An alternative optimal strategy for stochastic model predictive control of a residential battery energy management system with solar photovoltaic

Scenario-based stochastic model predictive control traditionally considers the optimal strategy to be the expectation of the optimal strategies across all scenarios. However, while the stochastic problem involving uncertainties can be substantiated by a large number of scenarios, the expectation of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied energy Jg. 283; S. 116289
Hauptverfasser: van der Meer, Dennis, Wang, Guang Chao, Munkhammar, Joakim
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.02.2021
Schlagworte:
ISSN:0306-2619, 1872-9118, 1872-9118
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Scenario-based stochastic model predictive control traditionally considers the optimal strategy to be the expectation of the optimal strategies across all scenarios. However, while the stochastic problem involving uncertainties can be substantiated by a large number of scenarios, the expectation of the respective optimal control strategies derived from all scenarios as the optimal control strategy to the problem is challenging to justify. We therefore propose a different approach in which we artfully have the optimization program find the common optimal strategy across all scenarios for the first prediction step at each sample time, which, if it exists, yields the true optimal strategy with greater confidence. We demonstrate the efficacy of the proposed formulation through a case study of a research villa in Borås, Sweden, that is equipped with a battery and a photovoltaic system. We compute a covariance matrix that contains time-dependent information of the data and use it to generate autocorrelated scenarios from the probabilistic forecasts that serve as the uncertain input to the energy management system. We justify the credibility of the optimal solution derived from the proposed formulation with compelling reasoning and quantitative results such as improved self-consumption of photovoltaic power. •We reformulate the scenario-based stochastic model predictive control algorithm.•We add a constraint that forces the control strategy to be equal across scenarios.•The reformulation is tested on a system with a battery, load and PV system.•The probabilistic forecasts and multivariate forecasts are thoroughly evaluated.•The reformulation results in increased profit, self-consumption and self-sufficiency.
AbstractList Scenario-based stochastic model predictive control traditionally considers the optimal strategy to be the expectation of the optimal strategies across all scenarios. However, while the stochastic problem involving uncertainties can be substantiated by a large number of scenarios, the expectation of the respective optimal control strategies derived from all scenarios as the optimal control strategy to the problem is challenging to justify. We therefore propose a different approach in which we artfully have the optimization program find the common optimal strategy across all scenarios for the first prediction step at each sample time, which, if it exists, yields the true optimal strategy with greater confidence. We demonstrate the efficacy of the proposed formulation through a case study of a research villa in Borås, Sweden, that is equipped with a battery and a photovoltaic system. We compute a covariance matrix that contains time-dependent information of the data and use it to generate autocorrelated scenarios from the probabilistic forecasts that serve as the uncertain input to the energy management system. We justify the credibility of the optimal solution derived from the proposed formulation with compelling reasoning and quantitative results such as improved self-consumption of photovoltaic power.
Scenario-based stochastic model predictive control traditionally considers the optimal strategy to be the expectation of the optimal strategies across all scenarios. However, while the stochastic problem involving uncertainties can be substantiated by a large number of scenarios, the expectation of the respective optimal control strategies derived from all scenarios as the optimal control strategy to the problem is challenging to justify. We therefore propose a different approach in which we artfully have the optimization program find the common optimal strategy across all scenarios for the first prediction step at each sample time, which, if it exists, yields the true optimal strategy with greater confidence. We demonstrate the efficacy of the proposed formulation through a case study of a research villa in Borås, Sweden, that is equipped with a battery and a photovoltaic system. We compute a covariance matrix that contains time-dependent information of the data and use it to sample autocorrelated scenarios from the probabilistic forecasts that serve as the uncertain input to the energy management system. We justify the credibility of the optimal solution derived from the proposed formulation with compelling reasoning and quantitative results such as improved self-consumption of photovoltaic power.
Scenario-based stochastic model predictive control traditionally considers the optimal strategy to be the expectation of the optimal strategies across all scenarios. However, while the stochastic problem involving uncertainties can be substantiated by a large number of scenarios, the expectation of the respective optimal control strategies derived from all scenarios as the optimal control strategy to the problem is challenging to justify. We therefore propose a different approach in which we artfully have the optimization program find the common optimal strategy across all scenarios for the first prediction step at each sample time, which, if it exists, yields the true optimal strategy with greater confidence. We demonstrate the efficacy of the proposed formulation through a case study of a research villa in Borås, Sweden, that is equipped with a battery and a photovoltaic system. We compute a covariance matrix that contains time-dependent information of the data and use it to generate autocorrelated scenarios from the probabilistic forecasts that serve as the uncertain input to the energy management system. We justify the credibility of the optimal solution derived from the proposed formulation with compelling reasoning and quantitative results such as improved self-consumption of photovoltaic power. •We reformulate the scenario-based stochastic model predictive control algorithm.•We add a constraint that forces the control strategy to be equal across scenarios.•The reformulation is tested on a system with a battery, load and PV system.•The probabilistic forecasts and multivariate forecasts are thoroughly evaluated.•The reformulation results in increased profit, self-consumption and self-sufficiency.
