GOG-MBSHO: multi-strategy fusion binary sea-horse optimizer with Gaussian transfer function for feature selection of cancer gene expression data
Cancer gene expression data has the characteristics of high-dimensional, multi-text and multi-classification. The problem of cancer subtype diagnosis can be solved by selecting the most representative and predictive genes from a large number of gene expression data. Feature selection technology can...
Uloženo v:
| Vydáno v: | The Artificial intelligence review Ročník 57; číslo 12; s. 347 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Dordrecht
Springer Netherlands
01.12.2024
Springer Springer Nature B.V |
| Témata: | |
| ISSN: | 1573-7462, 0269-2821, 1573-7462 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Cancer gene expression data has the characteristics of high-dimensional, multi-text and multi-classification. The problem of cancer subtype diagnosis can be solved by selecting the most representative and predictive genes from a large number of gene expression data. Feature selection technology can effectively reduce the dimension of data, which helps analyze the information on cancer gene expression data. A multi-strategy fusion binary sea-horse optimizer based on Gaussian transfer function (GOG-MBSHO) is proposed to solve the feature selection problem of cancer gene expression data. Firstly, the multi-strategy includes golden sine strategy, hippo escape strategy and multiple inertia weight strategies. The sea-horse optimizer with the golden sine strategy does not disrupt the structure of the original algorithm. Embedding the golden sine strategy within the spiral motion of the sea-horse optimizer enhances the movement of the algorithm and improves its global exploration and local exploitation capabilities. The hippo escape strategy is introduced for random selection, which avoids the algorithm from falling into local optima, increases the search diversity, and improves the optimization accuracy of the algorithm. The advantage of multiple inertial weight strategies is that dynamic exploitation and exploration can be carried out to accelerate the convergence speed and improve the performance of the algorithm. Then, the effectiveness of multi-strategy fusion was demonstrated by 15 UCI datasets. The simulation results show that the proposed Gaussian transfer function is better than the commonly used S-type and V-type transfer functions, which can improve the classification accuracy, effectively reduce the number of features, and obtain better fitness value. Finally, comparing with other binary swarm intelligent optimization algorithms on 15 cancer gene expression datasets, it is proved that the proposed GOG1-MBSHO has great advantages in the feature selection of cancer gene expression data. |
|---|---|
| AbstractList | Cancer gene expression data has the characteristics of high-dimensional, multi-text and multi-classification. The problem of cancer subtype diagnosis can be solved by selecting the most representative and predictive genes from a large number of gene expression data. Feature selection technology can effectively reduce the dimension of data, which helps analyze the information on cancer gene expression data. A multi-strategy fusion binary sea-horse optimizer based on Gaussian transfer function (GOG-MBSHO) is proposed to solve the feature selection problem of cancer gene expression data. Firstly, the multi-strategy includes golden sine strategy, hippo escape strategy and multiple inertia weight strategies. The sea-horse optimizer with the golden sine strategy does not disrupt the structure of the original algorithm. Embedding the golden sine strategy within the spiral motion of the sea-horse optimizer enhances the movement of the algorithm and improves its global exploration and local exploitation capabilities. The hippo escape strategy is introduced for random selection, which avoids the algorithm from falling into local optima, increases the search diversity, and improves the optimization accuracy of the algorithm. The advantage of multiple inertial weight strategies is that dynamic exploitation and exploration can be carried out to accelerate the convergence speed and improve the performance of the algorithm. Then, the effectiveness of multi-strategy fusion was demonstrated by 15 UCI datasets. The simulation results show that the proposed Gaussian transfer function is better than the commonly used S-type and V-type transfer functions, which can improve the classification accuracy, effectively reduce the number of features, and obtain better fitness value. Finally, comparing with other binary swarm intelligent optimization algorithms on 15 cancer gene expression datasets, it is proved that the proposed GOG1-MBSHO has great advantages in the feature selection of cancer gene expression data. |
| ArticleNumber | 347 |
| Audience | Academic |
| Author | Wang, Jie-Sheng Song, Yu-Wei Qi, Yu-Liang Song, Hao-Ming Ma, Xin-Ru Wang, Yu-Cai |
| Author_xml | – sequence: 1 givenname: Yu-Cai surname: Wang fullname: Wang, Yu-Cai organization: School of Electronic and Information Engineering, University of Science and Technology Liaoning – sequence: 2 givenname: Hao-Ming surname: Song fullname: Song, Hao-Ming organization: School of Electronic and Information Engineering, University of Science and Technology Liaoning – sequence: 3 givenname: Jie-Sheng surname: Wang fullname: Wang, Jie-Sheng email: wang_jiesheng@126.com organization: School of Electronic and Information Engineering, University of Science and Technology Liaoning – sequence: 4 givenname: Yu-Wei surname: Song fullname: Song, Yu-Wei organization: School of Electronic and Information Engineering, University of Science and Technology Liaoning – sequence: 5 givenname: Yu-Liang surname: Qi fullname: Qi, Yu-Liang organization: School of Electronic and Information Engineering, University of Science and Technology Liaoning – sequence: 6 givenname: Xin-Ru surname: Ma fullname: Ma, Xin-Ru organization: School of Electronic and Information Engineering, University of Science and Technology Liaoning |
| BookMark | eNp9kc9u1DAQxiNUJNrCC3CyxNnF_7LOcisVbJFa7QE4W44z3rpK7MV2BOUpeGRmG6QWhCof7Pn0_WY0_k6ao5giNM1rzs44Y_pt4UytBGVCUc7WraLts-aYt1pSjfrRo_eL5qSUW8ZYK5Q8bn5ttht6_f7z5fYdmeaxBlpqthV2d8TPJaRI-hBtviMFLL1JuQBJ-xqm8BMy-R7qDdnYuZRgI0EuFo-yn6OrB9QnLMDWOQPyIyxq8sTZ6NC4gwgEfuwzlPtRg632ZfPc27HAqz_3afP144cvF5f0arv5dHF-RZ2SrFLJtRpap0XnrBeS9VqLda-F08DWHfeK9aLtVt5pZTslFHgJXT8MWNhhLVbytHmz9N3n9G2GUs1tmnPEkUZywRXjndAPrp0dwYToE27pplCcOe_QtGoZV-g6-48LzwBTcJiUD6j_BXQL4HIqJYM3LlR7-B0Ew2g4M4dYzRKrwVjNfaymRVT8g-5zmDChpyG5QAXNcQf5YdknqN-8jLd0 |
| CitedBy_id | crossref_primary_10_1007_s11227_024_06714_5 crossref_primary_10_1016_j_eij_2025_100639 crossref_primary_10_1186_s40537_025_01105_w crossref_primary_10_1007_s10586_025_05367_0 crossref_primary_10_1038_s41598_025_91829_9 crossref_primary_10_1007_s10586_025_05319_8 crossref_primary_10_1016_j_suscom_2025_101201 crossref_primary_10_1007_s10462_025_11319_2 |
