GOG-MBSHO: multi-strategy fusion binary sea-horse optimizer with Gaussian transfer function for feature selection of cancer gene expression data

Cancer gene expression data has the characteristics of high-dimensional, multi-text and multi-classification. The problem of cancer subtype diagnosis can be solved by selecting the most representative and predictive genes from a large number of gene expression data. Feature selection technology can...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Artificial intelligence review Ročník 57; číslo 12; s. 347
Hlavní autoři: Wang, Yu-Cai, Song, Hao-Ming, Wang, Jie-Sheng, Song, Yu-Wei, Qi, Yu-Liang, Ma, Xin-Ru
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.12.2024
Springer
Springer Nature B.V
Témata:
ISSN:1573-7462, 0269-2821, 1573-7462
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Cancer gene expression data has the characteristics of high-dimensional, multi-text and multi-classification. The problem of cancer subtype diagnosis can be solved by selecting the most representative and predictive genes from a large number of gene expression data. Feature selection technology can effectively reduce the dimension of data, which helps analyze the information on cancer gene expression data. A multi-strategy fusion binary sea-horse optimizer based on Gaussian transfer function (GOG-MBSHO) is proposed to solve the feature selection problem of cancer gene expression data. Firstly, the multi-strategy includes golden sine strategy, hippo escape strategy and multiple inertia weight strategies. The sea-horse optimizer with the golden sine strategy does not disrupt the structure of the original algorithm. Embedding the golden sine strategy within the spiral motion of the sea-horse optimizer enhances the movement of the algorithm and improves its global exploration and local exploitation capabilities. The hippo escape strategy is introduced for random selection, which avoids the algorithm from falling into local optima, increases the search diversity, and improves the optimization accuracy of the algorithm. The advantage of multiple inertial weight strategies is that dynamic exploitation and exploration can be carried out to accelerate the convergence speed and improve the performance of the algorithm. Then, the effectiveness of multi-strategy fusion was demonstrated by 15 UCI datasets. The simulation results show that the proposed Gaussian transfer function is better than the commonly used S-type and V-type transfer functions, which can improve the classification accuracy, effectively reduce the number of features, and obtain better fitness value. Finally, comparing with other binary swarm intelligent optimization algorithms on 15 cancer gene expression datasets, it is proved that the proposed GOG1-MBSHO has great advantages in the feature selection of cancer gene expression data.
AbstractList Cancer gene expression data has the characteristics of high-dimensional, multi-text and multi-classification. The problem of cancer subtype diagnosis can be solved by selecting the most representative and predictive genes from a large number of gene expression data. Feature selection technology can effectively reduce the dimension of data, which helps analyze the information on cancer gene expression data. A multi-strategy fusion binary sea-horse optimizer based on Gaussian transfer function (GOG-MBSHO) is proposed to solve the feature selection problem of cancer gene expression data. Firstly, the multi-strategy includes golden sine strategy, hippo escape strategy and multiple inertia weight strategies. The sea-horse optimizer with the golden sine strategy does not disrupt the structure of the original algorithm. Embedding the golden sine strategy within the spiral motion of the sea-horse optimizer enhances the movement of the algorithm and improves its global exploration and local exploitation capabilities. The hippo escape strategy is introduced for random selection, which avoids the algorithm from falling into local optima, increases the search diversity, and improves the optimization accuracy of the algorithm. The advantage of multiple inertial weight strategies is that dynamic exploitation and exploration can be carried out to accelerate the convergence speed and improve the performance of the algorithm. Then, the effectiveness of multi-strategy fusion was demonstrated by 15 UCI datasets. The simulation results show that the proposed Gaussian transfer function is better than the commonly used S-type and V-type transfer functions, which can improve the classification accuracy, effectively reduce the number of features, and obtain better fitness value. Finally, comparing with other binary swarm intelligent optimization algorithms on 15 cancer gene expression datasets, it is proved that the proposed GOG1-MBSHO has great advantages in the feature selection of cancer gene expression data.
ArticleNumber 347
Audience Academic
Author Wang, Jie-Sheng
Song, Yu-Wei
Qi, Yu-Liang
Song, Hao-Ming
Ma, Xin-Ru
Wang, Yu-Cai
Author_xml – sequence: 1
  givenname: Yu-Cai
  surname: Wang
  fullname: Wang, Yu-Cai
  organization: School of Electronic and Information Engineering, University of Science and Technology Liaoning
– sequence: 2
  givenname: Hao-Ming
  surname: Song
  fullname: Song, Hao-Ming
  organization: School of Electronic and Information Engineering, University of Science and Technology Liaoning
– sequence: 3
  givenname: Jie-Sheng
  surname: Wang
  fullname: Wang, Jie-Sheng
  email: wang_jiesheng@126.com
  organization: School of Electronic and Information Engineering, University of Science and Technology Liaoning
– sequence: 4
  givenname: Yu-Wei
  surname: Song
  fullname: Song, Yu-Wei
  organization: School of Electronic and Information Engineering, University of Science and Technology Liaoning
– sequence: 5
  givenname: Yu-Liang
  surname: Qi
  fullname: Qi, Yu-Liang
  organization: School of Electronic and Information Engineering, University of Science and Technology Liaoning
– sequence: 6
  givenname: Xin-Ru
  surname: Ma
  fullname: Ma, Xin-Ru
  organization: School of Electronic and Information Engineering, University of Science and Technology Liaoning
BookMark eNp9kc9u1DAQxiNUJNrCC3CyxNnF_7LOcisVbJFa7QE4W44z3rpK7MV2BOUpeGRmG6QWhCof7Pn0_WY0_k6ao5giNM1rzs44Y_pt4UytBGVCUc7WraLts-aYt1pSjfrRo_eL5qSUW8ZYK5Q8bn5ttht6_f7z5fYdmeaxBlpqthV2d8TPJaRI-hBtviMFLL1JuQBJ-xqm8BMy-R7qDdnYuZRgI0EuFo-yn6OrB9QnLMDWOQPyIyxq8sTZ6NC4gwgEfuwzlPtRg632ZfPc27HAqz_3afP144cvF5f0arv5dHF-RZ2SrFLJtRpap0XnrBeS9VqLda-F08DWHfeK9aLtVt5pZTslFHgJXT8MWNhhLVbytHmz9N3n9G2GUs1tmnPEkUZywRXjndAPrp0dwYToE27pplCcOe_QtGoZV-g6-48LzwBTcJiUD6j_BXQL4HIqJYM3LlR7-B0Ew2g4M4dYzRKrwVjNfaymRVT8g-5zmDChpyG5QAXNcQf5YdknqN-8jLd0
CitedBy_id crossref_primary_10_1007_s11227_024_06714_5
crossref_primary_10_1016_j_eij_2025_100639
crossref_primary_10_1186_s40537_025_01105_w
crossref_primary_10_1007_s10586_025_05367_0
crossref_primary_10_1038_s41598_025_91829_9