ArticleNumber 116289
Author Munkhammar, Joakim
Wang, Guang Chao
van der Meer, Dennis
Author_xml – sequence: 1
  givenname: Dennis
  orcidid: 0000-0002-9473-4536
  surname: van der Meer
  fullname: van der Meer, Dennis
  email: dennis.vandermeer@angstrom.uu.se
  organization: Department of Civil and Industrial Engineering, Uppsala University, Sweden
– sequence: 2
  givenname: Guang Chao
  surname: Wang
  fullname: Wang, Guang Chao
  organization: Mechanical and Aerospace Engineering, University of California, San Diego, USA
– sequence: 3
  givenname: Joakim
  surname: Munkhammar
  fullname: Munkhammar, Joakim
  organization: Department of Civil and Industrial Engineering, Uppsala University, Sweden
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-425812$$DView record from Swedish Publication Index (Uppsala universitet)
BookMark eNqFUc2OFCEYJGZNnF19BcPRgzMC_QeJBye7_iWbeNl4JTR8PcOEhhbo2fRj-MYytnvxsicCVNX3VdU1uvLBA0JvKdlRQtsPp52awEM8LDtGWHmkLePiBdpQ3rGtoJRfoQ2pSLtlLRWv0HVKJ0IIo4xs0O-9x8pliF5lewYcpmxH5XDKUWU4LHgIsVyCPqqUrcZjMODwFMFY_Zegg88xOBwGrHCEZA34bItCr3KRXfC6Gh6VVwcYyydOS8ow4kebjzgFpyKejiGHc3BZWf0avRyUS_Dm33mDHr58frj9tr3_8fX77f5-q-uK5OJl0MWa6FvRdFQYUzd1LRitOOuBMyNE1Xe0HUw1wDBwXameU9Fz0RlFjahu0PtVNj3CNPdyisV3XGRQVt7Zn3sZ4kHOs6xZwykr8HcrfIrh1wwpy9EmDc4pD2FOkjVdXbGmTC_QjytUx5BShEFqm0u6l6CUdZISeelNnuRTb_LSm1x7K_T2P_rTas8SP61EKKmdLUSZtAWvS1URdJYm2Ock_gCNcr2C
CitedBy_id crossref_primary_10_3390_su17177678
crossref_primary_10_1109_ACCESS_2023_3346324
crossref_primary_10_1016_j_renene_2024_122047
crossref_primary_10_1016_j_apenergy_2024_123573
crossref_primary_10_1016_j_enbuild_2022_111916
crossref_primary_10_1109_TPWRS_2023_3344874
crossref_primary_10_1016_j_segan_2023_101033
crossref_primary_10_1016_j_est_2022_105629
crossref_primary_10_1016_j_segan_2024_101373
crossref_primary_10_1109_TSG_2024_3416369
crossref_primary_10_1109_ACCESS_2024_3414297
crossref_primary_10_1016_j_energy_2024_134083
crossref_primary_10_1016_j_ijepes_2022_108368
crossref_primary_10_1016_j_psep_2024_07_004
crossref_primary_10_1109_TII_2023_3296875
crossref_primary_10_1016_j_apenergy_2022_118906
crossref_primary_10_1016_j_renene_2022_05_166
crossref_primary_10_1016_j_seta_2021_101225
crossref_primary_10_1088_1742_6596_3001_1_012030
crossref_primary_10_1109_ACCESS_2021_3139189
crossref_primary_10_3390_en16155600
crossref_primary_10_1016_j_renene_2024_121617
crossref_primary_10_3390_en14185997
crossref_primary_10_3390_en14185852
crossref_primary_10_1016_j_energy_2023_129006
crossref_primary_10_1016_j_desal_2022_115871
crossref_primary_10_3390_en16073140
crossref_primary_10_1016_j_engappai_2025_110951
crossref_primary_10_3390_inventions9030064
crossref_primary_10_3390_pr12030457
Cites_doi 10.1016/j.apenergy.2017.08.133
10.1016/j.enbuild.2011.09.022
10.1109/TPWRS.2008.919203
10.1016/j.ijepes.2019.105800
10.1016/j.pecs.2013.06.002
10.1214/13-EJS823
10.1016/j.apenergy.2019.03.187
10.1016/j.apenergy.2019.03.036
10.1016/j.enbuild.2015.12.055
10.1198/016214506000001437
10.1175/1520-0493(2004)132<0338:PFOPIT>2.0.CO;2
10.1016/j.solener.2018.06.038
10.1002/qj.559
10.1016/j.solener.2019.04.018
10.1016/j.solener.2019.10.041
10.1111/j.1467-9868.2007.00587.x
10.1109/TSG.2016.2606442
10.1109/TPWRS.2015.2502423
10.1175/MWR-D-16-0417.1
10.1109/TSTE.2017.2775339
10.1214/aoms/1177729394
10.3390/en11051166
10.1080/10618600.2014.977447
10.1016/j.rser.2016.03.047
10.1016/j.apenergy.2020.115147
10.1016/j.renene.2019.02.077
10.3390/app9020356
10.1016/j.compchemeng.2017.10.026
10.2307/1913643
10.1016/j.apenergy.2019.113580
10.1016/j.rser.2017.05.212
10.1002/we.284
10.1007/s11749-008-0114-x
10.1016/j.apenergy.2020.115061
10.1016/j.solener.2020.04.015
10.1175/WAF993.1
10.1016/j.renene.2018.08.056
10.1016/j.apenergy.2017.12.104
10.1175/1520-0493(1987)115<1330:AGFFFV>2.0.CO;2
ContentType Journal Article
Copyright 2020 The Author(s)
Copyright_xml – notice: 2020 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
DOI 10.1016/j.apenergy.2020.116289
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
SWEPUB Uppsala universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Uppsala universitet
SwePub Articles full text
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