| Cites_doi | 10.1080/0952813X.2021.1960639 10.1016/j.asoc.2016.12.010 10.1007/978-3-319-95162-1_30 10.1007/s00521-023-09236-y 10.1093/bioinformatics/btx167 10.1007/s12530-024-09580-x 10.21203/rs.3.rs-3962990/v1 10.1016/j.asoc.2017.11.006 10.1016/j.rser.2018.04.008 10.3390/s22030855 10.1016/j.knosys.2022.109446 10.1109/ICTAS.2018.8368770 10.1007/s10586-024-04368-9 10.1007/s10462-023-10675-1 10.1016/j.advengsoft.2016.01.008 10.4316/AECE.2017.02010 10.1007/s10462-022-10343-w 10.1016/j.eswa.2022.116887 10.1016/j.knosys.2018.08.003 10.1007/s00521-014-1743-5 10.1061/(ASCE)CF.1943-5509.0001753 10.1007/s10586-024-04364-z 10.1016/j.eswa.2020.113338 10.1016/j.eswa.2023.119527 10.1016/j.future.2020.03.055 10.1007/s00500-018-3102-4 10.1038/s41598-023-50910-x 10.1016/j.swevo.2020.100663 10.1007/s12559-021-09933-7 10.1016/j.swevo.2012.09.002 10.1016/j.advengsoft.2017.07.002 10.1007/s13278-020-00658-3 10.1007/s44230-023-00048-w 10.1145/3102304.3102325 10.1016/j.cma.2020.113609 10.1038/s41598-024-54910-3 10.1016/j.ins.2023.119638 10.1016/j.ins.2020.05.017 10.1109/IDAACS53288.2021.9660979 10.1016/j.engappai.2023.106207 10.1016/j.energy.2023.129583 10.1109/JAS.2019.1911447 10.3390/app14125207 10.1007/s10915-022-01955-z 10.1016/j.eswa.2023.121582 10.1007/s10462-019-09750-3 10.1016/j.knosys.2021.107625 10.1016/j.plrev.2005.10.001 10.1016/j.asoc.2021.107302 10.1016/j.future.2019.02.028 10.1016/j.knosys.2015.03.009 10.1016/j.artmed.2016.07.004 10.1016/j.compbiomed.2019.103375 10.1016/j.engappai.2021.104210 10.1016/j.procs.2015.04.060 10.18196/jrc.v4i1.16445 10.1007/s00521-022-07530-9 10.1007/s00500-019-04203-z 10.1109/ICNN.1995.488968 10.1007/978-3-319-91253-0_50 10.1155/2021/9210050 10.1007/s10489-022-03994-3 10.1016/j.compstruc.2016.03.001 10.1016/j.asoc.2022.109869 10.1016/j.eswa.2022.118734 10.1109/TEVC.2004.826071 10.1016/j.aei.2022.101636 10.1007/978-3-030-12767-1_5 10.1007/978-981-10-7566-7_31 10.1109/ACCESS.2024.3362228 10.1007/s11831-022-09717-8 10.1093/bib/bbaa189 10.3390/app8091521 10.3390/math12030368 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 COPYRIGHT 2024 Springer Copyright Springer Nature B.V. Dec 2024 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: COPYRIGHT 2024 Springer – notice: Copyright Springer Nature B.V. Dec 2024 |
| DBID | C6C AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ALSLI ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU CNYFK DWQXO E3H F2A FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M1O P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PRQQA PSYQQ Q9U |
| DOI | 10.1007/s10462-024-10954-5 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One Community College Library & Information Science Collection ProQuest Central Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Library Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Social Sciences ProQuest One Psychology New ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest One Psychology Computer Science Database ProQuest Central Student Library and Information Science Abstracts (LISA) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Library & Information Science Collection ProQuest Central (New) Advanced Technologies & Aerospace Collection Business Premium Collection Social Science Premium Collection ABI/INFORM Global ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Library Science ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ProQuest One Social Sciences ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7462 |
| ExternalDocumentID | A814065014 10_1007_s10462_024_10954_5 |
| GrantInformation_xml | – fundername: Postgraduate Education Reform Project of Liaoning Province grantid: LNYJG2022137 – fundername: Fundamental Research Funds for the Liaoning Universities of Liaoning Province grantid: LJKZ0293 |
| GroupedDBID | -4Z -59 -5G -BR -EM -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 203 23N 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6J9 6NX 77K 7WY 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAJKR AAJSJ AAKKN AANZL AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABEEZ ABFTD ABFTV ABHLI ABHQN ABIVO ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACACY ACGFS ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACSNA ACULB ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEFQL AEGAL AEGNC AEJHL AEJRE AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGXO AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALSLI ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BENPR BGNMA C24 C6C CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EDO EIOEI ESBYG FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS HCIFZ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV LLZTM M1O M4Y MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P9O PF0 PT5 QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SAP SCO SDH SDM SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX VC2 W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~A9 ~EX 77I 8AO 8FE 8FG AAFWJ AASML AAYXX ABDBE ABFSG ABUWG ACSTC AEZWR AFFHD AFHIU AFKRA AHPBZ AHWEU AIXLP AYFIA AZQEC BEZIV BGLVJ BPHCQ CCPQU CITATION CNYFK DWQXO FRNLG GNUQQ ICD K6V K7- M0C MK~ P62 PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PRQQA PSYQQ Q2X AGGLG 3V. 7SC 7XB 8AL 8FD 8FK E3H F2A JQ2 L.- L7M L~C L~D M0N PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c430t-3174d5c728caf230b7729b72c7e0981f40b2586fc74a8424ef3e8bdda84ad9263 |
| IEDL.DBID | C24 |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001344520500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1573-7462 0269-2821 |
| IngestDate | Thu Nov 13 23:11:41 EST 2025 Wed Dec 10 10:30:37 EST 2025 Tue Dec 02 03:51:44 EST 2025 Sat Nov 29 02:43:29 EST 2025 Tue Nov 18 22:33:08 EST 2025 Fri Feb 21 02:40:39 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | Feature selection Gaussian transfer function Cancer gene expression Multi-strategy fusion Sea-horse optimizer |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c430t-3174d5c728caf230b7729b72c7e0981f40b2586fc74a8424ef3e8bdda84ad9263 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://link.springer.com/10.1007/s10462-024-10954-5 |
| PQID | 3121401827 |
| PQPubID | 36790 |
| ParticipantIDs | proquest_journals_3121401827 gale_infotracmisc_A814065014 gale_infotracacademiconefile_A814065014 crossref_citationtrail_10_1007_s10462_024_10954_5 crossref_primary_10_1007_s10462_024_10954_5 springer_journals_10_1007_s10462_024_10954_5 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | An International Science and Engineering Journal |
| PublicationTitle | The Artificial intelligence review |
| PublicationTitleAbbrev | Artif Intell Rev |
| PublicationYear | 2024 |
| Publisher | Springer Netherlands Springer Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer – name: Springer Nature B.V |