crossref_primary_10_1007_s10586_025_05319_8
crossref_primary_10_1016_j_suscom_2025_101201
crossref_primary_10_1007_s10462_025_11319_2
Cites_doi 10.1080/0952813X.2021.1960639
10.1016/j.asoc.2016.12.010
10.1007/978-3-319-95162-1_30
10.1007/s00521-023-09236-y
10.1093/bioinformatics/btx167
10.1007/s12530-024-09580-x
10.21203/rs.3.rs-3962990/v1
10.1016/j.asoc.2017.11.006
10.1016/j.rser.2018.04.008
10.3390/s22030855
10.1016/j.knosys.2022.109446
10.1109/ICTAS.2018.8368770
10.1007/s10586-024-04368-9
10.1007/s10462-023-10675-1
10.1016/j.advengsoft.2016.01.008
10.4316/AECE.2017.02010
10.1007/s10462-022-10343-w
10.1016/j.eswa.2022.116887
10.1016/j.knosys.2018.08.003
10.1007/s00521-014-1743-5
10.1061/(ASCE)CF.1943-5509.0001753
10.1007/s10586-024-04364-z
10.1016/j.eswa.2020.113338
10.1016/j.eswa.2023.119527
10.1016/j.future.2020.03.055
10.1007/s00500-018-3102-4
10.1038/s41598-023-50910-x
10.1016/j.swevo.2020.100663
10.1007/s12559-021-09933-7
10.1016/j.swevo.2012.09.002
10.1016/j.advengsoft.2017.07.002
10.1007/s13278-020-00658-3
10.1007/s44230-023-00048-w
10.1145/3102304.3102325
10.1016/j.cma.2020.113609
10.1038/s41598-024-54910-3
10.1016/j.ins.2023.119638
10.1016/j.ins.2020.05.017
10.1109/IDAACS53288.2021.9660979
10.1016/j.engappai.2023.106207
10.1016/j.energy.2023.129583
10.1109/JAS.2019.1911447
10.3390/app14125207
10.1007/s10915-022-01955-z
10.1016/j.eswa.2023.121582
10.1007/s10462-019-09750-3
10.1016/j.knosys.2021.107625
10.1016/j.plrev.2005.10.001
10.1016/j.asoc.2021.107302
10.1016/j.future.2019.02.028
10.1016/j.knosys.2015.03.009
10.1016/j.artmed.2016.07.004
10.1016/j.compbiomed.2019.103375
10.1016/j.engappai.2021.104210
10.1016/j.procs.2015.04.060
10.18196/jrc.v4i1.16445
10.1007/s00521-022-07530-9
10.1007/s00500-019-04203-z
10.1109/ICNN.1995.488968
10.1007/978-3-319-91253-0_50
10.1155/2021/9210050
10.1007/s10489-022-03994-3
10.1016/j.compstruc.2016.03.001
10.1016/j.asoc.2022.109869
10.1016/j.eswa.2022.118734
10.1109/TEVC.2004.826071
10.1016/j.aei.2022.101636
10.1007/978-3-030-12767-1_5
10.1007/978-981-10-7566-7_31
10.1109/ACCESS.2024.3362228
10.1007/s11831-022-09717-8
10.1093/bib/bbaa189
10.3390/app8091521
10.3390/math12030368
ContentType Journal Article
Copyright The Author(s) 2024
COPYRIGHT 2024 Springer
Copyright Springer Nature B.V. Dec 2024
Copyright_xml – notice: The Author(s) 2024
– notice: COPYRIGHT 2024 Springer
– notice: Copyright Springer Nature B.V. Dec 2024
DBID C6C
AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
CNYFK
DWQXO
E3H
F2A
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M1O
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PRQQA
PSYQQ
Q9U
DOI 10.1007/s10462-024-10954-5
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One Community College
Library & Information Science Collection
ProQuest Central
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Library Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
ProQuest One Psychology New
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Library and Information Science Abstracts (LISA)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Library & Information Science Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
Business Premium Collection
Social Science Premium Collection
ABI/INFORM Global
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Library Science
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ProQuest One Social Sciences
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)


Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7462
ExternalDocumentID A814065014
10_1007_s10462_024_10954_5
GrantInformation_xml – fundername: Postgraduate Education Reform Project of Liaoning Province
  grantid: LNYJG2022137
– fundername: Fundamental Research Funds for the Liaoning Universities of Liaoning Province
  grantid: LJKZ0293
GroupedDBID -4Z
-59
-5G
-BR
-EM
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
203
23N
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6J9
6NX
77K
7WY
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEEZ
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACACY
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACULB
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGXO
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BENPR
BGNMA
C24
C6C
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EDO
EIOEI
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
HCIFZ
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
LLZTM
M1O
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P9O
PF0
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SCO
SDH
SDM
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~A9
~EX
77I
8AO
8FE
8FG
AAFWJ
AASML
AAYXX
ABDBE
ABFSG
ABUWG
ACSTC
AEZWR
AFFHD
AFHIU
AFKRA
AHPBZ
AHWEU
AIXLP
AYFIA
AZQEC
BEZIV
BGLVJ
BPHCQ
CCPQU
CITATION
CNYFK
DWQXO
FRNLG
GNUQQ
ICD
K6V
K7-
M0C
MK~
P62
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PRQQA
PSYQQ
Q2X
AGGLG
3V.
7SC
7XB
8AL
8FD
8FK
E3H
F2A
JQ2
L.-
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c430t-3174d5c728caf230b7729b72c7e0981f40b2586fc74a8424ef3e8bdda84ad9263
IEDL.DBID C24
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001344520500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1573-7462
0269-2821
IngestDate Thu Nov 13 23:11:41 EST 2025
Wed Dec 10 10:30:37 EST 2025
Tue Dec 02 03:51:44 EST 2025
Sat Nov 29 02:43:29 EST 2025
Tue Nov 18 22:33:08 EST 2025
Fri Feb 21 02:40:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Feature selection
Gaussian transfer function
Cancer gene expression
Multi-strategy fusion
Sea-horse optimizer
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c430t-3174d5c728caf230b7729b72c7e0981f40b2586fc74a8424ef3e8bdda84ad9263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s10462-024-10954-5
PQID 3121401827
PQPubID 36790
ParticipantIDs proquest_journals_3121401827
gale_infotracmisc_A814065014
gale_infotracacademiconefile_A814065014
crossref_citationtrail_10_1007_s10462_024_10954_5
crossref_primary_10_1007_s10462_024_10954_5
springer_journals_10_1007_s10462_024_10954_5
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Science and Engineering Journal
PublicationTitle The Artificial intelligence review
PublicationTitleAbbrev Artif Intell Rev
PublicationYear 2024
Publisher Springer Netherlands
Springer
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer
– name: Springer Nature B.V
References PölsterlSConjetiSNavabNSurvival analysis for high-dimensional, heterogeneous medical data: exploring feature extraction as an alternative to feature selectionArtif Intell Med20167211110.1016/j.artmed.2016.07.004
Tanyildizi E, Demir G (2017) Golden sine algorithm: a novel math-inspired algorithm. Adv Electr Comput Eng 17(2):71
WangJKhisheMKavehMBinary chimp optimization algorithm (BChOA): a new binary meta-heuristic for solving optimization problemsCogn Comput2021131297131610.1007/s12559-021-09933-7
NssibiMManitaGChhabraAGene selection for high dimensional biological datasets using hybrid island binary artificial bee colony with chaos game optimizationArtif Intell Rev202457317410.1007/s10462-023-10675-1