ExternalDocumentID oai_DiVA_org_uu_425812
10_1016_j_apenergy_2020_116289
S0306261920316767
GeographicLocations Sweden
GeographicLocations_xml – name: Sweden
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
ID FETCH-LOGICAL-c430t-26fc1189b695719dd4544921382be82d993b716fd3feff8c3ab819b897da1d93
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000613289000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
1872-9118
IngestDate Tue Nov 04 16:34:02 EST 2025
Sun Sep 28 11:00:50 EDT 2025
Sat Nov 29 07:18:59 EST 2025
Tue Nov 18 21:59:16 EST 2025
Fri Feb 23 02:39:42 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Stochastic model predictive control
Scenario based
Quantile regression
Multivariate forecasting
Gradient boosting
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c430t-26fc1189b695719dd4544921382be82d993b716fd3feff8c3ab819b897da1d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9473-4536
OpenAccessLink https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-425812
PQID 2574325382
PQPubID 24069
ParticipantIDs swepub_primary_oai_DiVA_org_uu_425812
proquest_miscellaneous_2574325382
crossref_citationtrail_10_1016_j_apenergy_2020_116289
crossref_primary_10_1016_j_apenergy_2020_116289
elsevier_sciencedirect_doi_10_1016_j_apenergy_2020_116289
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Inman, Pedro, Coimbra (b31) 2013; 39
Wang, Ratnam, Haghi, Kleissl (b27) 2019; 130
Guo, Bao, Yan (b23) 2019; 9
Luthander (b9) 2018
Child, Kemfert, Bogdanov, Breyer (b6) 2019; 139
Yang (b52) 2019; 184
Pinson, Madsen, Nielsen, Papaefthymiou, Klöckl (b42) 2009; 12
van der Meer, Yang, Widén, Munkhammar (b41) 2020; 12
Thorarinsdottir, Scheuerer, Heinz (b54) 2016; 25
Wilks (b55) 2019
Ram, Bogdanov, Aghahosseini, Gulagi, Oyewo, Child (b5) 2019
(b2) 1990
Gneiting, Ranjan (b44) 2013; 7
Golestaneh, Pinson, Gooi (b25) 2016; 31
Lauret, David, Pinson (b48) 2019; 194
Lindahl (b30) 2019
Acquah, Kodaira, Han (b14) 2018; 11
Pouffary, Rogers (b3) 2014
Bremnes (b38) 2004; 132
(b4) 2020
Bengtsson, Andrae, Aspelien, Batrak, Calvo, de Rooy (b33) 2017; 145
Terlouw, AlSkaif, Bauer, van Sark (b12) 2019; 254
Oldewurtel, Parisio, Jones, Gyalistras, Gwerder, Stauch (b17) 2012; 45
Yang, Wan, Chen, Ng, Dubey (b18) 2020; 271
van der Meer (b50) 2020
Wang, Wang, Chu, Pota, Gadh (b21) 2016; 116
Gneiting, Raftery (b51) 2007; 102
Wilks (b39) 2018
Bröcker, Smith (b49) 2007; 22
Conte, Massucco, Saviozzi, Silvestro (b15) 2018; 9
Liu, Paritosh, Awalgaonkar, Bilionis, Karava (b19) 2018; 171
Pinson, McSharry, Madsen (b26) 2010; 136
Niu, Tian, Lu, Zhao (b11) 2019; 243
Hastie, Tibsharani, Friedman (b35) 2009
Rosenblatt (b43) 1952; 23
Gneiting, Stanberry, Grimit, Held, Johnson (b53) 2008; 17
Diamond, Boyd (b45) 2016; 17
Zhou, Li, Chan, Cao, Kuang, Liu (b10) 2016; 61
Appino, González Ordiano, Mikut, Faulwasser, Hagenmeyer (b28) 2018; 210
van der Meer, Shepero, Svensson, Widén, Munkhammar (b29) 2018; 213
Gneiting, Balabdaoui, Raftery (b47) 2007; 69
Murphy, Winkler (b46) 1987; 115
Koenker (b40) 2005
Friedman (b34) 2001; 29
Ableitner, Tiefenbeck, Meeuw, Wörner, Fleisch, Wortmann (b56) 2020; 270
Wu, Hu, Yin, Moura (b13) 2018; 9
van der Meer, Widén, Munkhammar (b32) 2018; 81
Peterson, Torcellini, Grant (b7) 2015
Carvalho, Correia, Ferreira (b8) 2008; 23
Koenker, Bassett (b36) 1978; 46
Heirung, Paulson, OLeary, Mesbah (b16) 2018; 114
Wu, Pratt, Chakraborty (b20) 2015
Yousefi Ramandi, Bigdeli, Afshar (b24) 2020; 118
Seddig, Jochem, Fichtner (b22) 2019; 242
Prindle, Eldridge, Eckhardt, Frederick (b1) 2007
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel (b37) 2011; 12
Murphy (10.1016/j.apenergy.2020.116289_b46) 1987; 115
Ableitner (10.1016/j.apenergy.2020.116289_b56) 2020; 270
Lauret (10.1016/j.apenergy.2020.116289_b48) 2019; 194
Lindahl (10.1016/j.apenergy.2020.116289_b30) 2019
Inman (10.1016/j.apenergy.2020.116289_b31) 2013; 39
van der Meer (10.1016/j.apenergy.2020.116289_b50) 2020
Luthander (10.1016/j.apenergy.2020.116289_b9) 2018
Friedman (10.1016/j.apenergy.2020.116289_b34) 2001; 29
Yang (10.1016/j.apenergy.2020.116289_b52) 2019; 184
Guo (10.1016/j.apenergy.2020.116289_b23) 2019; 9
Gneiting (10.1016/j.apenergy.2020.116289_b44) 2013; 7
Ram (10.1016/j.apenergy.2020.116289_b5) 2019