| References | PölsterlSConjetiSNavabNSurvival analysis for high-dimensional, heterogeneous medical data: exploring feature extraction as an alternative to feature selectionArtif Intell Med20167211110.1016/j.artmed.2016.07.004 Tanyildizi E, Demir G (2017) Golden sine algorithm: a novel math-inspired algorithm. Adv Electr Comput Eng 17(2):71 WangJKhisheMKavehMBinary chimp optimization algorithm (BChOA): a new binary meta-heuristic for solving optimization problemsCogn Comput2021131297131610.1007/s12559-021-09933-7 NssibiMManitaGChhabraAGene selection for high dimensional biological datasets using hybrid island binary artificial bee colony with chaos game optimizationArtif Intell Rev202457317410.1007/s10462-023-10675-1 LiSChenHWangMSlime mould algorithm: a new method for stochastic optimizationFuture Generation Comput Syst202011130032310.1016/j.future.2020.03.055 Msallam MM, Bin Idris SA (2024) Unsupervised text feature selection by binary fire hawk optimizer for text clustering. Cluster Comput 27:7721–7740 AlnowamiMRAbolabanFATahaEA wrapper-based feature selection approach to investigate potential biomarkers for early detection of breast cancerJ Radiation Res Appl Sci2022151104110 BrezočnikLFisterIJrPodgorelecVSwarm intelligence algorithms for feature selection: a reviewAppl Sci201889152110.3390/app8091521 Salcedo-SanzSCornejo-BuenoLPrietoLFeature selection in machine learning prediction systems for renewable energy applicationsRenew Sustain Energy Rev20189072874110.1016/j.rser.2018.04.008 AbualigahLDiabatAMirjaliliSThe arithmetic optimization algorithmComput Methods Appl Mech Eng2021376113609419929910.1016/j.cma.2020.113609 LiuLKhisheMMohammadiMOptimization of constraint engineering problems using robust universal learning chimp optimizationAdv Eng Inform20225310163610.1016/j.aei.2022.101636 MirjaliliSGandomiAHMirjaliliSZSalp swarm algorithm: a bio-inspired optimizer for engineering design problemsAdv Eng Softw201711416319110.1016/j.advengsoft.2017.07.002 ZhangMWangJSLiuYMulti-objective optimization algorithm based on clustering guided binary equilibrium optimizer and NSGA-III to solve high-dimensional feature selection problemInf Sci202364811963810.1016/j.ins.2023.119638 HasanienHMAlsalehITostado-VélizMHybrid particle swarm and sea horse optimization algorithm-based optimal reactive power dispatch of power systems comprising electric vehiclesEnergy202428612958310.1016/j.energy.2023.129583 TrojovskýPDehghaniMPelican optimization algorithm: a novel nature-inspired algorithm for engineering applicationsSensors202222385510.3390/s22030855 HanXLiDLiuPFeature selection by recursive binary gravitational search algorithm optimization for cancer classificationSoft Comput2020244407442510.1007/s00500-019-04203-z LiZQuSXuYEnhanced Sea Horse optimization algorithm for Hyperparameter optimization of Agricultural Image RecognitionMathematics202412336810.3390/math12030368 WangXHuHLiangYOn the mathematical models and applications of swarm intelligent optimization algorithmsArch Comput Methods Eng202229638153842448620110.1007/s11831-022-09717-8 KhisheMOroujiNMosaviMRMulti-objective chimp optimizer: an innovative algorithm for multi-objective problemsExpert Syst Appl202321111873410.1016/j.eswa.2022.118734 HossnyAHMitchellLLothianNFeature selection methods for event detection in Twitter: a text mining approachSocial Netw Anal Min20201011510.1007/s13278-020-00658-3 Ma BB, Fong S, Millham R (2018) Data stream mining in fog computing environment with feature selection using ensemble of swarm search algorithms[C]//2018 conference on information communications technology and society (ICTAS). IEEE, : 1–6 Kennedy J, Eberhart R (1995) Particle swarm optimization[C]//Proceedings of ICNN’95-international conference on neural networks. ieee, 4: 1942–1948 ThabtahFKamalovFHammoudSLeast loss: a simplified filter method for feature selectionInf Sci2020534115410209610.1016/j.ins.2020.05.017 AribowoWA novel improved sea-horse optimizer for tuning parameter power system stabilizerJ Rob Control (JRC)202341122210.18196/jrc.v4i1.16445 RemeseiroBBolon-CanedoVA review of feature selection methods in medical applicationsComput Biol Med201911210337510.1016/j.compbiomed.2019.103375 MafarjaMMirjaliliSWhale optimization approaches for wrapper feature selectionAppl Soft Comput20186244145310.1016/j.asoc.2017.11.006 WangBLiuLLiYRobust grey wolf optimizer for multimodal optimizations: a cross-dimensional coordination approachJ Sci Comput2022923110446272210.1007/s10915-022-01955-z Adam SP, Alexandropoulos SAN, Pardalos PM et al (2019) No free lunch theorem: a review. Approximation Optimization: Algorithms Complex Appl, : 57–82 AskrHAbdel-SalamMHassanienAECopula entropy-based golden jackal optimization algorithm for high-dimensional feature selection problemsExpert Syst Appl202423812158210.1016/j.eswa.2023.121582 MedjahedSASaadiTABenyettouAKernel-based learning and feature selection analysis for cancer diagnosisAppl Soft Comput201751394810.1016/j.asoc.2016.12.010 Ahrari A, Elsayed S, Sarker R et al (2022) Problem Definition and Evaluation Criteria for the CEC’2022 Competition on Dynamic Multimodal Optimization[C]//Proceedings of the IEEE World Congress on Computational Intelligence (IEEE WCCI 2022), Padua, Italy. : 18–23 SaffariAZahiriSHKhisheMFuzzy whale optimisation algorithm: a new hybrid approach for automatic sonar target recognitionJ Exp Theor Artif Intell202335230932510.1080/0952813X.2021.1960639 Houssein EH, Saad MR, Çelik E et al (2024) An enhanced sea-horse optimizer for solving global problems and cluster head selection in wireless sensor networks. Cluster Comput 27:7775–7802 Al-Eiadeh MR, Qaddoura R, Abdallah M (2024) Investigating the performance of a Novel modified binary black hole optimization algorithm for enhancing feature selection. Appl Sci 14(12):5207 KhisheMMosaviMRChimp optimization algorithmExpert Syst Appl202014911333810.1016/j.eswa.2020.113338 Spavieri G, Cavalca DL, Fernandes RAS et al (2018) An adaptive individual inertia weight based on best, worst and individual particle performances for the PSO algorithm[C]//International Conference on Artificial Intelligence and Soft Computing. Springer, Cham, : 536–547 EzugwuAEAgushakaJOAbualigahLPrairie dog optimization algorithmNeural Comput Appl20223422200172006510.1007/s00521-022-07530-9 SaremiSMirjaliliSLewisAHow important is a transfer function in discrete heuristic algorithmsNeural Comput Appl20152662564010.1007/s00521-014-1743-5 DongHBLiDJZhangXPParticle swarm optimization algorithm with dynamically adjusting inertia weightComput Sci201845298102 Umarani S, Balaji NA, Balakrishnan K et al (2024) Binary northern goshawk optimization for feature selection on micro array cancer datasets. Evol Syst 15:1551–1565 BeheshtiZBMPA-TVSinV: a binary marine predators algorithm using time-varying sine and V-shaped transfer functions for wrapper-based feature selectionKnowl Based