vet. Res.
– volume: 27
  year: 2021
  ident: bib0033
  article-title: Time series prediction of COVID-19 transmission in America using LSTM and XGBoost algorithms
  publication-title: Results. Phys.
– volume: 19
  start-page: 1023
  year: 2021
  end-page: 1028
  ident: bib0049
  article-title: Antiplasmodial potential of Eucalyptus obliqua leaf methanolic extract against Plasmodium vivax: an in vitro study
  publication-title: Open. Chem.
– volume: 237
  year: 2024
  ident: 10.1016/j.actatropica.2025.107628_bib0030
  article-title: Modeling climate change impacts on vector-borne disease using machine learning models: case study of Visceral leishmaniasis (Kala-azar) from Indian state of Bihar
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.121490
– volume: 118
  start-page: 273
  issue: 4
  year: 2024
  ident: 10.1016/j.actatropica.2025.107628_bib0042
  article-title: Epidemiological survey, molecular profiling and phylogenetic analysis of cutaneous leishmaniasis in Khyber Pakhtunkhwa, Pakistan
  publication-title: Trans. Royal Soc. Trop. Med. Hyg.
  doi: 10.1093/trstmh/trad086
– volume: 112
  year: 2022
  ident: 10.1016/j.actatropica.2025.107628_bib0040
  article-title: Integration of machine learning algorithms and GIS-based approaches to cutaneous leishmaniasis prevalence risk mapping
  publication-title: Int/ J. Appl. Earth Obs. Geoinf.
– volume: 59
  start-page: 279
  issue: 4
  year: 1995
  ident: 10.1016/j.actatropica.2025.107628_bib0046
  article-title: Leishmania major MON-26 isolated from naturally infected Phlebotomus papatasi (Diptera: psychodidae) in Isfahan Province, Iran
  publication-title: Acta Trop.
  doi: 10.1016/0001-706X(95)92834-3
– volume: 86
  start-page: 256
  issue: 3
  year: 2023
  ident: 10.1016/j.actatropica.2025.107628_bib0025
  article-title: Predicting monkeypox incidence: fear is not over!
  publication-title: J. Infect.
  doi: 10.1016/j.jinf.2022.12.021
– volume: 17
  issue: 2
  year: 2023
  ident: 10.1016/j.actatropica.2025.107628_bib0044
  article-title: Data-driven predictions of potential Leishmania vectors in the Americas
  publication-title: PLoS Negl. Trop. Dis.
  doi: 10.1371/journal.pntd.0010749
– volume: 30
  start-page: 1395
  issue: 12–13
  year: 2000
  ident: 10.1016/j.actatropica.2025.107628_bib0037
  article-title: Effects of environmental change on emerging parasitic diseases
  publication-title: Int. J. Parasitol.
  doi: 10.1016/S0020-7519(00)00141-7
– volume: 8
  start-page: 128
  issue: 2
  year: 2023
  ident: 10.1016/j.actatropica.2025.107628_bib0043
  article-title: Distribution and Risk of Cutaneous Leishmaniasis in Khyber Pakhtunkhwa, Pakistan
  publication-title: Trop. Med. Infect. Dis.
  doi: 10.3390/tropicalmed8020128
– volume: 93
  start-page: 75
  issue: 1
  year: 2005
  ident: 10.1016/j.actatropica.2025.107628_bib0036
  article-title: First detection of Leishmania major in peridomestic Phlebotomus papatasi from Isfahan province, Iran: comparison of nested PCR of nuclear ITS ribosomal DNA and semi-nested PCR of minicircle kinetoplast DNA
  publication-title: Acta Trop.