Gneiting (10.1016/j.apenergy.2020.116289_b53) 2008; 17
Bremnes (10.1016/j.apenergy.2020.116289_b38) 2004; 132
Koenker (10.1016/j.apenergy.2020.116289_b36) 1978; 46
Pedregosa (10.1016/j.apenergy.2020.116289_b37) 2011; 12
Seddig (10.1016/j.apenergy.2020.116289_b22) 2019; 242
(10.1016/j.apenergy.2020.116289_b4) 2020
Terlouw (10.1016/j.apenergy.2020.116289_b12) 2019; 254
Gneiting (10.1016/j.apenergy.2020.116289_b47) 2007; 69
Gneiting (10.1016/j.apenergy.2020.116289_b51) 2007; 102
Niu (10.1016/j.apenergy.2020.116289_b11) 2019; 243
Conte (10.1016/j.apenergy.2020.116289_b15) 2018; 9
Carvalho (10.1016/j.apenergy.2020.116289_b8) 2008; 23
Wu (10.1016/j.apenergy.2020.116289_b13) 2018; 9
Koenker (10.1016/j.apenergy.2020.116289_b40) 2005
Pinson (10.1016/j.apenergy.2020.116289_b42) 2009; 12
Prindle (10.1016/j.apenergy.2020.116289_b1) 2007
Zhou (10.1016/j.apenergy.2020.116289_b10) 2016; 61
Heirung (10.1016/j.apenergy.2020.116289_b16) 2018; 114
Child (10.1016/j.apenergy.2020.116289_b6) 2019; 139
Appino (10.1016/j.apenergy.2020.116289_b28) 2018; 210
Bröcker (10.1016/j.apenergy.2020.116289_b49) 2007; 22
Wilks (10.1016/j.apenergy.2020.116289_b39) 2018
Wang (10.1016/j.apenergy.2020.116289_b21) 2016; 116
Yousefi Ramandi (10.1016/j.apenergy.2020.116289_b24) 2020; 118
Peterson (10.1016/j.apenergy.2020.116289_b7) 2015
Rosenblatt (10.1016/j.apenergy.2020.116289_b43) 1952; 23
(10.1016/j.apenergy.2020.116289_b2) 1990
Hastie (10.1016/j.apenergy.2020.116289_b35) 2009
Acquah (10.1016/j.apenergy.2020.116289_b14) 2018; 11
Diamond (10.1016/j.apenergy.2020.116289_b45) 2016; 17
Pouffary (10.1016/j.apenergy.2020.116289_b3) 2014
Thorarinsdottir (10.1016/j.apenergy.2020.116289_b54) 2016; 25
Pinson (10.1016/j.apenergy.2020.116289_b26) 2010; 136
van der Meer (10.1016/j.apenergy.2020.116289_b41) 2020; 12
Oldewurtel (10.1016/j.apenergy.2020.116289_b17) 2012; 45
Liu (10.1016/j.apenergy.2020.116289_b19) 2018; 171
Golestaneh (10.1016/j.apenergy.2020.116289_b25) 2016; 31
Bengtsson (10.1016/j.apenergy.2020.116289_b33) 2017; 145
Wang (10.1016/j.apenergy.2020.116289_b27) 2019; 130
van der Meer (10.1016/j.apenergy.2020.116289_b32) 2018; 81
Yang (10.1016/j.apenergy.2020.116289_b18) 2020; 271
Wu (10.1016/j.apenergy.2020.116289_b20) 2015
Wilks (10.1016/j.apenergy.2020.116289_b55) 2019
van der Meer (10.1016/j.apenergy.2020.116289_b29) 2018; 213
References_xml – start-page: 299
  year: 2019
  ident: b5
  article-title: Global energy system based on 100% renewable energy – power, heat, transport and desalination sectors
– volume: 45
  start-page: 15
  year: 2012
  end-page: 27
  ident: b17
  article-title: Use of model predictive control and weather forecasts for energy efficient building climate control
  publication-title: Energy Build
– volume: 9
  start-page: 2065
  year: 2018
  end-page: 2075
  ident: b13
  article-title: Stochastic optimal energy management of smart home with PEV energy storage
  publication-title: IEEE Trans Smart Grid
– volume: 61
  start-page: 30
  year: 2016
  end-page: 40
  ident: b10
  article-title: Smart home energy management systems: Concept, configurations, and scheduling strategies
  publication-title: Renew Sustain Energy Rev
– volume: 184
  start-page: 410
  year: 2019
  end-page: 416
  ident: b52
  article-title: A universal benchmarking method for probabilistic solar irradiance forecasting
  publication-title: Sol Energy
– volume: 12
  year: 2020
  ident: b41
  article-title: Clear-sky index space-time trajectories from probabilistic solar forecasts: Comparing promising copulas
  publication-title: J Renew Sustain Energy
– year: 2015
  ident: b7
  article-title: A common definition for zero energy buildings
– volume: 139
  start-page: 80
  year: 2019
  end-page: 101
  ident: b6
  article-title: Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in europe
  publication-title: Renew Energy
– volume: 254
  year: 2019
  ident: b12
  article-title: Optimal energy management in all-electric residential energy systems with heat and electricity storage
  publication-title: Appl Energy
– volume: 29
  start-page: 1189
  year: 2001
  end-page: 1232
  ident: b34
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: Statistics (Berl.)