Syst202225210944610.1016/j.knosys.2022.109446 AmiriMHMehrabi HashjinNMontazeriMHippopotamus optimization algorithm: a novel nature-inspired optimization algorithmSci Rep2024141503210.1038/s41598-024-54910-3 GongSPKhisheMMohammadiMNiching chimp optimization for constraint multimodal engineering optimization problemsExpert Syst Appl202219811688710.1016/j.eswa.2022.116887 MirjaliliSLewisAS-shaped versus V-shaped transfer functions for binary particle swarm optimizationSwarm Evol Comput2013911410.1016/j.swevo.2012.09.002 LiADXueBZhangMImproved binary particle swarm optimization for feature selection with new initialization and search space reduction strategiesAppl Soft Comput202110610730210.1016/j.asoc.2021.107302 LiXDWangJSLiuYClassification feature selection and dimensionality reduction based on logical binary sine-cosine function arithmetic optimization algorithmEgypt Inf J202426100472 LiuHZhouMCLiuQAn embedded feature selection method for imbalanced data classificationIEEE/CAA J Automatica Sinica20196370371510.1109/JAS.2019.1911447 BoQChengWKhisheMEvolving chimp optimization algorithm by weighted opposition-based technique and greedy search for multimodal engineering problemsAppl Soft Comput202313210986910.1016/j.asoc.2022.109869 MafarjaMAljarahIHeidariAABinary dragonfly optimization for feature selection using time-varying transfer functionsKnowl Based Syst201816118520410.1016/j.knosys.2018.08.003 AyecheFAltiAEfficient feature selection in high Dimensional Data based on enhanced binary chimp optimization algorithms and machine learningHuman-Centric Intell Syst20233455858710.1007/s44230-023-00048-w LiuHZhaoRFangHEntropy-based consensus clustering for patient stratificationBioinformatics201733172691269810.1093/bioinformatics/btx167 AskarzadehAA novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithmComput Struct201616911210.1016/j.compstruc.2016.03.001 AroraSSinghSButterfly optimization algorithm: a novel approach for global optimizationSoft Comput20192371573410.1007/s00500-018-3102-4 Abinash MJ, Vasudevan V (2018) A study on wrapper-based feature selection algorithm for leukemia dataset[C]//Intelligent Engineering Informatics: Proceedings of the 6th International Conference on FICTA. Springer Singapore, : 311–321 Chunning S, Jindong Z (2024) A Sound Source Location Method Based on Time Difference of Arrival with Improved Dung Beetle Optimizer[C]//Machine Learning and Intelligent Computing. PMLR, : 165–176 Abdulwahab HM, Ajitha S, Saif MAN et al (2024) MOBCSA: multi-objective binary cuckoo search algorithm for features selection in Bioinformatics. IEEE Access 12:21840–21867 HashimFAMostafaRRKhurmaRAA new approach for solving global optimization and engineering problems based on modified sea horse optimizerJ Comput Des Eng20241117398 HeidariAAMirjaliliSFarisHHarris hawks optimization: Algorithm and applicationsFuture Generation Comput Syst20199784987210.1016/j.future.2019.02.028 ZhaoZGHuangSWangWSimplified particle swarm optimization algorithm based on stochastic inertia weightAppl Res Comput2014312361391 AdegboyeORFedaAKOjekemiORDGS-SCSO: enhancing sa OR Adegboye (10954_CR74) 2024; 14 AE Ezugwu (10954_CR79) 2022; 34 S Li (10954_CR28) 2020; 111 S Mirjalili (10954_CR27) 2017; 114 B Shen (10954_CR32) 2023; 123 A Askarzadeh (10954_CR25) 2016; 169 AD Li (10954_CR16) 2021; 106 AA Heidari (10954_CR24) 2019; 97 C Blum (10954_CR80) 2005; 2 J Zhang (10954_CR1) 2021; 22 W Kaidi (10954_CR40) 2022; 235 10954_CR68 10954_CR65 S Mirjalili (10954_CR57) 2013; 9 10954_CR21 10954_CR20 A Saffari (10954_CR34) 2023; 35 10954_CR63 F Ayeche (10954_CR82) 2023; 3 A Ratnaweera (10954_CR66) 2004; 8 L Brezočnik (10954_CR17) 2018; 8 M Khishe (10954_CR30) 2020; 149 S Saremi (10954_CR70) 2015; 26 10954_CR62 10954_CR61 MR Alnowami (10954_CR8) 2022; 15 M Khishe (10954_CR33) 2023; 56 M Khishe (10954_CR36) 2023; 211 H Liu (10954_CR75) 2017; 33 M Mafarja (10954_CR14) 2018; 62 P Trojovský (10954_CR29) 2022; 22 M Mafarja (10954_CR71) 2018; 161 10954_CR78 ZG Zhao (10954_CR67) 2014; 31 MH Amiri (10954_CR22) 2024; 14 V Bolon-Canedo (10954_CR7) 2020; 53 HM Hasanien (10954_CR46) 2024; 286 AH Hossny (10954_CR4) 2020; 10 10954_CR73 S Pölsterl (10954_CR11) 2016; 72 K Chaudhari (10954_CR6) 2023; 219 FA Hashim (10954_CR44) 2024; 11 Z Li (10954_CR47) 2024; 12 A Wang (10954_CR72) 2015; 83 F Thabtah (10954_CR13) 2020; 534 S Salcedo-Sanz (10954_CR5) 2018; 90 X Han (10954_CR52) 2020; 24 S Mirjalili (10954_CR23) 2016; 95 XD Li (10954_CR60) 2024; 26 J Wang (10954_CR41) 2021; 13 S Zhao (10954_CR42) 2023; 53 W Aribowo (10954_CR43) 2023; 4 10954_CR81 H Askr (10954_CR64) 2024; 238 RK Singh (10954_CR10) 2015; 50 B Wang (10954_CR37) 2022; 92 10954_CR45 S Arora (10954_CR77) 2019; 23 SA Medjahed (10954_CR9) 2017; 51 HB Dong (10954_CR69) 2018; 45 H Lu (10954_CR3) 2022; 36 BH Nguyen (10954_CR12) 2020; 54 B Remeseiro (10954_CR2) 2019; 112 10954_CR49 10954_CR48 Q Bo (10954_CR35) 2023; 132 X Wang (10954_CR18) 2022; 29 L Qian (10954_CR31) 2024; 36 L Abualigah (10954_CR26) 2021; 376 SP Gong (10954_CR39) 2022; 198 M Zhang (10954_CR55) 2023; 648 L Liu (10954_CR38) 2022; 53 10954_CR56 10954_CR54 Z Beheshti (10954_CR76) 2022; 252 10954_CR51 M Nssibi (10954_CR50) 2024; 57 M Rostami (10954_CR19) 2021; 100 H Liu (10954_CR15) 2019; 6 10954_CR59 10954_CR58 |
| References_xml | – reference: HossnyAHMitchellLLothianNFeature selection methods for event detection in Twitter: a text mining approachSocial Netw Anal Min20201011510.1007/s13278-020-00658-3 – reference: SaffariAZahiriSHKhisheMFuzzy whale optimisation algorithm: a new hybrid approach for automatic sonar target recognitionJ Exp Theor Artif Intell202335230932510.1080/0952813X.2021.1960639 – reference: Wang J, Chen Y, Zou H et al (2024) Enhanced slime mould algorithm with backtracking search algorithm: global optimization and feature selection – reference: Abinash MJ, Vasudevan V (2018) A study on wrapper-based feature selection algorithm for leukemia dataset[C]//Intelligent Engineering Informatics: Proceedings of the 6th International Conference on FICTA. Springer Singapore, : 311–321 – reference: Msallam MM, Bin Idris SA (2024) Unsupervised text feature selection by binary fire hawk optimizer for text clustering. Cluster Comput 27:7721–7740 – reference: Salcedo-SanzSCornejo-BuenoLPrietoLFeature selection in machine learning prediction systems for renewable energy applicationsRenew Sustain Energy Rev20189072874110.1016/j.rser.2018.04.008 – reference: WangBLiuLLiYRobust grey wolf optimizer for multimodal optimizations: a cross-dimensional coordination approachJ Sci Comput2022923110446272210.1007/s10915-022-01955-z – reference: LiSChenHWangMSlime mould algorithm: a new method for stochastic optimizationFuture Generation Comput Syst202011130032310.1016/j.future.2020.03.055 – reference: RatnaweeraAHalgamugeSKWatsonHCSelf-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficientsIEEE Trans Evol Comput20048324025510.1109/TEVC.2004.826071 – reference: Mafarja M, Eleyan D, Abdullah S et al (2017) S-shaped vs. V-shaped transfer functions for ant lion optimization algorithm in feature selection problem[C]//Proceedings of the international conference on future networks and distributed systems. : 1–7 – reference: LiXDWangJSLiuYClassification feature selection and dimensionality reduction based on logical binary sine-cosine function arithmetic optimization algorithmEgypt Inf J202426100472 – reference: LiuHZhouMCLiuQAn embedded feature selection method for imbalanced data classificationIEEE/CAA J Automatica Sinica20196370371510.1109/JAS.2019.1911447 – reference: HeidariAAMirjaliliSFarisHHarris hawks optimization: Algorithm and applicationsFuture Generation Comput Syst20199784987210.1016/j.future.2019.02.028 – reference: MirjaliliSLewisAThe whale optimization algorithmAdv Eng Softw201695516710.1016/j.advengsoft.2016.01.008 – reference: HanXLiDLiuPFeature selection by recursive binary gravitational search algorithm optimization for cancer classificationSoft Comput2020244407442510.1007/s00500-019-04203-z – reference: Umarani S, Balaji NA, Balakrishnan K et al (2024) Binary northern goshawk optimization for feature selection on micro array cancer datasets. Evol Syst 15:1551–1565 – reference: WangXHuHLiangYOn the mathematical models and applications of swarm intelligent optimization algorithmsArch Comput Methods Eng202229638153842448620110.1007/s11831-022-09717-8 – reference: Houssein EH, Saad MR, Çelik E et al (2024) An enhanced sea-horse optimizer for solving global problems and cluster head selection in wireless sensor networks. Cluster Comput 27:7775–7802 – reference: LiZQuSXuYEnhanced Sea Horse optimization algorithm for Hyperparameter optimization of Agricultural Image RecognitionMathematics202412336810.3390/math12030368 – reference: NguyenBHXueBZhangMA survey on swarm intelligence approaches to feature selection in data miningSwarm Evol Comput20205410066310.1016/j.swevo.2020.100663 – reference: AdegboyeORFedaAKOjekemiORDGS-SCSO: enhancing sand cat swarm optimization with dynamic pinhole imaging and golden sine algorithm for improved numerical optimization performanceSci Rep2024141149110.1038/s41598-023-50910-x – reference: Bolon-CanedoVRemeseiroBFeature selection in image analysis: a surveyArtif Intell Rev20205342905293110.1007/s10462-019-09750-3 – reference: WangAAnNChenGAccelerating wrapper-based feature selection with K-nearest-neighborKnowl Based Syst201583819110.1016/j.knosys.2015.03.009 – reference: AribowoWA novel improved sea-horse optimizer for tuning parameter power system stabilizerJ Rob Control (JRC)202341122210.18196/jrc.v4i1.16445 – reference: ZhaoZGHuangSWangWSimplified particle swarm optimization algorithm based on stochastic inertia weightAppl Res Comput2014312361391 – reference: AmiriMHMehrabi HashjinNMontazeriMHippopotamus optimization algorithm: a novel nature-inspired optimization algorithmSci Rep2024141503210.1038/s41598-024-54910-3 – reference: TrojovskýPDehghaniMPelican optimization algorithm: a novel nature-inspired algorithm for engineering applicationsSensors202222385510.3390/s22030855 – reference: KhisheMMosaviMRChimp optimization algorithmExpert Syst Appl202014911333810.1016/j.eswa.2020.113338 – reference: LuHPengHXuZDA feature selection–based intelligent framework for predicting maximum depth of corroded pipeline defectsJ Perform Constr Facil20223650402204410.1061/(ASCE)CF.1943-5509.0001753 – reference: ShenBKhisheMMirjaliliSEvolving Marine predators Algorithm by dynamic foraging strategy for real-world engineering optimization problemsEng Appl Artif Intell202312310620710.1016/j.engappai.2023.106207 – reference: AskarzadehAA novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithmComput Struct201616911210.1016/j.compstruc.2016.03.001 – reference: SinghRKSivabalakrishnanMFeature selection of gene expression data for cancer classification: a reviewProcedia Comput Sci201550525710.1016/j.procs.2015.04.060 – reference: BeheshtiZBMPA-TVSinV: a binary marine predators algorithm using time-varying sine and V-shaped transfer functions for wrapper-based feature selectionKnowl Based Syst202225210944610.1016/j.knosys.2022.109446 – reference: Abdulwahab HM, Ajitha S, Saif MAN et al (2024) MOBCSA: multi-objective binary cuckoo search algorithm for features selection in Bioinformatics. IEEE Access 12:21840–21867 – reference: AbualigahLDiabatAMirjaliliSThe arithmetic optimization algorithmComput Methods Appl Mech Eng2021376113609419929910.1016/j.cma.2020.113609 – reference: BoQChengWKhisheMEvolving chimp optimization algorithm by weighted opposition-based technique and greedy search for multimodal engineering problemsAppl Soft Comput202313210986910.1016/j.asoc.2022.109869 – reference: ThabtahFKamalovFHammoudSLeast loss: a simplified filter method for feature selectionInf Sci2020534115410209610.1016/j.ins.2020.05.017 – reference: EzugwuAEAgushakaJOAbualigahLPrairie dog optimization algorithmNeural Comput Appl20223422200172006510.1007/s00521-022-07530-9 – reference: Spavieri G, Cavalca DL, Fernandes RAS et al (2018) An adaptive individual inertia weight based on best, worst and individual particle performances for the PSO algorithm[C]//International Conference on Artificial Intelligence and Soft Computing. Springer, Cham, : 536–547 – reference: Sawhney R, Mathur P, Shankar R (2018) A firefly algorithm based wrapper-penalty feature selection method for cancer diagnosis[C]//Computational Science and Its Applications–ICCSA. : 18th International Conference, Melbourne, VIC, Australia, July 2–5, 2018, Proceedings, Part I 18. Springer International Publishing, 2018: 438–449 – reference: Adam SP, Alexandropoulos SAN, Pardalos PM et al (2019) No free lunch theorem: a review. Approximation Optimization: Algorithms Complex Appl, : 57–82 – reference: ZhaoSZhangTMaSSea-horse optimizer: a novel nature-inspired meta-heuristic for global optimization problemsAppl Intell20235310118331186010.1007/s10489-022-03994-3 – reference: NssibiMManitaGChhabraAGene selection for high dimensional biological datasets using hybrid island binary artificial bee colony with chaos game optimizationArtif Intell Rev202457317410.1007/s10462-023-10675-1 – reference: RemeseiroBBolon-CanedoVA review of feature selection methods in medical applicationsComput Biol Med201911210337510.1016/j.compbiomed.2019.103375 – reference: AskrHAbdel-SalamMHassanienAECopula entropy-based golden jackal optimization algorithm for high-dimensional feature selection problemsExpert Syst Appl202423812158210.1016/j.eswa.2023.121582 – reference: RostamiMBerahmandKNasiriEReview of swarm intelligence-based feature selection methodsEng Appl Artif Intell202110010421010.1016/j.engappai.2021.104210 – reference: ZhangMWangJSLiuYMulti-objective optimization algorithm based on clustering guided binary equilibrium optimizer and NSGA-III to solve high-dimensional feature selection problemInf