LiSChenHWangMSlime mould algorithm: a new method for stochastic optimizationFuture Generation Comput Syst202011130032310.1016/j.future.2020.03.055
Msallam MM, Bin Idris SA (2024) Unsupervised text feature selection by binary fire hawk optimizer for text clustering. Cluster Comput 27:7721–7740
AlnowamiMRAbolabanFATahaEA wrapper-based feature selection approach to investigate potential biomarkers for early detection of breast cancerJ Radiation Res Appl Sci2022151104110
BrezočnikLFisterIJrPodgorelecVSwarm intelligence algorithms for feature selection: a reviewAppl Sci201889152110.3390/app8091521
Salcedo-SanzSCornejo-BuenoLPrietoLFeature selection in machine learning prediction systems for renewable energy applicationsRenew Sustain Energy Rev20189072874110.1016/j.rser.2018.04.008
AbualigahLDiabatAMirjaliliSThe arithmetic optimization algorithmComput Methods Appl Mech Eng2021376113609419929910.1016/j.cma.2020.113609
LiuLKhisheMMohammadiMOptimization of constraint engineering problems using robust universal learning chimp optimizationAdv Eng Inform20225310163610.1016/j.aei.2022.101636
MirjaliliSGandomiAHMirjaliliSZSalp swarm algorithm: a bio-inspired optimizer for engineering design problemsAdv Eng Softw201711416319110.1016/j.advengsoft.2017.07.002
ZhangMWangJSLiuYMulti-objective optimization algorithm based on clustering guided binary equilibrium optimizer and NSGA-III to solve high-dimensional feature selection problemInf Sci202364811963810.1016/j.ins.2023.119638
HasanienHMAlsalehITostado-VélizMHybrid particle swarm and sea horse optimization algorithm-based optimal reactive power dispatch of power systems comprising electric vehiclesEnergy202428612958310.1016/j.energy.2023.129583
TrojovskýPDehghaniMPelican optimization algorithm: a novel nature-inspired algorithm for engineering applicationsSensors202222385510.3390/s22030855
HanXLiDLiuPFeature selection by recursive binary gravitational search algorithm optimization for cancer classificationSoft Comput2020244407442510.1007/s00500-019-04203-z
LiZQuSXuYEnhanced Sea Horse optimization algorithm for Hyperparameter optimization of Agricultural Image RecognitionMathematics202412336810.3390/math12030368
WangXHuHLiangYOn the mathematical models and applications of swarm intelligent optimization algorithmsArch Comput Methods Eng202229638153842448620110.1007/s11831-022-09717-8
KhisheMOroujiNMosaviMRMulti-objective chimp optimizer: an innovative algorithm for multi-objective problemsExpert Syst Appl202321111873410.1016/j.eswa.2022.118734
HossnyAHMitchellLLothianNFeature selection methods for event detection in Twitter: a text mining approachSocial Netw Anal Min20201011510.1007/s13278-020-00658-3
Ma BB, Fong S, Millham R (2018) Data stream mining in fog computing environment with feature selection using ensemble of swarm search algorithms[C]//2018 conference on information communications technology and society (ICTAS). IEEE, : 1–6
Kennedy J, Eberhart R (1995) Particle swarm optimization[C]//Proceedings of ICNN’95-international conference on neural networks. ieee, 4: 1942–1948
ThabtahFKamalovFHammoudSLeast loss: a simplified filter method for feature selectionInf Sci2020534115410209610.1016/j.ins.2020.05.017
AribowoWA novel improved sea-horse optimizer for tuning parameter power system stabilizerJ Rob Control (JRC)202341122210.18196/jrc.v4i1.16445
RemeseiroBBolon-CanedoVA review of feature selection methods in medical applicationsComput Biol Med201911210337510.1016/j.compbiomed.2019.103375
MafarjaMMirjaliliSWhale optimization approaches for wrapper feature selectionAppl Soft Comput20186244145310.1016/j.asoc.2017.11.006
WangBLiuLLiYRobust grey wolf optimizer for multimodal optimizations: a cross-dimensional coordination approachJ Sci Comput2022923110446272210.1007/s10915-022-01955-z
Adam SP, Alexandropoulos SAN, Pardalos PM et al (2019) No free lunch theorem: a review. Approximation Optimization: Algorithms Complex Appl, : 57–82
AskrHAbdel-SalamMHassanienAECopula entropy-based golden jackal optimization algorithm for high-dimensional feature selection problemsExpert Syst Appl202423812158210.1016/j.eswa.2023.121582
MedjahedSASaadiTABenyettouAKernel-based learning and feature selection analysis for cancer diagnosisAppl Soft Comput201751394810.1016/j.asoc.2016.12.010
Ahrari A, Elsayed S, Sarker R et al (2022) Problem Definition and Evaluation Criteria for the CEC’2022 Competition on Dynamic Multimodal Optimization[C]//Proceedings of the IEEE World Congress on Computational Intelligence (IEEE WCCI 2022), Padua, Italy. : 18–23
SaffariAZahiriSHKhisheMFuzzy whale optimisation algorithm: a new hybrid approach for automatic sonar target recognitionJ Exp Theor Artif Intell202335230932510.1080/0952813X.2021.1960639
Houssein EH, Saad MR, Çelik E et al (2024) An enhanced sea-horse optimizer for solving global problems and cluster head selection in wireless sensor networks. Cluster Comput 27:7775–7802
Al-Eiadeh MR, Qaddoura R, Abdallah M (2024) Investigating the performance of a Novel modified binary black hole optimization algorithm for enhancing feature selection. Appl Sci 14(12):5207
KhisheMMosaviMRChimp optimization algorithmExpert Syst Appl202014911333810.1016/j.eswa.2020.113338
Spavieri G, Cavalca DL, Fernandes RAS et al (2018) An adaptive individual inertia weight based on best, worst and individual particle performances for the PSO algorithm[C]//International Conference on Artificial Intelligence and Soft Computing. Springer, Cham, : 536–547
EzugwuAEAgushakaJOAbualigahLPrairie dog optimization algorithmNeural Comput Appl20223422200172006510.1007/s00521-022-07530-9
SaremiSMirjaliliSLewisAHow important is a transfer function in discrete heuristic algorithmsNeural Comput Appl20152662564010.1007/s00521-014-1743-5
DongHBLiDJZhangXPParticle swarm optimization algorithm with dynamically adjusting inertia weightComput Sci201845298102
Umarani S, Balaji NA, Balakrishnan K et al (2024) Binary northern goshawk optimization for feature selection on micro array cancer datasets. Evol Syst 15:1551–1565
BeheshtiZBMPA-TVSinV: a binary marine predators algorithm using time-varying sine and V-shaped transfer functions for wrapper-based feature selectionKnowl Based Syst202225210944610.1016/j.knosys.2022.109446
AmiriMHMehrabi HashjinNMontazeriMHippopotamus optimization algorithm: a novel nature-inspired optimization algorithmSci Rep2024141503210.1038/s41598-024-54910-3
GongSPKhisheMMohammadiMNiching chimp optimization for constraint multimodal engineering optimization problemsExpert Syst Appl202219811688710.1016/j.eswa.2022.116887
MirjaliliSLewisAS-shaped versus V-shaped transfer functions for binary particle swarm optimizationSwarm Evol Comput2013911410.1016/j.swevo.2012.09.002
LiADXueBZhangMImproved binary particle swarm optimization for feature selection with new initialization and search space reduction strategiesAppl Soft Comput202110610730210.1016/j.asoc.2021.107302