– volume: 7
  start-page: 1747
  year: 2013
  end-page: 1782
  ident: b44
  article-title: Combining predictive distributions
  publication-title: Electron J Stat
– volume: 271
  year: 2020
  ident: b18
  article-title: Model predictive control with adaptive machine-learning-based model for building energy efficiency and comfort optimization
  publication-title: Appl Energy
– volume: 116
  start-page: 141
  year: 2016
  end-page: 150
  ident: b21
  article-title: Energy management for a commercial building microgrid with stationary and mobile battery storage
  publication-title: Energy Build
– year: 2019
  ident: b30
  article-title: National survey report of PV power applications in Sweden 2018
– year: 2020
  ident: b50
  article-title: Comment on “Verification of deterministic solar forecasts”: Verification of probabilistic solar forecasts
  publication-title: Sol Energy
– start-page: 49
  year: 2018
  end-page: 89
  ident: b39
  article-title: Chapter 3 - univariate ensemble postprocessing
  publication-title: Statistical postprocessing of ensemble forecasts
– volume: 115
  start-page: 1330
  year: 1987
  end-page: 1338
  ident: b46
  article-title: A general framework for forecast verification
  publication-title: Mon Weather Rev
– volume: 213
  start-page: 195
  year: 2018
  end-page: 207
  ident: b29
  article-title: Probabilistic forecasting of electricity consumption, photovoltaic power generation and net demand of an individual building using Gaussian processes
  publication-title: Appl Energy
– start-page: 1
  year: 2015
  end-page: 5
  ident: b20
  article-title: Stochastic optimal scheduling of residential appliances with renewable energy sources
  publication-title: 2015 IEEE power energy society general meeting
– year: 2007
  ident: b1
  article-title: American council for an energy-efficient economy
– volume: 242
  start-page: 769
  year: 2019
  end-page: 781
  ident: b22
  article-title: Two-stage stochastic optimization for cost-minimal charging of electric vehicles at public charging stations with photovoltaics
  publication-title: Appl Energy
– volume: 132
  start-page: 338
  year: 2004
  end-page: 347
  ident: b38
  article-title: Probabilistic forecasts of precipitation in terms of quantiles using NWP model output
  publication-title: Mon Weather Rev
– volume: 17
  start-page: 1
  year: 2016
  end-page: 5
  ident: b45
  article-title: CVXPY: A python-embedded modeling language for convex optimization
  publication-title: J Mach Learn Res
– year: 2019
  ident: b55
  article-title: Statistical methods in the atmospheric sciences
– year: 2020
  ident: b4
  article-title: Building consumption by energy
– volume: 114
  start-page: 158
  year: 2018
  end-page: 170
  ident: b16
  article-title: Stochastic model predictive control how does it work?
  publication-title: Comput Chem Eng
– volume: 25
  start-page: 105
  year: 2016
  end-page: 122
  ident: b54
  article-title: Assessing the calibration of high-dimensional ensemble forecasts using rank histograms
  publication-title: J Comput Graph Statist
– volume: 23
  start-page: 766
  year: 2008
  end-page: 772
  ident: b8
  article-title: Distributed reactive power generation control for voltage rise mitigation in distribution networks
  publication-title: IEEE Trans Power Syst
– volume: 12
  start-page: 51
  year: 2009
  end-page: 62
  ident: b42
  article-title: From probabilistic forecasts to statistical scenarios of short-term wind power production
  publication-title: Wind Energy
– volume: 243
  start-page: 274
  year: 2019
  end-page: 287
  ident: b11
  article-title: Flexible dispatch of a building energy system using building thermal storage and battery energy storage
  publication-title: Appl Energy
– volume: 102
  start-page: 359
  year: 2007
  end-page: 378
  ident: b51
  article-title: Strictly proper scoring rules, prediction, and estimation
  publication-title: J Amer Statist Assoc
– year: 1990
  ident: b2
  article-title: International Energy Agency data and statistics
– volume: 210
  start-page: 1207
  year: 2018
  end-page: 1218
  ident: b28
  article-title: On the use of probabilistic forecasts in scheduling of renewable energy sources coupled to storages
  publication-title: Appl Energy
– volume: 9
  start-page: 356
  year: 2019
  ident: b23
  article-title: Stochastic model predictive control based scheduling optimization of multi-energy system considering hybrid CHPs and EVs
  publication-title: Appl Sci
– volume: 31
  start-page: 3850
  year: 2016
  end-page: 3863
  ident: b25
  article-title: Very short-term nonparametric probabilistic forecasting of renewable energy generation— with application to solar energy
  publication-title: IEEE Trans Power Syst
– year: 2005
  ident: b40
  publication-title: Quantile regression
– volume: 81
  start-page: 1484
  year: 2018
  end-page: 1512
  ident: b32
  article-title: Review on probabilistic forecasting of photovoltaic power production and electricity consumption
  publication-title: Renew Sustain Energy Rev
– volume: 23
  start-page: 470
  year: 1952
  end-page: 472
  ident: b43
  article-title: Remarks on a multivariate transformation
  publication-title: Ann Math Stat
– volume: 171
  start-page: 953
  year: 2018
  end-page: 970
  ident: b19
  article-title: Model predictive control under forecast uncertainty for optimal operation of buildings with integrated solar systems
  publication-title: Sol Energy
– volume: 39
  start-page: 535
  year: 2013
  end-page: 576
  ident: b31
  article-title: Solar forecasting methods for renewable energy integration
  publication-title: Prog Energy Combust Sci
– volume: 194
  start-page: 254
  year: 2019
  end-page: 271
  ident: b48
  article-title: Verification of solar irradiance probabilistic forecasts
  publication-title: Sol Energy
– volume: 9
  start-page: 1188
  year: 2018
  end-page: 1197
  ident: b15
  article-title: A stochastic optimization method for planning and real-time control of integrated PV-storage systems: Design and experimental validation
  publication-title: IEEE Trans Sustain Energy
– volume: 46
  start-page: 33
  year: 1978
  end-page: 50
  ident: b36
  article-title: Regression quantiles
  publication-title: Econometrica
– volume: 11
  start-page: 1166
  year: 2018
  ident: b14
  article-title: Real-time demand side management algorithm using stochastic optimization
  publication-title: Energies
– volume: 145
  start-page: 1919
  year: 2017
  end-page: 1935
  ident: b33
  article-title: The HARMONIE AROME model configuration in the ALADIN HIRLAM NWP system
  publication-title: Mon Weather Rev
– year: 2018
  ident: b9
  article-title: Self-consumption of photovoltaic electricity in residential buildings
– volume: 270
  year: 2020
  ident: b56
  article-title: User behavior in a real-world peer-to-peer electricity market
  publication-title: Appl Energy
– volume: 118
  year: 2020
  ident: b24
  article-title: Stochastic economic model predictive control for real-time scheduling of balance responsible parties
  publication-title: Int J Electr Power Energy Syst
– volume: 17
  start-page: 211
  year: 2008
  ident: b53
  article-title: Assessing probabilistic forecasts of multivariate quantities, with an application to ensemble predictions of surface winds
  publication-title: TEST
– start-page: 1
  year: 2009
  end-page: 764
  ident: b35
  article-title: The elements of statistical learning
  publication-title: Math. Intell.