  doi: 10.1016/j.actatropica.2004.09.007
– volume: 323
  start-page: 533
  year: 1986
  ident: 10.1016/j.actatropica.2025.107628_bib51
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 4
  issue: 1
  year: 2022
  ident: 10.1016/j.actatropica.2025.107628_bib54
  article-title: Impact of climate change on the epidemiology of vector-borne diseases in Pakistan
  publication-title: Glob. Biosecurity
– volume: 54
  start-page: 1525
  issue: 6
  year: 2017
  ident: 10.1016/j.actatropica.2025.107628_bib0048
  article-title: Molecular identification of phlebotomus caucasicus and Phlebotomus mongolensis (Diptera: psychodidae) in a hyperendemic area of zoonotic cutaneous leishmaniasis in Iran
  publication-title: J. Med. Entomol.
  doi: 10.1093/jme/tjx130
– volume: 32
  year: 2019
  ident: 10.1016/j.actatropica.2025.107628_bib0021
  article-title: Leishmaniasis in Pakistan: a call for action
  publication-title: Travel Med. Infect. Dis.
  doi: 10.1016/j.tmaid.2019.101516
– start-page: 1
  year: 2019
  ident: 10.1016/j.actatropica.2025.107628_bib0019
  article-title: Malaria Disease Prediction Based on Machine Learning
– volume: 121
  start-page: 991
  issue: 3
  year: 2022
  ident: 10.1016/j.actatropica.2025.107628_bib0003
  article-title: Positivity, diagnosis and treatment follow-up of cutaneous leishmaniasis in war-affected areas of Bajaur, Pakistan
  publication-title: Parasitol. Res.
  doi: 10.1007/s00436-022-07438-2
– year: 1995
  ident: 10.1016/j.actatropica.2025.107628_bib50
– volume: 14
  start-page: 234
  issue: 1
  year: 2024
  ident: 10.1016/j.actatropica.2025.107628_bib0026
  article-title: Dynamics of Malaria Incidence in Khyber Pakhtunkhwa, Pakistan: unveiling Rapid Growth Patterns and Forecasting Future Trends
  publication-title: J Epidemiol. Glob. Health
  doi: 10.1007/s44197-024-00189-6
– volume: 80
  start-page: 578
  issue: 5
  year: 2020
  ident: 10.1016/j.actatropica.2025.107628_bib0009
  article-title: Leishmania infection in psoriasis
  publication-title: J. Infect.
  doi: 10.1016/j.jinf.2020.01.019
– volume: 78
  start-page: 103
  issue: 2
  year: 2001
  ident: 10.1016/j.actatropica.2025.107628_bib0010
  article-title: Anthropogenic environmental change and the emergence of infectious diseases in wildlife
  publication-title: Acta Trop.
  doi: 10.1016/S0001-706X(00)00179-0
– volume: 17
  start-page: 139
  issue: 1
  year: 2021
  ident: 10.1016/j.actatropica.2025.107628_bib0028
  article-title: Cystic echinococcosis: an emerging zoonosis in southern regions of Khyber Pakhtunkhwa, Pakistan
  publication-title: BMC Vet. Res.
  doi: 10.1186/s12917-021-02830-z
– start-page: 1
  year: 2023
  ident: 10.1016/j.actatropica.2025.107628_bib0014
  article-title: Prediction of Visceral Leishmaniasis Incidences Utilizing Machine Learning Techniques
– volume: 237
  year: 2023
  ident: 10.1016/j.actatropica.2025.107628_bib0032
  article-title: Epidemiological profile, spatial patterns and priority areas for surveillance and control of leishmaniasis in Brazilian border strip, 2009–2017
  publication-title: Acta Trop.
  doi: 10.1016/j.actatropica.2022.106704
– volume: 82
  start-page: 48
  issue: 1
  year: 2021
  ident: 10.1016/j.actatropica.2025.107628_bib0008
  article-title: Predicting the diagnosis of HIV and sexually transmitted infections among men who have sex with men using machine learning approaches
  publication-title: J. Infect.