Sci202364811963810.1016/j.ins.2023.119638 – reference: HashimFAMostafaRRKhurmaRAA new approach for solving global optimization and engineering problems based on modified sea horse optimizerJ Comput Des Eng20241117398 – reference: ZhangJXuDHaoKFS–GBDT: identification multicancer-risk module via a feature selection algorithm by integrating Fisher score and GBDTBrief Bioinform2021223bbaa18910.1093/bib/bbaa189 – reference: MafarjaMAljarahIHeidariAABinary dragonfly optimization for feature selection using time-varying transfer functionsKnowl Based Syst201816118520410.1016/j.knosys.2018.08.003 – reference: Chunning S, Jindong Z (2024) A Sound Source Location Method Based on Time Difference of Arrival with Improved Dung Beetle Optimizer[C]//Machine Learning and Intelligent Computing. PMLR, : 165–176 – reference: AroraSSinghSButterfly optimization algorithm: a novel approach for global optimizationSoft Comput20192371573410.1007/s00500-018-3102-4 – reference: KhisheMGreedy opposition-based learning for chimp optimization algorithmArtif Intell Rev20235687633766310.1007/s10462-022-10343-w – reference: Ma BB, Fong S, Millham R (2018) Data stream mining in fog computing environment with feature selection using ensemble of swarm search algorithms[C]//2018 conference on information communications technology and society (ICTAS). IEEE, : 1–6 – reference: MedjahedSASaadiTABenyettouAKernel-based learning and feature selection analysis for cancer diagnosisAppl Soft Comput201751394810.1016/j.asoc.2016.12.010 – reference: LiADXueBZhangMImproved binary particle swarm optimization for feature selection with new initialization and search space reduction strategiesAppl Soft Comput202110610730210.1016/j.asoc.2021.107302 – reference: MafarjaMMirjaliliSWhale optimization approaches for wrapper feature selectionAppl Soft Comput20186244145310.1016/j.asoc.2017.11.006 – reference: BlumCAnt colony optimization: introduction and recent trendsPhys Life Rev20052435337310.1016/j.plrev.2005.10.001 – reference: QianLKhisheMHuangYSEB-ChOA: an improved chimp optimization algorithm using spiral exploitation behaviorNeural Comput Appl20243694763478610.1007/s00521-023-09236-y – reference: HasanienHMAlsalehITostado-VélizMHybrid particle swarm and sea horse optimization algorithm-based optimal reactive power dispatch of power systems comprising electric vehiclesEnergy202428612958310.1016/j.energy.2023.129583 – reference: BrezočnikLFisterIJrPodgorelecVSwarm intelligence algorithms for feature selection: a reviewAppl Sci201889152110.3390/app8091521 – reference: AlnowamiMRAbolabanFATahaEA wrapper-based feature selection approach to investigate potential biomarkers for early detection of breast cancerJ Radiation Res Appl Sci2022151104110 – reference: ChaudhariKThakkarANeural network systems with an integrated coefficient of variation-based feature selection for stock price and trend predictionExpert Syst Appl202321911952710.1016/j.eswa.2023.119527 – reference: DongHBLiDJZhangXPParticle swarm optimization algorithm with dynamically adjusting inertia weightComput Sci201845298102 – reference: LiuLKhisheMMohammadiMOptimization of constraint engineering problems using robust universal learning chimp optimizationAdv Eng Inform20225310163610.1016/j.aei.2022.101636 – reference: SaremiSMirjaliliSLewisAHow important is a transfer function in discrete heuristic algorithmsNeural Comput Appl20152662564010.1007/s00521-014-1743-5 – reference: Tanyildizi E, Demir G (2017) Golden sine algorithm: a novel math-inspired algorithm. Adv Electr Comput Eng 17(2):71 – reference: LiuHZhaoRFangHEntropy-based consensus clustering for patient stratificationBioinformatics201733172691269810.1093/bioinformatics/btx167 – reference: AyecheFAltiAEfficient feature selection in high Dimensional Data based on enhanced binary chimp optimization algorithms and machine learningHuman-Centric Intell Syst20233455858710.1007/s44230-023-00048-w – reference: GongSPKhisheMMohammadiMNiching chimp optimization for constraint multimodal engineering optimization problemsExpert Syst Appl202219811688710.1016/j.eswa.2022.116887 – reference: Xie L, Han T, Zhou H et al (2021) Tuna swarm optimization: a novel swarm-based metaheuristic algorithm for global optimization. Computational intelligence and Neuroscience, 2021: 1–22 – reference: Ahrari A, Elsayed S, Sarker R et al (2022) Problem Definition and Evaluation Criteria for the CEC’2022 Competition on Dynamic Multimodal Optimization[C]//Proceedings of the IEEE World Congress on Computational Intelligence (IEEE WCCI 2022), Padua, Italy. : 18–23 – reference: WangJKhisheMKavehMBinary chimp optimization algorithm (BChOA): a new binary meta-heuristic for solving optimization problemsCogn Comput2021131297131610.1007/s12559-021-09933-7 – reference: Ye Z, Shu Z, Liu S et al (2021) A Hybrid Rice Optimization Algorithm with Ant System for Feature Selection[C]//2021 11th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). IEEE, 2: 700–704 – reference: MirjaliliSGandomiAHMirjaliliSZSalp swarm algorithm: a bio-inspired optimizer for engineering design problemsAdv Eng Softw201711416319110.1016/j.advengsoft.2017.07.002 – reference: KaidiWKhisheMMohammadiMDynamic levy flight chimp optimizationKnowl Based Syst202223510762510.1016/j.knosys.2021.107625 – reference: KhisheMOroujiNMosaviMRMulti-objective chimp optimizer: an innovative algorithm for multi-objective problemsExpert Syst Appl202321111873410.1016/j.eswa.2022.118734 – reference: Kennedy J, Eberhart R (1995) Particle swarm optimization[C]//Proceedings of ICNN’95-international conference on neural networks. ieee, 4: 1942–1948 – reference: MirjaliliSLewisAS-shaped versus V-shaped transfer functions for binary particle swarm optimizationSwarm Evol Comput2013911410.1016/j.swevo.2012.09.002 – reference: Al-Eiadeh MR, Qaddoura R, Abdallah M (2024) Investigating the performance of a Novel modified binary black hole optimization algorithm for enhancing feature selection. Appl Sci 14(12):5207 – reference: PölsterlSConjetiSNavabNSurvival analysis for high-dimensional, heterogeneous medical data: exploring feature extraction as an alternative to feature selectionArtif Intell Med20167211110.1016/j.artmed.2016.07.004 – volume: 35 start-page: 309 issue: 2 year: 2023 ident: 10954_CR34 publication-title: J Exp Theor Artif Intell doi: 10.1080/0952813X.2021.1960639 – volume: 51 start-page: 39 year: 2017 ident: 10954_CR9 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2016.12.010 – ident: 10954_CR48 doi: 10.1007/978-3-319-95162-1_30 – volume: 36 start-page: 4763 issue: 9 year: 2024 ident: 10954_CR31 publication-title: Neural Comput Appl doi: 10.1007/s00521-023-09236-y – ident: 10954_CR65 – volume: 33 start-page: 2691 issue: 17 year: 2017 ident: 10954_CR75 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx167 – ident: 10954_CR49 doi: 10.1007/s12530-024-09580-x – ident: 10954_CR62 doi: 10.21203/rs.3.rs-3962990/v1 – volume: 31 start-page: 361 issue: 2 year: 2014 ident: 10954_CR67 publication-title: Appl Res Comput – volume: 62 start-page: 441 year: 2018 ident: 10954_CR14 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.11.006 – volume: 90 start-page: 728 year: 2018 ident: 10954_CR5 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2018.04.008 – volume: 22 start-page: 855 issue: 3 year: 2022 ident: 10954_CR29 publication-title: Sensors doi: 10.3390/s22030855 – volume: 252 start-page: 109446 year: 2022 ident: 10954_CR76 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2022.109446 – ident: 10954_CR20 doi: 10.1109/ICTAS.2018.8368770 – ident: 10954_CR45 doi: 10.1007/s10586-024-04368-9 – volume: 57 start-page: 1 issue: 3 year: 2024 ident: 10954_CR50 publication-title: Artif Intell Rev doi: 10.1007/s10462-023-10675-1 – volume: 95 start-page: 51 year: 2016 ident: 10954_CR23 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2016.01.008 – ident: 10954_CR21 doi: 10.4316/AECE.2017.02010 – volume: 56 start-page: 7633 issue: 8 year: 2023 ident: 10954_CR33 publication-title: Artif Intell Rev doi: 10.1007/s10462-022-10343-w – volume: 198 start-page: 116887 year: 2022 ident: 10954_CR39 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.116887 – volume: 161 start-page: 185 year: 2018 ident: 10954_CR71 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2018.08.003 – volume: 26 start-page: 625 year: 2015 ident: 10954_CR70 publication-title: Neural Comput Appl doi: 10.1007/s00521-014-1743-5 – volume: 36 start-page: 04022044 issue: 5 year: 2022 ident: 10954_CR3 publication-title: J Perform Constr Facil doi: 10.1061/(ASCE)CF.1943-5509.0001753 – ident: 10954_CR61 doi: 10.1007/s10586-024-04364-z – volume: 149 start-page: 113338 year: 2020 ident: 10954_CR30 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113338 – volume: 219 start-page: 119527 year: 2023 ident: 10954_CR6 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2023.119527 – volume: 111 start-page: 300 year: 2020 ident: 10954_CR28 publication-title: Future Generation Comput Syst doi: 10.1016/j.future.2020.03.055 – volume: 23 start-page: 715 year: 2019 ident: 10954_CR77 publication-title: Soft Comput doi: 10.1007/s00500-018-3102-4 – volume: 14 start-page: 1491 issue: 1 year: 2024 ident: 10954_CR74 publication-title: Sci Rep doi: 10.1038/s41598-023-50910-x – volume: 54 start-page: 100663 year: 2020 ident: 10954_CR12 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2020.100663 – volume: 13 start-page: 1297 year: 2021 ident: 10954_CR41 publication-title: Cogn Comput doi: 10.1007/s12559-021-09933-7 – volume: 9 start-page: 1 year: 2013 ident: 10954_CR57 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2012.09.002 – volume: 26 start-page: 100472 year: 2024 ident: 10954_CR60 publication-title: Egypt Inf J – volume: 114 start-page: 163 year: 2017 ident: 10954_CR27 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2017.07.002 – volume: 10 start-page: 1 year: 2020 ident: 10954_CR4 publication-title: Social Netw Anal Min doi: 10.1007/s13278-020-00658-3 – volume: 3 start-page: 558 issue: 4 year: 2023 ident: 10954_CR82 publication-title: Human-Centric Intell Syst doi: 10.1007/s44230-023-00048-w – ident: 10954_CR56 doi: 10.1145/3102304.3102325 – volume: 15 start-page: 104 issue: 1 year: 2022 ident: 10954_CR8 publication-title: J Radiation Res Appl Sci – volume: 376 start-page: 113609 year: 2021 ident: 10954_CR26 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2020.113609 – volume: 14 start-page: 5032 issue: 1 year: 2024 ident: 10954_CR22 publication-title: Sci Rep doi: 10.1038/s41598-024-54910-3 – volume: 648 start-page: 119638 year: 2023 ident: 10954_CR55 publication-title: Inf Sci doi: 10.1016/j.ins.2023.119638 – volume: 534 start-page: 1 year: 2020 ident: 10954_CR13 publication-title: Inf Sci doi: 10.1016/j.ins.2020.05.017 – ident: 10954_CR58 doi: 10.1109/IDAACS53288.2021.9660979 – volume: 123 start-page: 106207 year: 2023 ident: 10954_CR32 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2023.106207 – volume: 286 start-page: 129583 year: 2024 ident: 10954_CR46 publication-title: Energy doi: 10.1016/j.energy.2023.129583 – volume: 6 start-page: 703 issue: 3 year: 2019 ident: 10954_CR15 publication-title: IEEE/CAA J Automatica Sinica doi: 10.1109/JAS.2019.1911447 – ident: 10954_CR59 doi: 10.3390/app14125207 – volume: 11 start-page: 73 issue: 1 year: 2024 ident: 10954_CR44 publication-title: J Comput Des Eng – volume: 92 start-page: 110 issue: 3 year: 2022 ident: 10954_CR37 publication-title: J Sci Comput doi: 10.1007/s10915-022-01955-z – volume: 238 start-page: 121582 year: 2024 ident: 10954_CR64 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2023.121582 – volume: 53 start-page: 2905 issue: 4 year: 2020 ident: 10954_CR7 publication-title: Artif Intell Rev doi: 10.1007/s10462-019-09750-3 – volume: 235 start-page: 107625 year: 2022 ident: 10954_CR40 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2021.107625 – volume: 2 start-page: 353 issue: 4 year: 2005 ident: 10954_CR80 publication-title: Phys Life Rev doi: 10.1016/j.plrev.2005.10.001 – volume: 106 start-page: 107302 year: 2021 ident: 10954_CR16 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2021.107302 – volume: 97 start-page: 849 year: 2019 ident: 10954_CR24 publication-title: Future Generation Comput Syst doi: 10.1016/j.future.2019.02.028 – volume: 83 start-page: 81 year: 2015 ident: 10954_CR72 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2015.03.009 – volume: 45 start-page: 98 issue: 2 year: 2018 ident: 10954_CR69 publication-title: Comput Sci – volume: 72 start-page: 1 year: 2016 ident: 10954_CR11 publication-title: Artif Intell Med doi: 10.1016/j.artmed.2016.07.004 – volume: 112 start-page: 103375 year: 2019 ident: 10954_CR2 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2019.103375 – volume: 100 start-page: 104210 year: 2021 ident: 10954_CR19 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2021.104210 – volume: 50 start-page: 52 year: 2015 ident: 10954_CR10 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2015.04.060 – volume: 4 start-page: 12 issue: 1 year: 2023 ident: 10954_CR43 publication-title: J Rob Control (JRC) doi: 10.18196/jrc.v4i1.16445 – volume: 34 start-page: 20017 issue: 22 year: 2022 ident: 10954_CR79 publication-title: Neural Comput Appl doi: 10.1007/s00521-022-07530-9 – volume: 24 start-page: 4407 year: 2020 ident: 10954_CR52 publication-title: Soft Comput doi: 10.1007/s00500-019-04203-z – ident: 10954_CR81 doi: 10.1109/ICNN.1995.488968 – ident: 10954_CR68 doi: 10.1007/978-3-319-91253-0_50 – ident: 10954_CR78 doi: 10.1155/2021/9210050 – volume: 53 start-page: 11833 issue: 10 year: 2023 ident: 10954_CR42 publication-title: Appl Intell doi: 10.1007/s10489-022-03994-3 – volume: 169 start-page: 1 year: 2016 ident: 10954_CR25 publication-title: Comput Struct doi: 10.1016/j.compstruc.2016.03.001 – volume: 132 start-page: 109869 year: 2023 ident: 10954_CR35 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2022.109869 – volume: 211 start-page: 118734 year: 2023 ident: 10954_CR36 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.118734 – volume: 8 start-page: 240 issue: 3 year: 2004 ident: 10954_CR66 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2004.826071 – volume: 53 start-page: 101636 year: 2022 ident: 10954_CR38 publication-title: Adv Eng Inform doi: 10.1016/j.aei.2022.101636 – ident: 10954_CR54 doi: 10.1007/978-3-030-12767-1_5 – ident: 10954_CR51 doi: 10.1007/978-981-10-7566-7_31 – ident: 10954_CR73 – ident: 10954_CR63 doi: 10.1109/ACCESS.2024.3362228 – volume: 29 start-page: 3815 issue: 6 year: 2022 ident: 10954_CR18 publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-022-09717-8 – volume: 22 start-page: bbaa189 issue: 3 year: 2021 ident: 10954_CR1 publication-title: Brief Bioinform doi: 10.1093/bib/bbaa189 – volume: 8 start-page: 1521 issue: 9 year: 2018 ident: 10954_CR17 publication-title: Appl Sci doi: 10.3390/app8091521 – volume: 12 start-page: 368 issue: 3 year: 2024 ident: 10954_CR47 publication-title: Mathematics doi: 10.3390/math12030368 |
| SSID | ssj0005243 |
| Score | 2.4398944 |
| Snippet | Cancer gene expression data has the characteristics of high-dimensional, multi-text and multi-classification. The problem of cancer subtype diagnosis can be... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 347 |
| SubjectTerms | Accuracy Algorithms Artificial Intelligence Cancer Classification Computer Science Convergence Data Datasets Exploitation Feature selection Function Gene expression Genes Genetic aspects Global local relationship Horses Intelligence Medical diagnosis Movement Optimization Simulation Strategies Technology assessment Transfer functions Trigonometric functions |
| SummonAdditionalLinks | – databaseName: ABI/INFORM Global dbid: M0C link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgcOiFlo-KhYLmgMQBLLKOk9hcqlK12wNtkaBVb5btOKISbMpmFwG_gp_cGcdhWRC9IOWS2LEszZvx2J55w9izulQ-4MO9DESqrUuuGl1wq8aNznxT5JGJ6extdXyszs_1u3Tg1qWwysEmRkNdt57OyF_lY0F7ASWqncsvnKpG0e1qKqFxk90iz4ZC-o6yvd9CPPqoOVFqjluLcUqaSalzshQcVyg0RLqQvFhZmP40z3_dk8bl52Djfye-ye4kxxN2e6TcZTfC9B7bGIo6QNLx--zn5GTCj968Pzx5DTHakHc9ge13aBZ0tAYupvAC6gj_2M66AC2anc8XP3AUOtWFiV10lJoJ8-gU42daPAkAgB4yNCFyiUIXK_DQ17YBT-CbAaI5QPiWgnOnQPGrD9jpwf6HvUOeyjagvPNsjla9knXhK6G8bXCH48iBd5XwVcg0QkBmThSKcoykVVLI0ORBubrGF1trUeZbbG3aTsNDBn0hpUJKK4KsrHPo7-QhOGd1VgZRjth4kJnxidOcSmt8Mks2ZpKzQTmbKGdTjNiLX_9c9owe1_Z-TlAwpO44srcpawHnR8RZZpcYw0q6nB2x7ZWeqKZ-tXmAh0lmojNLbIzYywFgy-Z_T-vR9aM9ZusiQpvCbrbZ2ny2CE_Ybf91ftHNnkYluQJdxRaX priority: 102 providerName: ProQuest |
| Title | GOG-MBSHO: multi-strategy fusion binary sea-horse optimizer with Gaussian transfer function for feature selection of cancer gene expression data |
| URI | https://link.springer.com/article/10.1007/s10462-024-10954-5 https://www.proquest.com/docview/3121401827 |
| Volume | 57 |
| WOSCitedRecordID | wos001344520500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005243 issn: 1573-7462 databaseCode: 7WY dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005243 issn: 1573-7462 databaseCode: M0C dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005243 issn: 1573-7462 databaseCode: P5Z dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005243 issn: 1573-7462 databaseCode: K7- dateStart: 20240101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Library Science Database customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005243 issn: 1573-7462 databaseCode: M1O dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/libraryscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005243 issn: 1573-7462 databaseCode: BENPR dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005243 issn: 1573-7462 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005243 issn: 1573-7462 databaseCode: C24 dateStart: 20240101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xjQdeGJ-iMCo_IPEAlhLHjh3etmrrJFhbbTAGL1biOGIStKhpEfBX8Cdz5zob5UsCKTopiWNZvg-f47vfATyqc-M8XtxJT6DaRc5NUyhemrQpEteoLCAxnb7Qo5E5OysmMSms7aLduyPJYKl_SHaTueC4pqDpKJTkagO2VGoKCuQbUI7DRWCHzGJ6zO-_W1uCfjbEv5yIhoXmYPv_hngDrkfHku2uJOEmXPHTW7DdFW1gUYdvw7fheMiP9k4Ox89YiCbk7Qqg9gtrlvTrjFUhRZehDvB3s3nr2QzNyofzr9gL_bVlw3LZUuolWwSnFx_T4kgMZugBs8YHrFDWhgo79HTWMEfCNWcorZ75zzH4dsooPvUOvDrYfzk45LEsA_IzSxZotbWsldPCuLLBHUxFDnqlhdM-KZDFMqmEMpRDJEsjhfRN5k1V13hT1oXIs7uwOZ1N_T1gq0JJSspSeKnLqkJ_JvO-qsoiyb3Ie5B2nLIuYpZT6Yz39hJtmabc4pTbMOVW9eDJxTcfV4gdf239mATAkjpjz66MWQk4PgLGsruECJbT4WsPdtZaohq69dedCNloBlqbpYI2sEboHjztROby9Z-Hdf_fmj-AayJIHYXZ7MDmYr70D-Gq-7Q4b-d92NCv3_Rha29_NDnuB2VB-lxzpEfJgGg6RjpRb5Een5x-B6yVEcI |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgkQvLU-xpYAPIA5gkXWcxKmEUHl0t9rtFolS9WZix1ErwaZsdqHlV_BL-I3MOAnLguitB6S95LGWk3zzeWzPfAPwMI-VdfjjVjoS1U5jroo04pnqFmlgiyj0SkwHw2Q0UoeH6dsl-NHmwlBYZcuJnqjz0tIa-bOwK2guoETy4uQzp6pRtLvaltCoYTFwZ19xylY933mN3_eRENtv9l_1eVNVALsTBlMknUTmkU2EslmBDrgh_9IkwiYuSLGHMjAiUpQCIzMlhXRF6JTJczzI8lTEIbZ7CS7LUCVkV4OE_xZSUkfpiTjlOJXpNkk6TaqejAXHERGJL40kjxYGwj-Hg7_2Zf1wt732v72oa7DaONZsq7aE67DkxjdgrS1awRoOuwnfe3s9vvvyXX9vk_loSl7VAr1nrJjR0iEzPkWZ4TPwo3JSOVYirX46_oat0Ko162WzilJP2dQ7_XianAMCOMMZACuc10plla8wRGfLglkyrglDa3XMnTbBx2NG8bm34P2FvJfbsDwux-4OsLpQVCRlJpxMMmPQnwudMyZLg9iJuAPdFiPaNprtVDrko56rTROuNOJKe1zpqANPfv3npFYsOffuxwQ9TXSGLdusycrA_pEwmN4iRbSYNp87sLFwJ9KQXbzcwlE3NFjpORY78LQF9Pzyv7u1fn5rD-Bqf393qIc7o8FdWBHerCjEaAOWp5OZuwdX7JfpcTW57w2UwYeLBvpPf0Fyow |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VghAXyq9YKOADiANYZB0ncZAQKpTdVi3blfhRxcU4jiMqwaZsdoHyFDwPT8eM47AsiN56QMolcWI5yTfjGfubGYA7Zaqsw4Nb6Sipdp5yVeUJN6pf5ZGtkthnYnqzm41Gan8_H6_Ajy4WhmiVnU70irqsLa2RP4z7gnwBha56FWgR483Bk8NPnCpI0U5rV06jhciOO_qC7lvzeHsT__VdIQbPXz3b4qHCAA4tjmaogDJZJjYTypoKjfGCbM0iEzZzUY6jlVEhEkXhMNIoKaSrYqeKssQTU-YijbHfU3A6Qx-T6ITj5O1v9JKWsSfSnKNb0w8BOyFsT6aC4-yISjBPJE-WJsU_p4a_9mj91DdY-58_2gU4HwxuttFKyEVYcZNLsNYVs2BBt12G78O9IX_x9OXW3iPmWZa8aRP3HrFqTkuKrPChywzfgb-vp41jNarbjwffsBdazWZDM28oJJXNvDOAl8loIOAz9AxY5XwOVdb4ykN0ta6YJaGbMpRix9zXQEqeMOLtXoHXJ_JdrsLqpJ64a8DaAlKJlEY4mZmiQDsvdq4oTB6lTqQ96Hd40TbkcqeSIh_0Igs1YUwjxrTHmE56cP_XM4dtJpNj775HMNSk5rBna0K0Bo6PEobpDcqUltKmdA_Wl-5E9WSXmzto6qAeG73AZQ8edOBeNP97WNeP7-02nEV8693t0c4NOCe8hBHzaB1WZ9O5uwln7OfZQTO95WWVwbuTxvlPHSh7xw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GOG-MBSHO%3A+multi-strategy+fusion+binary+sea-horse+optimizer+with+Gaussian+transfer+function+for+feature+selection+of+cancer+gene+expression+data&rft.jtitle=The+Artificial+intelligence+review&rft.au=Wang%2C+Yu-Cai&rft.au=Song%2C+Hao-Ming&rft.au=Wang%2C+Jie-Sheng&rft.au=Song%2C+Yu-Wei&rft.date=2024-12-01&rft.pub=Springer+Netherlands&rft.eissn=1573-7462&rft.volume=57&rft.issue=12&rft_id=info:doi/10.1007%2Fs10462-024-10954-5&rft.externalDocID=10_1007_s10462_024_10954_5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7462&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7462&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7462&client=summon |