– volume: 130
  start-page: 1146
  year: 2019
  end-page: 1158
  ident: b27
  article-title: Corrective receding horizon EV charge scheduling using short-term solar forecasting
  publication-title: Renew Energy
– volume: 136
  start-page: 77
  year: 2010
  end-page: 90
  ident: b26
  article-title: Reliability diagrams for non-parametric density forecasts of continuous variables: Accounting for serial correlation
  publication-title: Q J R Meteorol Soc
– year: 2014
  ident: b3
  article-title: Climate finance for cities and buildings - A handbook for local governments
– volume: 69
  start-page: 243
  year: 2007
  end-page: 268
  ident: b47
  article-title: Probabilistic forecasts, calibration and sharpness
  publication-title: J R Stat Soc Ser B Stat Methodol
– volume: 22
  start-page: 651
  year: 2007
  end-page: 661
  ident: b49
  article-title: Increasing the reliability of reliability diagrams
  publication-title: Weather Forecast
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: b37
  article-title: Scikit-learn: Machine learning in python
  publication-title: v
– volume: 210
  start-page: 1207
  year: 2018
  ident: 10.1016/j.apenergy.2020.116289_b28
  article-title: On the use of probabilistic forecasts in scheduling of renewable energy sources coupled to storages
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.08.133
– year: 2014
  ident: 10.1016/j.apenergy.2020.116289_b3
– volume: 45
  start-page: 15
  year: 2012
  ident: 10.1016/j.apenergy.2020.116289_b17
  article-title: Use of model predictive control and weather forecasts for energy efficient building climate control
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2011.09.022
– volume: 23
  start-page: 766
  issue: 2
  year: 2008
  ident: 10.1016/j.apenergy.2020.116289_b8
  article-title: Distributed reactive power generation control for voltage rise mitigation in distribution networks
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2008.919203
– volume: 118
  year: 2020
  ident: 10.1016/j.apenergy.2020.116289_b24
  article-title: Stochastic economic model predictive control for real-time scheduling of balance responsible parties
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2019.105800
– year: 2007
  ident: 10.1016/j.apenergy.2020.116289_b1
– volume: 39
  start-page: 535
  issue: 6
  year: 2013
  ident: 10.1016/j.apenergy.2020.116289_b31
  article-title: Solar forecasting methods for renewable energy integration
  publication-title: Prog Energy Combust Sci
  doi: 10.1016/j.pecs.2013.06.002
– start-page: 299
  year: 2019
  ident: 10.1016/j.apenergy.2020.116289_b5
– volume: 7
  start-page: 1747
  year: 2013
  ident: 10.1016/j.apenergy.2020.116289_b44
  article-title: Combining predictive distributions
  publication-title: Electron J Stat
  doi: 10.1214/13-EJS823
– volume: 243
  start-page: 274
  year: 2019
  ident: 10.1016/j.apenergy.2020.116289_b11
  article-title: Flexible dispatch of a building energy system using building thermal storage and battery energy storage
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.03.187
– volume: 242
  start-page: 769
  year: 2019
  ident: 10.1016/j.apenergy.2020.116289_b22
  article-title: Two-stage stochastic optimization for cost-minimal charging of electric vehicles at public charging stations with photovoltaics
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.03.036
– volume: 116
  start-page: 141
  year: 2016
  ident: 10.1016/j.apenergy.2020.116289_b21
  article-title: Energy management for a commercial building microgrid with stationary and mobile battery storage
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2015.12.055
– volume: 17
  start-page: 1
  issue: 83
  year: 2016
  ident: 10.1016/j.apenergy.2020.116289_b45
  article-title: CVXPY: A python-embedded modeling language for convex optimization
  publication-title: J Mach Learn Res
– year: 1990
  ident: 10.1016/j.apenergy.2020.116289_b2
– volume: 29
  start-page: 1189
  issue: 5
  year: 2001
  ident: 10.1016/j.apenergy.2020.116289_b34
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: Statistics (Berl.)