LiXDWangJSLiuYClassification feature selection and dimensionality reduction based on logical binary sine-cosine function arithmetic optimization algorithmEgypt Inf J202426100472
LiuHZhouMCLiuQAn embedded feature selection method for imbalanced data classificationIEEE/CAA J Automatica Sinica20196370371510.1109/JAS.2019.1911447
BoQChengWKhisheMEvolving chimp optimization algorithm by weighted opposition-based technique and greedy search for multimodal engineering problemsAppl Soft Comput202313210986910.1016/j.asoc.2022.109869
MafarjaMAljarahIHeidariAABinary dragonfly optimization for feature selection using time-varying transfer functionsKnowl Based Syst201816118520410.1016/j.knosys.2018.08.003
AyecheFAltiAEfficient feature selection in high Dimensional Data based on enhanced binary chimp optimization algorithms and machine learningHuman-Centric Intell Syst20233455858710.1007/s44230-023-00048-w
LiuHZhaoRFangHEntropy-based consensus clustering for patient stratificationBioinformatics201733172691269810.1093/bioinformatics/btx167
AskarzadehAA novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithmComput Struct201616911210.1016/j.compstruc.2016.03.001
AroraSSinghSButterfly optimization algorithm: a novel approach for global optimizationSoft Comput20192371573410.1007/s00500-018-3102-4
Abinash MJ, Vasudevan V (2018) A study on wrapper-based feature selection algorithm for leukemia dataset[C]//Intelligent Engineering Informatics: Proceedings of the 6th International Conference on FICTA. Springer Singapore, : 311–321
Chunning S, Jindong Z (2024) A Sound Source Location Method Based on Time Difference of Arrival with Improved Dung Beetle Optimizer[C]//Machine Learning and Intelligent Computing. PMLR, : 165–176
Abdulwahab HM, Ajitha S, Saif MAN et al (2024) MOBCSA: multi-objective binary cuckoo search algorithm for features selection in Bioinformatics. IEEE Access 12:21840–21867
HashimFAMostafaRRKhurmaRAA new approach for solving global optimization and engineering problems based on modified sea horse optimizerJ Comput Des Eng20241117398
HeidariAAMirjaliliSFarisHHarris hawks optimization: Algorithm and applicationsFuture Generation Comput Syst20199784987210.1016/j.future.2019.02.028
ZhaoZGHuangSWangWSimplified particle swarm optimization algorithm based on stochastic inertia weightAppl Res Comput2014312361391
AdegboyeORFedaAKOjekemiORDGS-SCSO: enhancing sa
OR Adegboye (10954_CR74) 2024; 14
AE Ezugwu (10954_CR79) 2022; 34
S Li (10954_CR28) 2020; 111
S Mirjalili (10954_CR27) 2017; 114
B Shen (10954_CR32) 2023; 123
A Askarzadeh (10954_CR25) 2016; 169
AD Li (10954_CR16) 2021; 106
AA Heidari (10954_CR24) 2019; 97
C Blum (10954_CR80) 2005; 2
J Zhang (10954_CR1) 2021; 22
W Kaidi (10954_CR40) 2022; 235
10954_CR68
10954_CR65
S Mirjalili (10954_CR57) 2013; 9
10954_CR21
10954_CR20
A Saffari (10954_CR34) 2023; 35
10954_CR63
F Ayeche (10954_CR82) 2023; 3
A Ratnaweera (10954_CR66) 2004; 8
L Brezočnik (10954_CR17) 2018; 8
M Khishe (10954_CR30) 2020; 149
S Saremi (10954_CR70) 2015; 26
10954_CR62
10954_CR61
MR Alnowami (10954_CR8) 2022; 15
M Khishe (10954_CR33) 2023; 56
M Khishe (10954_CR36) 2023; 211
H Liu (10954_CR75) 2017; 33
M Mafarja (10954_CR14) 2018; 62
P Trojovský (10954_CR29) 2022; 22
M Mafarja (10954_CR71) 2018; 161
10954_CR78
ZG Zhao (10954_CR67) 2014; 31
MH Amiri (10954_CR22) 2024; 14
V Bolon-Canedo (10954_CR7) 2020; 53
HM Hasanien (10954_CR46) 2024; 286
AH Hossny (10954_CR4) 2020; 10
10954_CR73
S Pölsterl (10954_CR11) 2016; 72
K Chaudhari (10954_CR6) 2023; 219
FA Hashim (10954_CR44) 2024; 11
Z Li (10954_CR47) 2024; 12
A Wang (10954_CR72) 2015; 83
F Thabtah (10954_CR13) 2020; 534
S Salcedo-Sanz (10954_CR5) 2018; 90
X Han (10954_CR52) 2020; 24
S Mirjalili (10954_CR23) 2016; 95
XD Li (10954_CR60) 2024; 26
J Wang (10954_CR41) 2021; 13
S Zhao (10954_CR42) 2023; 53
W Aribowo (10954_CR43) 2023; 4
10954_CR81
H Askr (10954_CR64) 2024; 238
RK Singh (10954_CR10) 2015; 50
B Wang (10954_CR37) 2022; 92
10954_CR45
S Arora (10954_CR77) 2019; 23
SA Medjahed (10954_CR9) 2017; 51
HB Dong (10954_CR69) 2018; 45
H Lu (10954_CR3) 2022; 36
BH Nguyen (10954_CR12) 2020; 54
B Remeseiro (10954_CR2) 2019; 112
10954_CR49
10954_CR48
Q Bo (10954_CR35) 2023; 132
X Wang (10954_CR18) 2022; 29
L Qian (10954_CR31) 2024; 36
L Abualigah (10954_CR26) 2021; 376
SP Gong (10954_CR39) 2022; 198
M Zhang (10954_CR55) 2023; 648
L Liu (10954_CR38) 2022; 53
10954_CR56
10954_CR54
Z Beheshti (10954_CR76) 2022; 252
10954_CR51
M Nssibi (10954_CR50) 2024; 57
M Rostami (10954_CR19) 2021; 100
H Liu (10954_CR15) 2019; 6
10954_CR59
10954_CR58
References_xml – reference: HossnyAHMitchellLLothianNFeature selection methods for event detection in Twitter: a text mining approachSocial Netw Anal Min20201011510.1007/s13278-020-00658-3
– reference: SaffariAZahiriSHKhisheMFuzzy whale optimisation algorithm: a new hybrid approach for automatic sonar target recognitionJ Exp Theor Artif Intell202335230932510.1080/0952813X.2021.1960639
– reference: Wang J, Chen Y, Zou H et al (2024) Enhanced slime mould algorithm with backtracking search algorithm: global optimization and feature selection
– reference: Abinash MJ, Vasudevan V (2018) A study on wrapper-based feature selection algorithm for leukemia dataset[C]//Intelligent Engineering Informatics: Proceedings of the 6th International Conference on FICTA. Springer Singapore, : 311–321
– reference: Msallam MM, Bin Idris SA (2024) Unsupervised text feature selection by binary fire hawk optimizer for text clustering. Cluster Comput 27:7721–7740
– reference: Salcedo-SanzSCornejo-BuenoLPrietoLFeature selection in machine learning prediction systems for renewable energy applicationsRenew Sustain Energy Rev20189072874110.1016/j.rser.2018.04.008
– reference: WangBLiuLLiYRobust grey wolf optimizer for multimodal optimizations: a cross-dimensional coordination approachJ Sci Comput2022923110446272210.1007/s10915-022-01955-z
– reference: LiSChenHWangMSlime mould algorithm: a new method for stochastic optimizationFuture Generation Comput Syst202011130032310.1016/j.future.2020.03.055
– reference: RatnaweeraAHalgamugeSKWatsonHCSelf-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficientsIEEE Trans Evol Comput20048324025510.1109/TEVC.2004.826071
– reference: Mafarja M, Eleyan D, Abdullah S et al (2017) S-shaped vs. V-shaped transfer functions for ant lion optimization algorithm in feature selection problem[C]//Proceedings of the international conference on future networks and distributed systems. : 1–7
– reference: LiXDWangJSLiuYClassification feature selection and dimensionality reduction based on logical binary sine-cosine function arithmetic optimization algorithmEgypt Inf J202426100472
– reference: LiuHZhouMCLiuQAn embedded feature selection method for imbalanced data classificationIEEE/CAA J Automatica Sinica20196370371510.1109/JAS.2019.1911447
– reference: HeidariAAMirjaliliSFarisHHarris hawks optimization: Algorithm and applicationsFuture Generation Comput Syst20199784987210.1016/j.future.2019.02.028
– reference: MirjaliliSLewisAThe whale optimization algorithmAdv Eng Softw201695516710.1016/j.advengsoft.2016.01.008
– reference: HanXLiDLiuPFeature selection by recursive binary gravitational search algorithm optimization for cancer classificationSoft Comput2020244407442510.1007/s00500-019-04203-z
– reference: Umarani S, Balaji NA, Balakrishnan K et al (2024) Binary northern goshawk optimization for feature selection on micro array cancer datasets. Evol Syst 15:1551–1565
– reference: WangXHuHLiangYOn the mathematical models and applications of swarm intelligent optimization algorithmsArch Comput Methods Eng202229638153842448620110.1007/s11831-022-09717-8
– reference: Houssein EH, Saad MR, Çelik E et al (2024) An enhanced sea-horse optimizer for solving global problems and cluster head selection in wireless sensor networks. Cluster Comput 27:7775–7802
– reference: LiZQuSXuYEnhanced Sea Horse optimization algorithm for Hyperparameter optimization of Agricultural Image RecognitionMathematics202412336810.3390/math12030368
– reference: NguyenBHXueBZhangMA survey on swarm intelligence approaches to feature selection in data miningSwarm Evol Comput20205410066310.1016/j.swevo.2020.100663
– reference: AdegboyeORFedaAKOjekemiORDGS-SCSO: enhancing sand cat swarm optimization with dynamic pinhole imaging and golden sine algorithm for improved numerical optimization performanceSci Rep2024141149110.1038/s41598-023-50910-x
– reference: Bolon-CanedoVRemeseiroBFeature selection in image analysis: a surveyArtif Intell Rev20205342905293110.1007/s10462-019-09750-3
– reference: WangAAnNChenGAccelerating wrapper-based feature selection with K-nearest-neighborKnowl Based Syst201583819110.1016/j.knosys.2015.03.009
– reference: AribowoWA novel improved sea-horse optimizer for tuning parameter power system stabilizerJ Rob Control (JRC)202341122210.18196/jrc.v4i1.16445
– reference: ZhaoZGHuangSWangWSimplified particle swarm optimization algorithm based on stochastic inertia weightAppl Res Comput2014312361391
– reference: AmiriMHMehrabi HashjinNMontazeriMHippopotamus optimization algorithm: a novel nature-inspired optimization algorithmSci Rep2024141503210.1038/s41598-024-54910-3
– reference: TrojovskýPDehghaniMPelican optimization algorithm: a novel nature-inspired algorithm for engineering applicationsSensors202222385510.3390/s22030855
– reference: KhisheMMosaviMRChimp optimization algorithmExpert Syst Appl202014911333810.1016/j.eswa.2020.113338
– reference: LuHPengHXuZDA feature selection–based intelligent framework for predicting maximum depth of corroded pipeline defectsJ Perform Constr Facil20223650402204410.1061/(ASCE)CF.1943-5509.0001753
– reference: ShenBKhisheMMirjaliliSEvolving Marine predators Algorithm by dynamic foraging strategy for real-world engineering optimization problemsEng Appl Artif Intell202312310620710.1016/j.engappai.2023.106207
– reference: AskarzadehAA novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithmComput Struct201616911210.1016/j.compstruc.2016.03.001
– reference: SinghRKSivabalakrishnanMFeature selection of gene expression data for cancer classification: a reviewProcedia Comput Sci201550525710.1016/j.procs.2015.04.060
– reference: BeheshtiZBMPA-TVSinV: a binary marine predators algorithm using time-varying sine and V-shaped transfer functions for wrapper-based feature selectionKnowl Based Syst202225210944610.1016/j.knosys.2022.109446
– reference: Abdulwahab HM, Ajitha S, Saif MAN et al (2024) MOBCSA: multi-objective binary cuckoo search algorithm for features selection in Bioinformatics. IEEE Access 12:21840–21867
– reference: AbualigahLDiabatAMirjaliliSThe arithmetic optimization algorithmComput Methods Appl Mech Eng2021376113609419929910.1016/j.cma.2020.113609
– reference: BoQChengWKhisheMEvolving chimp optimization algorithm by weighted opposition-based technique and greedy search for multimodal engineering problemsAppl Soft Comput202313210986910.1016/j.asoc.2022.109869
– reference: ThabtahFKamalovFHammoudSLeast loss: a simplified filter method for feature selectionInf Sci2020534115410209610.1016/j.ins.2020.05.017
– reference: EzugwuAEAgushakaJOAbualigahLPrairie dog optimization algorithmNeural Comput Appl20223422200172006510.1007/s00521-022-07530-9
– reference: Spavieri G, Cavalca DL, Fernandes RAS et al (2018) An adaptive individual inertia weight based on best, worst and individual particle performances for the PSO algorithm[C]//International Conference on Artificial Intelligence and Soft Computing. Springer, Cham, : 536–547
– reference: Sawhney R, Mathur P, Shankar R (2018) A firefly algorithm based wrapper-penalty feature selection method for cancer diagnosis[C]//Computational Science and Its Applications–ICCSA. : 18th International Conference, Melbourne, VIC, Australia, July 2–5, 2018, Proceedings, Part I 18. Springer International Publishing, 2018: 438–449
– reference: Adam SP, Alexandropoulos SAN, Pardalos PM et al (2019) No free lunch theorem: a review. Approximation Optimization: Algorithms Complex Appl, : 57–82
– reference: ZhaoSZhangTMaSSea-horse optimizer: a novel nature-inspired meta-heuristic for global optimization problemsAppl Intell20235310118331186010.1007/s10489-022-03994-3
– reference: NssibiMManitaGChhabraAGene selection for high dimensional biological datasets using hybrid island binary artificial bee colony with chaos game optimizationArtif Intell Rev202457317410.1007/s10462-023-10675-1
– reference: RemeseiroBBolon-CanedoVA review of feature selection methods in medical applicationsComput Biol Med201911210337510.1016/j.compbiomed.2019.103375
– reference: AskrHAbdel-SalamMHassanienAECopula entropy-based golden jackal optimization algorithm for high-dimensional feature selection problemsExpert Syst Appl202423812158210.1016/j.eswa.2023.121582
– reference: RostamiMBerahmandKNasiriEReview of swarm intelligence-based feature selection methodsEng Appl Artif Intell202110010421010.1016/j.engappai.2021.104210
– reference: ZhangMWangJSLiuYMulti-objective optimization algorithm based on clustering guided binary equilibrium optimizer and NSGA-III to solve high-dimensional feature selection problemInf Sci202364811963810.1016/j.ins.2023.119638
– reference: HashimFAMostafaRRKhurmaRAA new approach for solving global optimization and engineering problems based on modified sea horse optimizerJ Comput Des Eng20241117398
– reference: ZhangJXuDHaoKFS–GBDT: identification multicancer-risk module via a feature selection algorithm by integrating Fisher score and GBDTBrief Bioinform2021223bbaa18910.1093/bib/bbaa189
– reference: MafarjaMAljarahIHeidariAABinary dragonfly optimization for feature selection using time-varying transfer functionsKnowl Based Syst201816118520410.1016/j.knosys.2018.08.003
– reference: Chunning S, Jindong Z (2024) A Sound Source Location Method Based on Time Difference of Arrival with Improved Dung Beetle Optimizer[C]//Machine Learning and Intelligent Computing. PMLR, : 165–176
– reference: AroraSSinghSButterfly optimization algorithm: a novel approach for global optimizationSoft Comput20192371573410.1007/s00500-018-3102-4
– reference: KhisheMGreedy opposition-based learning for chimp optimization algorithmArtif Intell Rev20235687633766310.1007/s10462-022-10343-w
– reference: Ma BB, Fong S, Millham R (2018) Data stream mining in fog computing environment with feature selection using ensemble of swarm search algorithms[C]//2018 conference on information communications technology and society (ICTAS). IEEE, : 1–6
– reference: MedjahedSASaadiTABenyettouAKernel-based learning and feature selection analysis for cancer diagnosisAppl Soft Comput201751394810.1016/j.asoc.2016.12.010
– reference: LiADXueBZhangMImproved binary particle swarm optimization for feature selection with new initialization and search space reduction strategiesAppl Soft Comput202110610730210.1016/j.asoc.2021.107302
– reference: MafarjaMMirjaliliSWhale optimization approaches for wrapper feature selectionAppl Soft Comput20186244145310.1016/j.asoc.2017.11.006
– reference: BlumCAnt colony optimization: introduction and recent trendsPhys Life Rev20052435337310.1016/j.plrev.2005.10.001
– reference: QianLKhisheMHuangYSEB-ChOA: an improved chimp optimization algorithm using spiral exploitation behaviorNeural Comput Appl20243694763478610.1007/s00521-023-09236-y
– reference: HasanienHMAlsalehITostado-VélizMHybrid particle swarm and sea horse optimization algorithm-based optimal reactive power dispatch of power systems comprising electric vehiclesEnergy202428612958310.1016/j.energy.2023.129583
– reference: BrezočnikLFisterIJrPodgorelecVSwarm intelligence algorithms for feature selection: a reviewAppl Sci201889152110.3390/app8091521
– reference: AlnowamiMRAbolabanFATahaEA wrapper-based feature selection approach to investigate potential biomarkers for early detection of breast cancerJ Radiation Res Appl Sci2022151104110
– reference: ChaudhariKThakkarANeural network systems with an integrated coefficient of variation-based feature selection for stock price and trend predictionExpert Syst Appl202321911952710.1016/j.eswa.2023.119527
– reference: DongHBLiDJZhangXPParticle swarm optimization algorithm with dynamically adjusting inertia weightComput Sci201845298102
– reference: LiuLKhisheMMohammadiMOptimization of constraint engineering problems using robust universal learning chimp optimizationAdv Eng Inform20225310163610.1016/j.aei.2022.101636
– reference: SaremiSMirjaliliSLewisAHow important is a transfer function in discrete heuristic algorithmsNeural Comput Appl20152662564010.1007/s00521-014-1743-5
– reference: Tanyildizi E, Demir G (2017) Golden sine algorithm: a novel math-inspired algorithm. Adv Electr Comput Eng 17(2):71
– reference: LiuHZhaoRFangHEntropy-based consensus clustering for patient stratificationBioinformatics201733172691269810.1093/bioinformatics/btx167
– reference: AyecheFAltiAEfficient feature selection in high Dimensional Data based on enhanced binary chimp optimization algorithms and machine learningHuman-Centric Intell Syst20233455858710.1007/s44230-023-00048-w
– reference: GongSPKhisheMMohammadiMNiching chimp optimization for constraint multimodal engineering optimization problemsExpert Syst Appl202219811688710.1016/j.eswa.2022.116887
– reference: Xie L, Han T, Zhou H et al (2021) Tuna swarm optimization: a novel swarm-based metaheuristic algorithm for global optimization. Computational intelligence and Neuroscience, 2021: 1–22
– reference: Ahrari A, Elsayed S, Sarker R et al (2022) Problem Definition and Evaluation Criteria for the CEC’2022 Competition on Dynamic Multimodal Optimization[C]//Proceedings of the IEEE World Congress on Computational Intelligence (IEEE WCCI 2022), Padua, Italy. : 18–23
– reference: WangJKhisheMKavehMBinary chimp optimization algorithm (BChOA): a new binary meta-heuristic for solving optimization problemsCogn Comput2021131297131610.1007/s12559-021-09933-7
– reference: Ye Z, Shu Z, Liu S et al (2021) A Hybrid Rice Optimization Algorithm with Ant System for Feature Selection[C]//2021 11th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). IEEE, 2: 700–704
– reference: MirjaliliSGandomiAHMirjaliliSZSalp swarm algorithm: a bio-inspired optimizer for engineering design problemsAdv Eng Softw201711416319110.1016/j.advengsoft.2017.07.002
– reference: KaidiWKhisheMMohammadiMDynamic levy flight chimp optimizationKnowl Based Syst202223510762510.1016/j.knosys.2021.107625
– reference: KhisheMOroujiNMosaviMRMulti-objective chimp optimizer: an innovative algorithm for multi-objective problemsExpert Syst Appl202321111873410.1016/j.eswa.2022.118734
– reference: Kennedy J, Eberhart R (1995) Particle swarm optimization[C]//Proceedings of ICNN’95-international conference on neural networks. ieee, 4: 1942–1948
– reference: MirjaliliSLewisAS-shaped versus V-shaped transfer functions for binary particle swarm optimizationSwarm Evol Comput2013911410.1016/j.swevo.2012.09.002
– reference: Al-Eiadeh MR, Qaddoura R, Abdallah M (2024) Investigating the performance of a Novel modified binary black hole optimization algorithm for enhancing feature selection. Appl Sci 14(12):5207
– reference: PölsterlSConjetiSNavabNSurvival analysis for high-dimensional, heterogeneous medical data: exploring feature extraction as an alternative to feature selectionArtif Intell Med20167211110.1016/j.artmed.2016.07.004
– volume: 35
  start-page: 309
  issue: 2
  year: 2023
  ident: 10954_CR34
  publication-title: J Exp Theor Artif Intell
  doi: 10.1080/0952813X.2021.1960639
– volume: 51
  start-page: 39
  year: 2017
  ident: 10954_CR9
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2016.12.010
– ident: 10954_CR48
  doi: 10.1007/978-3-319-95162-1_30
– volume: 36
  start-page: 4763
  issue: 9
  year: 2024
  ident: 10954_CR31
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-023-09236-y
– ident: 10954_CR65
– volume: 33
  start-page: 2691
  issue: 17
  year: 2017
  ident: 10954_CR75
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx167
– ident: 10954_CR49
  doi: 10.1007/s12530-024-09580-x
– ident: 10954_CR62
  doi: 10.21203/rs.3.rs-3962990/v1
– volume: 31
  start-page: 361
  issue: 2
  year: 2014
  ident: 10954_CR67
  publication-title: Appl Res Comput
– volume: 62
  start-page: 441
  year: 2018
  ident: 10954_CR14
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.11.006
– volume: 90
  start-page: 728
  year: 2018
  ident: 10954_CR5
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2018.04.008
– volume: 22
  start-page: 855
  issue: 3
  year: 2022
  ident: 10954_CR29
  publication-title: Sensors
  doi: 10.3390/s22030855
– volume: 252
  start-page: 109446
  year: 2022
  ident: 10954_CR76
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2022.109446
– ident: 10954_CR20
  doi: 10.1109/ICTAS.2018.8368770
– ident: 10954_CR45
  doi: 10.1007/s10586-024-04368-9
– volume: 57
  start-page: 1
  issue: 3
  year: 2024
  ident: 10954_CR50