  doi: 10.1016/j.jinf.2020.11.007
– volume: 2
  issue: 5
  year: 2022
  ident: 10.1016/j.actatropica.2025.107628_bib0038
  article-title: Accuracy comparison of ARIMA and XGBoost forecasting models in predicting the incidence of COVID-19 in Bangladesh
  publication-title: PLOS Glob. Public Health
  doi: 10.1371/journal.pgph.0000495
– volume: 19
  start-page: 28
  issue: 1
  year: 2021
  ident: 10.1016/j.actatropica.2025.107628_bib0039
  article-title: Distribution of cutaneous leishmaniasis by sex, age groups and residence in year 2020 in cutaneous leishmaniasis population of district d.i.khan, Pakistan
  publication-title: Gomal J. Med. Sci.
  doi: 10.46903/gjms/19.01.964
– volume: 205
  start-page: 574
  year: 2023
  ident: 10.1016/j.actatropica.2025.107628_bib0031
  article-title: Dynamic hybrid modeling of fuel ethanol fermentation process by integrating biomass concentration XGBoost model and kinetic parameter artificial neural network model into mechanism model
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2023.01.113
– volume: 19
  start-page: 1023
  issue: 1
  year: 2021
  ident: 10.1016/j.actatropica.2025.107628_bib0049
  article-title: Antiplasmodial potential of Eucalyptus obliqua leaf methanolic extract against Plasmodium vivax: an in vitro study
  publication-title: Open. Chem.
  doi: 10.1515/chem-2021-0091
– ident: 10.1016/j.actatropica.2025.107628_bib0045
– volume: 22
  year: 2021
  ident: 10.1016/j.actatropica.2025.107628_bib0035
  article-title: Prediction of malaria incidence using climate variability and machine learning
  publication-title: Inform. Med. Unlocked
  doi: 10.1016/j.imu.2020.100508
– volume: 29
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.actatropica.2025.107628_bib0006
  article-title: First molecular detection of Leishmania major within naturally infected Phlebotomus salehi from a zoonotic cutaneous leishmaniasis focus in southern Iran
  publication-title: Trop. Biomed.
– volume: 24
  start-page: 159
  issue: 1
  year: 2018
  ident: 10.1016/j.actatropica.2025.107628_bib0018
  article-title: Epidemiology of Cutaneous Leishmaniasis Outbreak, Waziristan, Pakistan
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid2401.170358
– volume: 9
  issue: 4
  year: 2024
  ident: 10.1016/j.actatropica.2025.107628_bib0002
  article-title: Improving seasonal influenza forecasting using time series machine learning techniques
  publication-title: J. Inf. Syst. Eng. Manag.
– volume: 47
  start-page: 1961
  issue: 12
  year: 2018
  ident: 10.1016/j.actatropica.2025.107628_bib0024
  article-title: Predicting Malaria Incidence in Northern and Northwestern, Pakistan
  publication-title: Iran. J. Public Health
– volume: 44
  start-page: 725
  issue: 4
  year: 2020
  ident: 10.1016/j.actatropica.2025.107628_bib0034
  article-title: Epidemiological features of cutaneous leishmaniasis endemic in hilly areas of district Karak, Khyber-Pakhtunkhwa province of Pakistan
  publication-title: J. Parasit. Dis.: Official Organ Indian Soc. Parasitol.
  doi: 10.1007/s12639-020-01250-4
– volume: 84
  start-page: e6
  issue: 1
  year: 2022
  ident: 10.1016/j.actatropica.2025.107628_bib0005
  article-title: Predicting COVID-19 incidence in war-torn Afghanistan: a timely response is required!
  publication-title: J. Infect.
  doi: 10.1016/j.jinf.2021.09.004
– volume: 913
  year: 2024
  ident: 10.1016/j.actatropica.2025.107628_bib0007
  article-title: A prospective longitudinal study on the elimination trend of rural cutaneous leishmaniasis in southeastern Iran: climate change, population displacement, and agricultural transition from 1991 to 2021
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2023.169684
– volume: 51
  start-page: 86
  issue: 2
  year: 2014
  ident: 10.1016/j.actatropica.2025.107628_bib0012
  article-title: Phlebotomus sergenti a common vector of Leishmania tropica and Toscana virus in Morocco
  publication-title: J. Vector Borne Dis.
  doi: 10.4103/0972-9062.134785
– volume: 10
  start-page: 718
  issue: 7
  year: 2017
  ident: 10.1016/j.actatropica.2025.107628_bib0016
  article-title: First report on molecular characterization of Leishmania species from cutaneous leishmaniasis patients in southern Khyber Pakhtunkhwa province of Pakistan
  publication-title: Asian Pac. J. Trop. Med.
  doi: 10.1016/j.apjtm.2017.07.015
– ident: 10.1016/j.actatropica.2025.107628_bib53
  doi: 10.1145/2939672.2939785
– volume: 199
  year: 2019
  ident: 10.1016/j.actatropica.2025.107628_bib0023
  article-title: Habitat characterization of sand fly vectors of leishmaniasis in Khyber Pakhtunkhwa, Pakistan
  publication-title: Acta Trop.
  doi: 10.1016/j.actatropica.2019.105147
– volume: 18
  start-page: 125
  issue: 1
  year: 2024
  ident: 10.1016/j.actatropica.2025.107628_bib0013
  article-title: Comparative analysis of time series prediction models for visceral leishmaniasis: based on SARIMA and LSTM
  publication-title: Appl. Math. Inf. Sci.
  doi: 10.18576/amis/180113
– volume: 12
  start-page: 2451
  year: 2000
  ident: 10.1016/j.actatropica.2025.107628_bib52
  article-title: Learning to forget: continual prediction with LSTM
  publication-title: Neural Comput.
  doi: 10.1162/089976600300015015
– volume: 150
  start-page: 129
  issue: 2
  year: 2023
  ident: 10.1016/j.actatropica.2025.107628_bib0047
  article-title: Revisiting epidemiology of leishmaniasis in central Asia: lessons learnt
  publication-title: Parasitology
  doi: 10.1017/S0031182022001640
– volume: 84
  start-page: 248
  issue: 2
  year: 2022
  ident: 10.1016/j.actatropica.2025.107628_bib0027
  article-title: Predicting COVID-19 incidence in Pakistan: it’s time to act now!
  publication-title: J. Infect.
  doi: 10.1016/j.jinf.2021.08.011
– volume: 172
  start-page: 147
  year: 2017
  ident: 10.1016/j.actatropica.2025.107628_bib0017
  article-title: Epidemic outbreak of anthroponotic cutaneous leishmaniasis in Kohat District, Khyber Pakhtunkhwa, Pakistan
  publication-title: Acta Trop.
  doi: 10.1016/j.actatropica.2017.04.035
– volume: 10
  start-page: 9908
  issue: 48
  year: 2013
  ident: 10.1016/j.actatropica.2025.107628_bib0041
  article-title: Cutaneous leishmaniasis in Karak, Pakistan: report of an outbreak and comparison of diagnostic techniques
  publication-title: Afr. J. Biotechnol.
  doi: 10.5897/AJB10.1987
– volume: 44
  year: 2025
  ident: 10.1016/j.actatropica.2025.107628_bib0011
  article-title: Predicting leishmaniasis outbreaks in Brazil using machine learning models based on disease surveillance and meteorological data
  publication-title: Oper. Res. Health Care
– volume: 27
  year: 2021
  ident: 10.1016/j.actatropica.2025.107628_bib0033
  article-title: Time series prediction of COVID-19 transmission in America using LSTM and XGBoost algorithms
  publication-title: Results. Phys.
  doi: 10.1016/j.rinp.2021.104462
– volume: 264
  year: 2025
  ident: 10.1016/j.actatropica.2025.107628_bib0015
  article-title: Incidence and prediction of cutaneous leishmaniasis cases and its related factors in an endemic area of Southeast Morocco: time series analysis
  publication-title: Acta Trop.
  doi: 10.1016/j.actatropica.2025.107579
SSID ssj0012752
Score 2.444285
Snippet •A hybrid ANN-XGBoost model was developed to predict leishmaniasis incidence in four high-endemic districts of KP, Pakistan.•The model outperformed traditional...
Addressing leishmaniasis infection remains a substantial challenge in KP-Pakistan due to the increased infection prevalence. Understanding its spreading tool...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 107628
SubjectTerms Boosting Machine Learning Algorithms
Forecasting - methods
Humans
Incidence
Infection
Khyber pakhtunkhwa
Leishmaniasis
Leishmaniasis - epidemiology
Models, Statistical
Pakistan
Pakistan - epidemiology
Prediction
Prevalence
Title Integrating AI for infectious disease prediction: A hybrid ANN-XGBoost model for leishmaniasis in Pakistan
URI https://dx.doi.org/10.1016/j.actatropica.2025.107628
https://www.ncbi.nlm.nih.gov/pubmed/40280350
https://www.proquest.com/docview/3195764516
Volume 266
WOSCitedRecordID wos001493828600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6254
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012752
  issn: 0001-706X
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELa6Dk28IDZglMHkSTyAqkxpY8cx4iWgAQVWgahQ3yLHSZRWbVq16bT9DfzTnGPnx0AVBYmXKIp6rtP7er6zv7tD6DknoScEkVYUE8ciLOaWsBNuUZJI7khAUJH1_v0zGw698Zh_abV-lLkwVzOWZd71NV_-V1XDM1C2Sp39C3VXg8IDuAelwxXUDtedFD8wBSCK_Y5BQSMsGVebdXkgo2oDRBNZMjv8bnqjUre6_nBojd-_WSzWuW6SU8jP4sk6VYUyhCpfMslKvzNrura-zEU3Xy2WDfbPcLIpAFTnm33dQHyf6lbZKvWz-uinVG_FXm5SMZ-LqDuYr2rkfktFsf_jR4YSYjYq-rQmVFXGt2cxu2hcWBnfvts0nxCLujpX_DfLrjcZpoCyXJh3OVffcl7L3K6m_csqV3EPS1rbNGgMFaihAj3UHtrvM8q9Ntr3Bxfjj9WhFDzVxefNexygs5ouuGVe29ydbeFM4daM7qN7Jh7BvsbRIWrF2RE6uDSMiyN0aIz_Gr8wFcpfPkDTBsawP8CAEVxjDBuM4Rpjr7CPNcJwA2G4QFghfQthMBYuEfYQjd5djN5-sEzTDksSx85VZkiPCsdVnnWPqb4uCYsSldvnhILRiEb9UHIvJuCJEpvFiU1CsCMQtgrihtx5hNrZIosfI0wpZQmXbiglRP1wS6MkSXqudHkSwbLYQV750wbSFLRXfVVmwR9V3EH9SnSpq7rsIvS61F9g3FPtdgaA0V3Ez0qdB2DC1bmcyGLQSgCrIET9qmN2Bx1rMFSzIor64FD7yb_M-ATdrf-IT1E7X23iZ-iOvMon69Up2mNj79SA_Cf3acxM
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+AI+for+infectious+disease+prediction%3A+A+hybrid+ANN-XGBoost+model+for+leishmaniasis+in+Pakistan&rft.jtitle=Acta+tropica&rft.au=Niu%2C+Ben&rft.au=Qureshi%2C+Humera&rft.au=Khan%2C+Muhammad+Imran&rft.au=Shah%2C+Adil&rft.date=2025-06-01&rft.issn=0001-706X&rft.volume=266&rft.spage=107628&rft_id=info:doi/10.1016%2Fj.actatropica.2025.107628&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_actatropica_2025_107628
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-706X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-706X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-706X&client=summon