– volume: 102
  start-page: 359
  issue: 477
  year: 2007
  ident: 10.1016/j.apenergy.2020.116289_b51
  article-title: Strictly proper scoring rules, prediction, and estimation
  publication-title: J Amer Statist Assoc
  doi: 10.1198/016214506000001437
– volume: 132
  start-page: 338
  issue: 1
  year: 2004
  ident: 10.1016/j.apenergy.2020.116289_b38
  article-title: Probabilistic forecasts of precipitation in terms of quantiles using NWP model output
  publication-title: Mon Weather Rev
  doi: 10.1175/1520-0493(2004)132<0338:PFOPIT>2.0.CO;2
– volume: 171
  start-page: 953
  year: 2018
  ident: 10.1016/j.apenergy.2020.116289_b19
  article-title: Model predictive control under forecast uncertainty for optimal operation of buildings with integrated solar systems
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2018.06.038
– year: 2019
  ident: 10.1016/j.apenergy.2020.116289_b55
– volume: 136
  start-page: 77
  year: 2010
  ident: 10.1016/j.apenergy.2020.116289_b26
  article-title: Reliability diagrams for non-parametric density forecasts of continuous variables: Accounting for serial correlation
  publication-title: Q J R Meteorol Soc
  doi: 10.1002/qj.559
– year: 2019
  ident: 10.1016/j.apenergy.2020.116289_b30
– volume: 184
  start-page: 410
  year: 2019
  ident: 10.1016/j.apenergy.2020.116289_b52
  article-title: A universal benchmarking method for probabilistic solar irradiance forecasting
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2019.04.018
– volume: 194
  start-page: 254
  year: 2019
  ident: 10.1016/j.apenergy.2020.116289_b48
  article-title: Verification of solar irradiance probabilistic forecasts
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2019.10.041
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.apenergy.2020.116289_b37
  article-title: Scikit-learn: Machine learning in python
  publication-title: v
– volume: 69
  start-page: 243
  issue: 2
  year: 2007
  ident: 10.1016/j.apenergy.2020.116289_b47
  article-title: Probabilistic forecasts, calibration and sharpness
  publication-title: J R Stat Soc Ser B Stat Methodol
  doi: 10.1111/j.1467-9868.2007.00587.x
– year: 2020
  ident: 10.1016/j.apenergy.2020.116289_b4
– volume: 9
  start-page: 2065
  issue: 3
  year: 2018
  ident: 10.1016/j.apenergy.2020.116289_b13
  article-title: Stochastic optimal energy management of smart home with PEV energy storage
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2016.2606442
– year: 2018
  ident: 10.1016/j.apenergy.2020.116289_b9
– volume: 31
  start-page: 3850
  issue: 5
  year: 2016
  ident: 10.1016/j.apenergy.2020.116289_b25
  article-title: Very short-term nonparametric probabilistic forecasting of renewable energy generation— with application to solar energy
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2015.2502423
– volume: 145
  start-page: 1919
  issue: 5
  year: 2017
  ident: 10.1016/j.apenergy.2020.116289_b33
  article-title: The HARMONIE AROME model configuration in the ALADIN HIRLAM NWP system
  publication-title: Mon Weather Rev
  doi: 10.1175/MWR-D-16-0417.1
– volume: 9
  start-page: 1188
  issue: 3
  year: 2018
  ident: 10.1016/j.apenergy.2020.116289_b15
  article-title: A stochastic optimization method for planning and real-time control of integrated PV-storage systems: Design and experimental validation
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2017.2775339
– volume: 23
  start-page: 470
  issue: 3
  year: 1952
  ident: 10.1016/j.apenergy.2020.116289_b43
  article-title: Remarks on a multivariate transformation
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177729394
– volume: 11
  start-page: 1166
  year: 2018
  ident: 10.1016/j.apenergy.2020.116289_b14
  article-title: Real-time demand side management algorithm using stochastic optimization
  publication-title: Energies
  doi: 10.3390/en11051166
– volume: 25
  start-page: 105
  issue: 1
  year: 2016
  ident: 10.1016/j.apenergy.2020.116289_b54
  article-title: Assessing the calibration of high-dimensional ensemble forecasts using rank histograms
  publication-title: J Comput Graph Statist
  doi: 10.1080/10618600.2014.977447
– volume: 61
  start-page: 30
  year: 2016
  ident: 10.1016/j.apenergy.2020.116289_b10
  article-title: Smart home energy management systems: Concept, configurations, and scheduling strategies
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2016.03.047
– start-page: 49
  year: 2018
  ident: 10.1016/j.apenergy.2020.116289_b39
  article-title: Chapter 3 - univariate ensemble postprocessing
– volume: 271
  year: 2020
  ident: 10.1016/j.apenergy.2020.116289_b18
  article-title: Model predictive control with adaptive machine-learning-based model for building energy efficiency and comfort optimization
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115147
– volume: 139
  start-page: 80
  year: 2019
  ident: 10.1016/j.apenergy.2020.116289_b6
  article-title: Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in europe
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.02.077
– volume: 9
  start-page: 356
  year: 2019
  ident: 10.1016/j.apenergy.2020.116289_b23
  article-title: Stochastic model predictive control based scheduling optimization of multi-energy system considering hybrid CHPs and EVs
  publication-title: Appl Sci
  doi: 10.3390/app9020356
– volume: 114
  start-page: 158
  year: 2018
  ident: 10.1016/j.apenergy.2020.116289_b16
  article-title: Stochastic model predictive control how does it work?