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-023-10675-1
– volume: 95
  start-page: 51
  year: 2016
  ident: 10954_CR23
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2016.01.008
– ident: 10954_CR21
  doi: 10.4316/AECE.2017.02010
– volume: 56
  start-page: 7633
  issue: 8
  year: 2023
  ident: 10954_CR33
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-022-10343-w
– volume: 198
  start-page: 116887
  year: 2022
  ident: 10954_CR39
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.116887
– volume: 161
  start-page: 185
  year: 2018
  ident: 10954_CR71
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2018.08.003
– volume: 26
  start-page: 625
  year: 2015
  ident: 10954_CR70
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-014-1743-5
– volume: 36
  start-page: 04022044
  issue: 5
  year: 2022
  ident: 10954_CR3
  publication-title: J Perform Constr Facil
  doi: 10.1061/(ASCE)CF.1943-5509.0001753
– ident: 10954_CR61
  doi: 10.1007/s10586-024-04364-z
– volume: 149
  start-page: 113338
  year: 2020
  ident: 10954_CR30
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113338
– volume: 219
  start-page: 119527
  year: 2023
  ident: 10954_CR6
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.119527
– volume: 111
  start-page: 300
  year: 2020
  ident: 10954_CR28
  publication-title: Future Generation Comput Syst
  doi: 10.1016/j.future.2020.03.055
– volume: 23
  start-page: 715
  year: 2019
  ident: 10954_CR77
  publication-title: Soft Comput
  doi: 10.1007/s00500-018-3102-4
– volume: 14
  start-page: 1491
  issue: 1
  year: 2024
  ident: 10954_CR74
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-50910-x
– volume: 54
  start-page: 100663
  year: 2020
  ident: 10954_CR12
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2020.100663
– volume: 13
  start-page: 1297
  year: 2021
  ident: 10954_CR41
  publication-title: Cogn Comput
  doi: 10.1007/s12559-021-09933-7
– volume: 9
  start-page: 1
  year: 2013
  ident: 10954_CR57
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2012.09.002
– volume: 26
  start-page: 100472
  year: 2024
  ident: 10954_CR60
  publication-title: Egypt Inf J
– volume: 114
  start-page: 163
  year: 2017
  ident: 10954_CR27
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 10
  start-page: 1
  year: 2020
  ident: 10954_CR4
  publication-title: Social Netw Anal Min
  doi: 10.1007/s13278-020-00658-3
– volume: 3
  start-page: 558
  issue: 4
  year: 2023
  ident: 10954_CR82
  publication-title: Human-Centric Intell Syst
  doi: 10.1007/s44230-023-00048-w
– ident: 10954_CR56
  doi: 10.1145/3102304.3102325
– volume: 15
  start-page: 104
  issue: 1
  year: 2022
  ident: 10954_CR8
  publication-title: J Radiation Res Appl Sci
– volume: 376
  start-page: 113609
  year: 2021
  ident: 10954_CR26
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2020.113609
– volume: 14
  start-page: 5032
  issue: 1
  year: 2024
  ident: 10954_CR22
  publication-title: Sci Rep
  doi: 10.1038/s41598-024-54910-3
– volume: 648
  start-page: 119638
  year: 2023
  ident: 10954_CR55
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2023.119638
– volume: 534
  start-page: 1
  year: 2020
  ident: 10954_CR13
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2020.05.017
– ident: 10954_CR58
  doi: 10.1109/IDAACS53288.2021.9660979
– volume: 123
  start-page: 106207
  year: 2023
  ident: 10954_CR32
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2023.106207
– volume: 286
  start-page: 129583
  year: 2024
  ident: 10954_CR46
  publication-title: Energy
  doi: 10.1016/j.energy.2023.129583
– volume: 6
  start-page: 703
  issue: 3
  year: 2019
  ident: 10954_CR15
  publication-title: IEEE/CAA J Automatica Sinica
  doi: 10.1109/JAS.2019.1911447
– ident: 10954_CR59
  doi: 10.3390/app14125207
– volume: 11
  start-page: 73
  issue: 1
  year: 2024
  ident: 10954_CR44
  publication-title: J Comput Des Eng
– volume: 92
  start-page: 110
  issue: 3
  year: 2022
  ident: 10954_CR37
  publication-title: J Sci Comput
  doi: 10.1007/s10915-022-01955-z
– volume: 238
  start-page: 121582
  year: 2024
  ident: 10954_CR64
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.121582
– volume: 53
  start-page: 2905
  issue: 4
  year: 2020
  ident: 10954_CR7
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-019-09750-3
– volume: 235
  start-page: 107625
  year: 2022
  ident: 10954_CR40
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2021.107625
– volume: 2
  start-page: 353
  issue: 4
  year: 2005
  ident: 10954_CR80
  publication-title: Phys Life Rev
  doi: 10.1016/j.plrev.2005.10.001
– volume: 106
  start-page: 107302
  year: 2021
  ident: 10954_CR16
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2021.107302
– volume: 97
  start-page: 849
  year: 2019
  ident: 10954_CR24
  publication-title: Future Generation Comput Syst
  doi: 10.1016/j.future.2019.02.028
– volume: 83
  start-page: 81
  year: 2015
  ident: 10954_CR72
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2015.03.009
– volume: 45
  start-page: 98
  issue: 2
  year: 2018
  ident: 10954_CR69
  publication-title: Comput Sci
– volume: 72
  start-page: 1
  year: 2016
  ident: 10954_CR11
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2016.07.004
– volume: 112
  start-page: 103375
  year: 2019
  ident: 10954_CR2
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2019.103375
– volume: 100
  start-page: 104210
  year: 2021
  ident: 10954_CR19
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2021.104210
– volume: 50
  start-page: 52
  year: 2015
  ident: 10954_CR10
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2015.04.060
– volume: 4
  start-page: 12
  issue: 1
  year: 2023
  ident: 10954_CR43
  publication-title: J Rob Control (JRC)
  doi: 10.18196/jrc.v4i1.16445
– volume: 34
  start-page: 20017
  issue: 22
  year: 2022
  ident: 10954_CR79
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-022-07530-9
– volume: 24
  start-page: 4407
  year: 2020
  ident: 10954_CR52
  publication-title: Soft Comput
  doi: 10.1007/s00500-019-04203-z
– ident: 10954_CR81
  doi: 10.1109/ICNN.1995.488968
– ident: 10954_CR68
  doi: 10.1007/978-3-319-91253-0_50
– ident: 10954_CR78
  doi: 10.1155/2021/9210050
– volume: 53
  start-page: 11833
  issue: 10
  year: 2023
  ident: 10954_CR42
  publication-title: Appl Intell
  doi: 10.1007/s10489-022-03994-3
– volume: 169
  start-page: 1
  year: 2016
  ident: 10954_CR25
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2016.03.001
– volume: 132
  start-page: 109869
  year: 2023
  ident: 10954_CR35
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2022.109869
– volume: 211
  start-page: 118734
  year: 2023
  ident: 10954_CR36
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.118734
– volume: 8
  start-page: 240
  issue: 3
  year: 2004
  ident: 10954_CR66
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2004.826071
– volume: 53
  start-page: 101636
  year: 2022
  ident: 10954_CR38
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2022.101636
– ident: 10954_CR54
  doi: 10.1007/978-3-030-12767-1_5
– ident: 10954_CR51
  doi: 10.1007/978-981-10-7566-7_31
– ident: 10954_CR73
– ident: 10954_CR63
  doi: 10.1109/ACCESS.2024.3362228
– volume: 29
  start-page: 3815
  issue: 6
  year: 2022
  ident: 10954_CR18
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-022-09717-8
– volume: 22
  start-page: bbaa189
  issue: 3
  year: 2021
  ident: 10954_CR1
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbaa189
– volume: 8
  start-page: 1521
  issue: 9
  year: 2018
  ident: 10954_CR17
  publication-title: Appl Sci
  doi: 10.3390/app8091521
– volume: 12
  start-page: 368
  issue: 3
  year: 2024
  ident: 10954_CR47
  publication-title: Mathematics
  doi: 10.3390/math12030368
SSID ssj0005243
Score 2.4398944
Snippet Cancer gene expression data has the characteristics of high-dimensional, multi-text and multi-classification. The problem of cancer subtype diagnosis can be...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 347
SubjectTerms Accuracy
Algorithms
Artificial Intelligence
Cancer
Classification
Computer Science
Convergence
Data
Datasets
Exploitation
Feature selection
Function
Gene expression
Genes
Genetic aspects
Global local relationship
Horses
Intelligence
Medical diagnosis
Movement
Optimization
Simulation
Strategies
Technology assessment
Transfer functions
Trigonometric functions
SummonAdditionalLinks – databaseName: ABI/INFORM Global
  dbid: M0C
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgcOiFlo-KhYLmgMQBLLKOk9hcqlK12wNtkaBVb5btOKISbMpmFwG_gp_cGcdhWRC9IOWS2LEszZvx2J55w9izulQ-4MO9DESqrUuuGl1wq8aNznxT5JGJ6extdXyszs_1u3Tg1qWwysEmRkNdt57OyF_lY0F7ASWqncsvnKpG0e1qKqFxk90iz4ZC-o6yvd9CPPqoOVFqjluLcUqaSalzshQcVyg0RLqQvFhZmP40z3_dk8bl52Djfye-ye4kxxN2e6TcZTfC9B7bGIo6QNLx--zn5GTCj968Pzx5DTHakHc9ge13aBZ0tAYupvAC6gj_2M66AC2anc8XP3AUOtWFiV10lJoJ8-gU42daPAkAgB4yNCFyiUIXK_DQ17YBT-CbAaI5QPiWgnOnQPGrD9jpwf6HvUOeyjagvPNsjla9knXhK6G8bXCH48iBd5XwVcg0QkBmThSKcoykVVLI0ORBubrGF1trUeZbbG3aTsNDBn0hpUJKK4KsrHPo7-QhOGd1VgZRjth4kJnxidOcSmt8Mks2ZpKzQTmbKGdTjNiLX_9c9owe1_Z-TlAwpO44srcpawHnR8RZZpcYw0q6nB2x7ZWeqKZ-tXmAh0lmojNLbIzYywFgy-Z_T-vR9aM9ZusiQpvCbrbZ2ny2CE_Ybf91ftHNnkYluQJdxRaX
  priority: 102
  providerName: ProQuest
Title GOG-MBSHO: multi-strategy fusion binary sea-horse optimizer with Gaussian transfer function for feature selection of cancer gene expression data
URI https://link.springer.com/article/10.1007/s10462-024-10954-5
https://www.proquest.com/docview/3121401827
Volume 57
WOSCitedRecordID wos001344520500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1573-7462
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005243
  issn: 1573-7462
  databaseCode: 7WY
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1573-7462
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005243
  issn: 1573-7462
  databaseCode: M0C
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-7462
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005243
  issn: 1573-7462
  databaseCode: P5Z
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-7462
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005243
  issn: 1573-7462
  databaseCode: K7-
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Library Science Database
  customDbUrl:
  eissn: 1573-7462
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005243
  issn: 1573-7462
  databaseCode: M1O
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/libraryscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-7462
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005243
  issn: 1573-7462
  databaseCode: BENPR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1573-7462
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005243
  issn: 1573-7462
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 1573-7462
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005243
  issn: 1573-7462
  databaseCode: C24
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xjQdeGJ-iMCo_IPEAlhLHjh3etmrrJFhbbTAGL1biOGIStKhpEfBX8Cdz5zob5UsCKTopiWNZvg-f47vfATyqc-M8XtxJT6DaRc5NUyhemrQpEteoLCAxnb7Qo5E5OysmMSms7aLduyPJYKl_SHaTueC4pqDpKJTkagO2VGoKCuQbUI7DRWCHzGJ6zO-_W1uCfjbEv5yIhoXmYPv_hngDrkfHku2uJOEmXPHTW7DdFW1gUYdvw7fheMiP9k4Ox89YiCbk7Qqg9gtrlvTrjFUhRZehDvB3s3nr2QzNyofzr9gL_bVlw3LZUuolWwSnFx_T4kgMZugBs8YHrFDWhgo79HTWMEfCNWcorZ75zzH4dsooPvUOvDrYfzk45LEsA_IzSxZotbWsldPCuLLBHUxFDnqlhdM-KZDFMqmEMpRDJEsjhfRN5k1V13hT1oXIs7uwOZ1N_T1gq0JJSspSeKnLqkJ_JvO-qsoiyb3Ie5B2nLIuYpZT6Yz39hJtmabc4pTbMOVW9eDJxTcfV4gdf239mATAkjpjz66MWQk4PgLGsruECJbT4WsPdtZaohq69dedCNloBlqbpYI2sEboHjztROby9Z-Hdf_fmj-AayJIHYXZ7MDmYr70D-Gq-7Q4b-d92NCv3_Rha29_NDnuB2VB-lxzpEfJgGg6RjpRb5Een5x-B6yVEcI
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgkQvLU-xpYAPIA5gkXWcxKmEUHl0t9rtFolS9WZix1ErwaZsdqHlV_BL-I3MOAnLguitB6S95LGWk3zzeWzPfAPwMI-VdfjjVjoS1U5jroo04pnqFmlgiyj0SkwHw2Q0UoeH6dsl-NHmwlBYZcuJnqjz0tIa-bOwK2guoETy4uQzp6pRtLvaltCoYTFwZ19xylY933mN3_eRENtv9l_1eVNVALsTBlMknUTmkU2EslmBDrgh_9IkwiYuSLGHMjAiUpQCIzMlhXRF6JTJczzI8lTEIbZ7CS7LUCVkV4OE_xZSUkfpiTjlOJXpNkk6TaqejAXHERGJL40kjxYGwj-Hg7_2Zf1wt732v72oa7DaONZsq7aE67DkxjdgrS1awRoOuwnfe3s9vvvyXX9vk_loSl7VAr1nrJjR0iEzPkWZ4TPwo3JSOVYirX46_oat0Ko162WzilJP2dQ7_XianAMCOMMZACuc10plla8wRGfLglkyrglDa3XMnTbBx2NG8bm34P2FvJfbsDwux-4OsLpQVCRlJpxMMmPQnwudMyZLg9iJuAPdFiPaNprtVDrko56rTROuNOJKe1zpqANPfv3npFYsOffuxwQ9TXSGLdusycrA_pEwmN4iRbSYNp87sLFwJ9KQXbzcwlE3NFjpORY78LQF9Pzyv7u1fn5rD-Bqf393qIc7o8FdWBHerCjEaAOWp5OZuwdX7JfpcTW57w2UwYeLBvpPf0Fyow
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VghAXyq9YKOADiANYZB0ncZAQKpTdVi3blfhRxcU4jiMqwaZsdoHyFDwPT8eM47AsiN56QMolcWI5yTfjGfubGYA7Zaqsw4Nb6Sipdp5yVeUJN6pf5ZGtkthnYnqzm41Gan8_H6_Ajy4WhmiVnU70irqsLa2RP4z7gnwBha56FWgR483Bk8NPnCpI0U5rV06jhciOO_qC7lvzeHsT__VdIQbPXz3b4qHCAA4tjmaogDJZJjYTypoKjfGCbM0iEzZzUY6jlVEhEkXhMNIoKaSrYqeKssQTU-YijbHfU3A6Qx-T6ITj5O1v9JKWsSfSnKNb0w8BOyFsT6aC4-yISjBPJE-WJsU_p4a_9mj91DdY-58_2gU4HwxuttFKyEVYcZNLsNYVs2BBt12G78O9IX_x9OXW3iPmWZa8aRP3HrFqTkuKrPChywzfgb-vp41jNarbjwffsBdazWZDM28oJJXNvDOAl8loIOAz9AxY5XwOVdb4ykN0ta6YJaGbMpRix9zXQEqeMOLtXoHXJ_JdrsLqpJ64a8DaAlKJlEY4mZmiQDsvdq4oTB6lTqQ96Hd40TbkcqeSIh_0Igs1YUwjxrTHmE56cP_XM4dtJpNj775HMNSk5rBna0K0Bo6PEobpDcqUltKmdA_Wl-5E9WSXmzto6qAeG73AZQ8edOBeNP97WNeP7-02nEV8693t0c4NOCe8hBHzaB1WZ9O5uwln7OfZQTO95WWVwbuTxvlPHSh7xw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GOG-MBSHO%3A+multi-strategy+fusion+binary+sea-horse+optimizer+with+Gaussian+transfer+function+for+feature+selection+of+cancer+gene+expression+data&rft.jtitle=The+Artificial+intelligence+review&rft.au=Wang%2C+Yu-Cai&rft.au=Song%2C+Hao-Ming&rft.au=Wang%2C+Jie-Sheng&rft.au=Song%2C+Yu-Wei&rft.date=2024-12-01&rft.pub=Springer+Netherlands&rft.eissn=1573-7462&rft.volume=57&rft.issue=12&rft_id=info:doi/10.1007%2Fs10462-024-10954-5&rft.externalDocID=10_1007_s10462_024_10954_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7462&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7462&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7462&client=summon