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2017.10.026
– volume: 46
  start-page: 33
  issue: 1
  year: 1978
  ident: 10.1016/j.apenergy.2020.116289_b36
  article-title: Regression quantiles
  publication-title: Econometrica
  doi: 10.2307/1913643
– volume: 254
  year: 2019
  ident: 10.1016/j.apenergy.2020.116289_b12
  article-title: Optimal energy management in all-electric residential energy systems with heat and electricity storage
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.113580
– volume: 12
  issue: 2
  year: 2020
  ident: 10.1016/j.apenergy.2020.116289_b41
  article-title: Clear-sky index space-time trajectories from probabilistic solar forecasts: Comparing promising copulas
  publication-title: J Renew Sustain Energy
– volume: 81
  start-page: 1484
  year: 2018
  ident: 10.1016/j.apenergy.2020.116289_b32
  article-title: Review on probabilistic forecasting of photovoltaic power production and electricity consumption
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.05.212
– volume: 12
  start-page: 51
  issue: 1
  year: 2009
  ident: 10.1016/j.apenergy.2020.116289_b42
  article-title: From probabilistic forecasts to statistical scenarios of short-term wind power production
  publication-title: Wind Energy
  doi: 10.1002/we.284
– volume: 17
  start-page: 211
  issue: 2
  year: 2008
  ident: 10.1016/j.apenergy.2020.116289_b53
  article-title: Assessing probabilistic forecasts of multivariate quantities, with an application to ensemble predictions of surface winds
  publication-title: TEST
  doi: 10.1007/s11749-008-0114-x
– year: 2005
  ident: 10.1016/j.apenergy.2020.116289_b40
– volume: 270
  year: 2020
  ident: 10.1016/j.apenergy.2020.116289_b56
  article-title: User behavior in a real-world peer-to-peer electricity market
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115061
– start-page: 1
  year: 2015
  ident: 10.1016/j.apenergy.2020.116289_b20
  article-title: Stochastic optimal scheduling of residential appliances with renewable energy sources
– year: 2020
  ident: 10.1016/j.apenergy.2020.116289_b50
  article-title: Comment on “Verification of deterministic solar forecasts”: Verification of probabilistic solar forecasts
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2020.04.015
– volume: 22
  start-page: 651
  issue: 3
  year: 2007
  ident: 10.1016/j.apenergy.2020.116289_b49
  article-title: Increasing the reliability of reliability diagrams
  publication-title: Weather Forecast
  doi: 10.1175/WAF993.1
– volume: 130
  start-page: 1146
  year: 2019
  ident: 10.1016/j.apenergy.2020.116289_b27
  article-title: Corrective receding horizon EV charge scheduling using short-term solar forecasting
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2018.08.056
– year: 2015
  ident: 10.1016/j.apenergy.2020.116289_b7
– start-page: 1
  year: 2009
  ident: 10.1016/j.apenergy.2020.116289_b35
  article-title: The elements of statistical learning
– volume: 213
  start-page: 195
  year: 2018
  ident: 10.1016/j.apenergy.2020.116289_b29
  article-title: Probabilistic forecasting of electricity consumption, photovoltaic power generation and net demand of an individual building using Gaussian processes
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.12.104
– volume: 115
  start-page: 1330
  issue: 7
  year: 1987
  ident: 10.1016/j.apenergy.2020.116289_b46
  article-title: A general framework for forecast verification
  publication-title: Mon Weather Rev
  doi: 10.1175/1520-0493(1987)115<1330:AGFFFV>2.0.CO;2
SSID ssj0002120
Score 2.5056174
Snippet Scenario-based stochastic model predictive control traditionally considers the optimal strategy to be the expectation of the optimal strategies across all...
SourceID swepub
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 116289
SubjectTerms autocorrelation
batteries
case studies
energy
Engineering Science with specialization in Civil Engineering and Built Environment
Gradient boosting
management systems
Multivariate forecasting
prediction
Quantile regression
Scenario based
solar collectors
solar energy
Stochastic model predictive control
stochastic processes
Sweden
Teknisk fysik med inriktning mot byggteknik och byggd miljö
variance covariance matrix
Title An alternative optimal strategy for stochastic model predictive control of a residential battery energy management system with solar photovoltaic
URI https://dx.doi.org/10.1016/j.apenergy.2020.116289
https://www.proquest.com/docview/2574325382
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-425812
Volume 283
WOSCitedRecordID wos000613289000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWWlgMcKihULAVkJDitAsTOl48RXQSVqDisYG-W4yRs2m6y2s1W5WfwG_ijjGM7MZ-lBy7RKlpbTuZl5k0y84zQMxnlMZFB5LGSCC_w88jLQiG9TAY5g3CpRC67zSbik5NkPmcfRqNvthfm4jyu6-Tykq3-q6nhHBhbtc5ew9z9pHACfoPR4Qhmh-M_GT6tJ90n8FpLejfgE5a6KUSJQuj6TGB8ciGURLPeCkdJBeRV5_r64vWucRKS8apr5YUZsk6K88uk0O2Cy75wxshBm3J3lStPVoumbcDztaKSLv-1pFfPYa2teqiUpsX7QgPoSJXc9GT_k3mlDWhWNQoL0Qwoqc8WYmmKxI8bYMNL9zUG8W3lc-_tIHfxVDrnumaSUMe5-n5E9H5Dv_h9_Qri9IVY6fVD4k9UOLADfhTa_ikA9mWJtuLtlNt5uJqH63luoF0Shwxc5276bjo_7gM-Meqf9gqcRvTfr-hPHMjNcVzd2o7rzO6gPZOk4FSD6y4aFfU-uu1IV-6jg-nQIQl_NSFicw99TWvs4A8b_GGLPwz4wwP-cIc_POAPG_zhpsQCO_jDBn9YXyke8Ic1_rDCH-7wh1383UezN9PZ67ee2ffDkwF91cI9LCXkvSyLWBj7LM-DMAgYUWqZWZGQHCh1Bml-mdOyKMtEUpEBr80SFufCzxk9QDt1UxcPEA6ijFJG_YJFLKCkSFgifCrKmEaQVfrJGIXWEFwaTXy1Ncs5_zsUxuhlP26lVWGuHMGsnbnhtpqzcoDwlWOfWmBwcP7qi56oi2a74RBv4bKAs5Axeq4R069H6cYfVR9T3qw_8-2WQ3AGMv_w2is_RLeG5_UR2mnX2-Ixuikv2mqzfmKehe__H-wp
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+alternative+optimal+strategy+for+stochastic+model+predictive+control+of+a+residential+battery+energy+management+system+with+solar+photovoltaic&rft.jtitle=Applied+energy&rft.au=van+der+Meer%2C+Dennis&rft.au=Wang%2C+Guang+Chao&rft.au=Munkhammar%2C+Joakim&rft.date=2021-02-01&rft.issn=0306-2619&rft.volume=283&rft.spage=116289&rft_id=info:doi/10.1016%2Fj.apenergy.2020.116289&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2020_116289
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon