An alternative optimal strategy for stochastic model predictive control of a residential battery energy management system with solar photovoltaic
Scenario-based stochastic model predictive control traditionally considers the optimal strategy to be the expectation of the optimal strategies across all scenarios. However, while the stochastic problem involving uncertainties can be substantiated by a large number of scenarios, the expectation of...
Gespeichert in:
| Veröffentlicht in: | Applied energy Jg. 283; S. 116289 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.02.2021
|
| Schlagworte: | |
| ISSN: | 0306-2619, 1872-9118, 1872-9118 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Scenario-based stochastic model predictive control traditionally considers the optimal strategy to be the expectation of the optimal strategies across all scenarios. However, while the stochastic problem involving uncertainties can be substantiated by a large number of scenarios, the expectation of the respective optimal control strategies derived from all scenarios as the optimal control strategy to the problem is challenging to justify. We therefore propose a different approach in which we artfully have the optimization program find the common optimal strategy across all scenarios for the first prediction step at each sample time, which, if it exists, yields the true optimal strategy with greater confidence. We demonstrate the efficacy of the proposed formulation through a case study of a research villa in Borås, Sweden, that is equipped with a battery and a photovoltaic system. We compute a covariance matrix that contains time-dependent information of the data and use it to generate autocorrelated scenarios from the probabilistic forecasts that serve as the uncertain input to the energy management system. We justify the credibility of the optimal solution derived from the proposed formulation with compelling reasoning and quantitative results such as improved self-consumption of photovoltaic power.
•We reformulate the scenario-based stochastic model predictive control algorithm.•We add a constraint that forces the control strategy to be equal across scenarios.•The reformulation is tested on a system with a battery, load and PV system.•The probabilistic forecasts and multivariate forecasts are thoroughly evaluated.•The reformulation results in increased profit, self-consumption and self-sufficiency. |
|---|---|
| AbstractList | Scenario-based stochastic model predictive control traditionally considers the optimal strategy to be the expectation of the optimal strategies across all scenarios. However, while the stochastic problem involving uncertainties can be substantiated by a large number of scenarios, the expectation of the respective optimal control strategies derived from all scenarios as the optimal control strategy to the problem is challenging to justify. We therefore propose a different approach in which we artfully have the optimization program find the common optimal strategy across all scenarios for the first prediction step at each sample time, which, if it exists, yields the true optimal strategy with greater confidence. We demonstrate the efficacy of the proposed formulation through a case study of a research villa in Borås, Sweden, that is equipped with a battery and a photovoltaic system. We compute a covariance matrix that contains time-dependent information of the data and use it to generate autocorrelated scenarios from the probabilistic forecasts that serve as the uncertain input to the energy management system. We justify the credibility of the optimal solution derived from the proposed formulation with compelling reasoning and quantitative results such as improved self-consumption of photovoltaic power. Scenario-based stochastic model predictive control traditionally considers the optimal strategy to be the expectation of the optimal strategies across all scenarios. However, while the stochastic problem involving uncertainties can be substantiated by a large number of scenarios, the expectation of the respective optimal control strategies derived from all scenarios as the optimal control strategy to the problem is challenging to justify. We therefore propose a different approach in which we artfully have the optimization program find the common optimal strategy across all scenarios for the first prediction step at each sample time, which, if it exists, yields the true optimal strategy with greater confidence. We demonstrate the efficacy of the proposed formulation through a case study of a research villa in Borås, Sweden, that is equipped with a battery and a photovoltaic system. We compute a covariance matrix that contains time-dependent information of the data and use it to sample autocorrelated scenarios from the probabilistic forecasts that serve as the uncertain input to the energy management system. We justify the credibility of the optimal solution derived from the proposed formulation with compelling reasoning and quantitative results such as improved self-consumption of photovoltaic power. Scenario-based stochastic model predictive control traditionally considers the optimal strategy to be the expectation of the optimal strategies across all scenarios. However, while the stochastic problem involving uncertainties can be substantiated by a large number of scenarios, the expectation of the respective optimal control strategies derived from all scenarios as the optimal control strategy to the problem is challenging to justify. We therefore propose a different approach in which we artfully have the optimization program find the common optimal strategy across all scenarios for the first prediction step at each sample time, which, if it exists, yields the true optimal strategy with greater confidence. We demonstrate the efficacy of the proposed formulation through a case study of a research villa in Borås, Sweden, that is equipped with a battery and a photovoltaic system. We compute a covariance matrix that contains time-dependent information of the data and use it to generate autocorrelated scenarios from the probabilistic forecasts that serve as the uncertain input to the energy management system. We justify the credibility of the optimal solution derived from the proposed formulation with compelling reasoning and quantitative results such as improved self-consumption of photovoltaic power. •We reformulate the scenario-based stochastic model predictive control algorithm.•We add a constraint that forces the control strategy to be equal across scenarios.•The reformulation is tested on a system with a battery, load and PV system.•The probabilistic forecasts and multivariate forecasts are thoroughly evaluated.•The reformulation results in increased profit, self-consumption and self-sufficiency. |
| ArticleNumber | 116289 |
| Author | Munkhammar, Joakim Wang, Guang Chao van der Meer, Dennis |
| Author_xml | – sequence: 1 givenname: Dennis orcidid: 0000-0002-9473-4536 surname: van der Meer fullname: van der Meer, Dennis email: dennis.vandermeer@angstrom.uu.se organization: Department of Civil and Industrial Engineering, Uppsala University, Sweden – sequence: 2 givenname: Guang Chao surname: Wang fullname: Wang, Guang Chao organization: Mechanical and Aerospace Engineering, University of California, San Diego, USA – sequence: 3 givenname: Joakim surname: Munkhammar fullname: Munkhammar, Joakim organization: Department of Civil and Industrial Engineering, Uppsala University, Sweden |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-425812$$DView record from Swedish Publication Index (Uppsala universitet) |
| BookMark | eNqFUc2OFCEYJGZNnF19BcPRgzMC_QeJBye7_iWbeNl4JTR8PcOEhhbo2fRj-MYytnvxsicCVNX3VdU1uvLBA0JvKdlRQtsPp52awEM8LDtGWHmkLePiBdpQ3rGtoJRfoQ2pSLtlLRWv0HVKJ0IIo4xs0O-9x8pliF5lewYcpmxH5XDKUWU4LHgIsVyCPqqUrcZjMODwFMFY_Zegg88xOBwGrHCEZA34bItCr3KRXfC6Gh6VVwcYyydOS8ow4kebjzgFpyKejiGHc3BZWf0avRyUS_Dm33mDHr58frj9tr3_8fX77f5-q-uK5OJl0MWa6FvRdFQYUzd1LRitOOuBMyNE1Xe0HUw1wDBwXameU9Fz0RlFjahu0PtVNj3CNPdyisV3XGRQVt7Zn3sZ4kHOs6xZwykr8HcrfIrh1wwpy9EmDc4pD2FOkjVdXbGmTC_QjytUx5BShEFqm0u6l6CUdZISeelNnuRTb_LSm1x7K_T2P_rTas8SP61EKKmdLUSZtAWvS1URdJYm2Ock_gCNcr2C |
| CitedBy_id | crossref_primary_10_3390_su17177678 crossref_primary_10_1109_ACCESS_2023_3346324 crossref_primary_10_1016_j_renene_2024_122047 crossref_primary_10_1016_j_apenergy_2024_123573 crossref_primary_10_1016_j_enbuild_2022_111916 crossref_primary_10_1109_TPWRS_2023_3344874 crossref_primary_10_1016_j_segan_2023_101033 crossref_primary_10_1016_j_est_2022_105629 crossref_primary_10_1016_j_segan_2024_101373 crossref_primary_10_1109_TSG_2024_3416369 crossref_primary_10_1109_ACCESS_2024_3414297 crossref_primary_10_1016_j_energy_2024_134083 crossref_primary_10_1016_j_ijepes_2022_108368 crossref_primary_10_1016_j_psep_2024_07_004 crossref_primary_10_1109_TII_2023_3296875 crossref_primary_10_1016_j_apenergy_2022_118906 crossref_primary_10_1016_j_renene_2022_05_166 crossref_primary_10_1016_j_seta_2021_101225 crossref_primary_10_1088_1742_6596_3001_1_012030 crossref_primary_10_1109_ACCESS_2021_3139189 crossref_primary_10_3390_en16155600 crossref_primary_10_1016_j_renene_2024_121617 crossref_primary_10_3390_en14185997 crossref_primary_10_3390_en14185852 crossref_primary_10_1016_j_energy_2023_129006 crossref_primary_10_1016_j_desal_2022_115871 crossref_primary_10_3390_en16073140 crossref_primary_10_1016_j_engappai_2025_110951 crossref_primary_10_3390_inventions9030064 crossref_primary_10_3390_pr12030457 |
| Cites_doi | 10.1016/j.apenergy.2017.08.133 10.1016/j.enbuild.2011.09.022 10.1109/TPWRS.2008.919203 10.1016/j.ijepes.2019.105800 10.1016/j.pecs.2013.06.002 10.1214/13-EJS823 10.1016/j.apenergy.2019.03.187 10.1016/j.apenergy.2019.03.036 10.1016/j.enbuild.2015.12.055 10.1198/016214506000001437 10.1175/1520-0493(2004)132<0338:PFOPIT>2.0.CO;2 10.1016/j.solener.2018.06.038 10.1002/qj.559 10.1016/j.solener.2019.04.018 10.1016/j.solener.2019.10.041 10.1111/j.1467-9868.2007.00587.x 10.1109/TSG.2016.2606442 10.1109/TPWRS.2015.2502423 10.1175/MWR-D-16-0417.1 10.1109/TSTE.2017.2775339 10.1214/aoms/1177729394 10.3390/en11051166 10.1080/10618600.2014.977447 10.1016/j.rser.2016.03.047 10.1016/j.apenergy.2020.115147 10.1016/j.renene.2019.02.077 10.3390/app9020356 10.1016/j.compchemeng.2017.10.026 10.2307/1913643 10.1016/j.apenergy.2019.113580 10.1016/j.rser.2017.05.212 10.1002/we.284 10.1007/s11749-008-0114-x 10.1016/j.apenergy.2020.115061 10.1016/j.solener.2020.04.015 10.1175/WAF993.1 10.1016/j.renene.2018.08.056 10.1016/j.apenergy.2017.12.104 10.1175/1520-0493(1987)115<1330:AGFFFV>2.0.CO;2 |
| ContentType | Journal Article |
| Copyright | 2020 The Author(s) |
| Copyright_xml | – notice: 2020 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 ACNBI ADTPV AOWAS D8T DF2 ZZAVC |
| DOI | 10.1016/j.apenergy.2020.116289 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic SWEPUB Uppsala universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Uppsala universitet SwePub Articles full text |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1872-9118 |
| ExternalDocumentID | oai_DiVA_org_uu_425812 10_1016_j_apenergy_2020_116289 S0306261920316767 |
| GeographicLocations | Sweden |
| GeographicLocations_xml | – name: Sweden |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ZY4 ~HD 7S9 L.6 ACNBI ADTPV AOWAS D8T DF2 ZZAVC |
| ID | FETCH-LOGICAL-c430t-26fc1189b695719dd4544921382be82d993b716fd3feff8c3ab819b897da1d93 |
| ISICitedReferencesCount | 32 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000613289000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0306-2619 1872-9118 |
| IngestDate | Tue Nov 04 16:34:02 EST 2025 Sun Sep 28 11:00:50 EDT 2025 Sat Nov 29 07:18:59 EST 2025 Tue Nov 18 21:59:16 EST 2025 Fri Feb 23 02:39:42 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Stochastic model predictive control Scenario based Quantile regression Multivariate forecasting Gradient boosting |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c430t-26fc1189b695719dd4544921382be82d993b716fd3feff8c3ab819b897da1d93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-9473-4536 |
| OpenAccessLink | https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-425812 |
| PQID | 2574325382 |
| PQPubID | 24069 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_uu_425812 proquest_miscellaneous_2574325382 crossref_citationtrail_10_1016_j_apenergy_2020_116289 crossref_primary_10_1016_j_apenergy_2020_116289 elsevier_sciencedirect_doi_10_1016_j_apenergy_2020_116289 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-02-01 |
| PublicationDateYYYYMMDD | 2021-02-01 |
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied energy |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Inman, Pedro, Coimbra (b31) 2013; 39 Wang, Ratnam, Haghi, Kleissl (b27) 2019; 130 Guo, Bao, Yan (b23) 2019; 9 Luthander (b9) 2018 Child, Kemfert, Bogdanov, Breyer (b6) 2019; 139 Yang (b52) 2019; 184 Pinson, Madsen, Nielsen, Papaefthymiou, Klöckl (b42) 2009; 12 van der Meer, Yang, Widén, Munkhammar (b41) 2020; 12 Thorarinsdottir, Scheuerer, Heinz (b54) 2016; 25 Wilks (b55) 2019 Ram, Bogdanov, Aghahosseini, Gulagi, Oyewo, Child (b5) 2019 (b2) 1990 Gneiting, Ranjan (b44) 2013; 7 Golestaneh, Pinson, Gooi (b25) 2016; 31 Lauret, David, Pinson (b48) 2019; 194 Lindahl (b30) 2019 Acquah, Kodaira, Han (b14) 2018; 11 Pouffary, Rogers (b3) 2014 Bremnes (b38) 2004; 132 (b4) 2020 Bengtsson, Andrae, Aspelien, Batrak, Calvo, de Rooy (b33) 2017; 145 Terlouw, AlSkaif, Bauer, van Sark (b12) 2019; 254 Oldewurtel, Parisio, Jones, Gyalistras, Gwerder, Stauch (b17) 2012; 45 Yang, Wan, Chen, Ng, Dubey (b18) 2020; 271 van der Meer (b50) 2020 Wang, Wang, Chu, Pota, Gadh (b21) 2016; 116 Gneiting, Raftery (b51) 2007; 102 Wilks (b39) 2018 Bröcker, Smith (b49) 2007; 22 Conte, Massucco, Saviozzi, Silvestro (b15) 2018; 9 Liu, Paritosh, Awalgaonkar, Bilionis, Karava (b19) 2018; 171 Pinson, McSharry, Madsen (b26) 2010; 136 Niu, Tian, Lu, Zhao (b11) 2019; 243 Hastie, Tibsharani, Friedman (b35) 2009 Rosenblatt (b43) 1952; 23 Gneiting, Stanberry, Grimit, Held, Johnson (b53) 2008; 17 Diamond, Boyd (b45) 2016; 17 Zhou, Li, Chan, Cao, Kuang, Liu (b10) 2016; 61 Appino, González Ordiano, Mikut, Faulwasser, Hagenmeyer (b28) 2018; 210 van der Meer, Shepero, Svensson, Widén, Munkhammar (b29) 2018; 213 Gneiting, Balabdaoui, Raftery (b47) 2007; 69 Murphy, Winkler (b46) 1987; 115 Koenker (b40) 2005 Friedman (b34) 2001; 29 Ableitner, Tiefenbeck, Meeuw, Wörner, Fleisch, Wortmann (b56) 2020; 270 Wu, Hu, Yin, Moura (b13) 2018; 9 van der Meer, Widén, Munkhammar (b32) 2018; 81 Peterson, Torcellini, Grant (b7) 2015 Carvalho, Correia, Ferreira (b8) 2008; 23 Koenker, Bassett (b36) 1978; 46 Heirung, Paulson, OLeary, Mesbah (b16) 2018; 114 Wu, Pratt, Chakraborty (b20) 2015 Yousefi Ramandi, Bigdeli, Afshar (b24) 2020; 118 Seddig, Jochem, Fichtner (b22) 2019; 242 Prindle, Eldridge, Eckhardt, Frederick (b1) 2007 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel (b37) 2011; 12 Murphy (10.1016/j.apenergy.2020.116289_b46) 1987; 115 Ableitner (10.1016/j.apenergy.2020.116289_b56) 2020; 270 Lauret (10.1016/j.apenergy.2020.116289_b48) 2019; 194 Lindahl (10.1016/j.apenergy.2020.116289_b30) 2019 Inman (10.1016/j.apenergy.2020.116289_b31) 2013; 39 van der Meer (10.1016/j.apenergy.2020.116289_b50) 2020 Luthander (10.1016/j.apenergy.2020.116289_b9) 2018 Friedman (10.1016/j.apenergy.2020.116289_b34) 2001; 29 Yang (10.1016/j.apenergy.2020.116289_b52) 2019; 184 Guo (10.1016/j.apenergy.2020.116289_b23) 2019; 9 Gneiting (10.1016/j.apenergy.2020.116289_b44) 2013; 7 Ram (10.1016/j.apenergy.2020.116289_b5) 2019 Gneiting (10.1016/j.apenergy.2020.116289_b53) 2008; 17 Bremnes (10.1016/j.apenergy.2020.116289_b38) 2004; 132 Koenker (10.1016/j.apenergy.2020.116289_b36) 1978; 46 Pedregosa (10.1016/j.apenergy.2020.116289_b37) 2011; 12 Seddig (10.1016/j.apenergy.2020.116289_b22) 2019; 242 (10.1016/j.apenergy.2020.116289_b4) 2020 Terlouw (10.1016/j.apenergy.2020.116289_b12) 2019; 254 Gneiting (10.1016/j.apenergy.2020.116289_b47) 2007; 69 Gneiting (10.1016/j.apenergy.2020.116289_b51) 2007; 102 Niu (10.1016/j.apenergy.2020.116289_b11) 2019; 243 Conte (10.1016/j.apenergy.2020.116289_b15) 2018; 9 Carvalho (10.1016/j.apenergy.2020.116289_b8) 2008; 23 Wu (10.1016/j.apenergy.2020.116289_b13) 2018; 9 Koenker (10.1016/j.apenergy.2020.116289_b40) 2005 Pinson (10.1016/j.apenergy.2020.116289_b42) 2009; 12 Prindle (10.1016/j.apenergy.2020.116289_b1) 2007 Zhou (10.1016/j.apenergy.2020.116289_b10) 2016; 61 Heirung (10.1016/j.apenergy.2020.116289_b16) 2018; 114 Child (10.1016/j.apenergy.2020.116289_b6) 2019; 139 Appino (10.1016/j.apenergy.2020.116289_b28) 2018; 210 Bröcker (10.1016/j.apenergy.2020.116289_b49) 2007; 22 Wilks (10.1016/j.apenergy.2020.116289_b39) 2018 Wang (10.1016/j.apenergy.2020.116289_b21) 2016; 116 Yousefi Ramandi (10.1016/j.apenergy.2020.116289_b24) 2020; 118 Peterson (10.1016/j.apenergy.2020.116289_b7) 2015 Rosenblatt (10.1016/j.apenergy.2020.116289_b43) 1952; 23 (10.1016/j.apenergy.2020.116289_b2) 1990 Hastie (10.1016/j.apenergy.2020.116289_b35) 2009 Acquah (10.1016/j.apenergy.2020.116289_b14) 2018; 11 Diamond (10.1016/j.apenergy.2020.116289_b45) 2016; 17 Pouffary (10.1016/j.apenergy.2020.116289_b3) 2014 Thorarinsdottir (10.1016/j.apenergy.2020.116289_b54) 2016; 25 Pinson (10.1016/j.apenergy.2020.116289_b26) 2010; 136 van der Meer (10.1016/j.apenergy.2020.116289_b41) 2020; 12 Oldewurtel (10.1016/j.apenergy.2020.116289_b17) 2012; 45 Liu (10.1016/j.apenergy.2020.116289_b19) 2018; 171 Golestaneh (10.1016/j.apenergy.2020.116289_b25) 2016; 31 Bengtsson (10.1016/j.apenergy.2020.116289_b33) 2017; 145 Wang (10.1016/j.apenergy.2020.116289_b27) 2019; 130 van der Meer (10.1016/j.apenergy.2020.116289_b32) 2018; 81 Yang (10.1016/j.apenergy.2020.116289_b18) 2020; 271 Wu (10.1016/j.apenergy.2020.116289_b20) 2015 Wilks (10.1016/j.apenergy.2020.116289_b55) 2019 van der Meer (10.1016/j.apenergy.2020.116289_b29) 2018; 213 |
| References_xml | – start-page: 299 year: 2019 ident: b5 article-title: Global energy system based on 100% renewable energy – power, heat, transport and desalination sectors – volume: 45 start-page: 15 year: 2012 end-page: 27 ident: b17 article-title: Use of model predictive control and weather forecasts for energy efficient building climate control publication-title: Energy Build – volume: 9 start-page: 2065 year: 2018 end-page: 2075 ident: b13 article-title: Stochastic optimal energy management of smart home with PEV energy storage publication-title: IEEE Trans Smart Grid – volume: 61 start-page: 30 year: 2016 end-page: 40 ident: b10 article-title: Smart home energy management systems: Concept, configurations, and scheduling strategies publication-title: Renew Sustain Energy Rev – volume: 184 start-page: 410 year: 2019 end-page: 416 ident: b52 article-title: A universal benchmarking method for probabilistic solar irradiance forecasting publication-title: Sol Energy – volume: 12 year: 2020 ident: b41 article-title: Clear-sky index space-time trajectories from probabilistic solar forecasts: Comparing promising copulas publication-title: J Renew Sustain Energy – year: 2015 ident: b7 article-title: A common definition for zero energy buildings – volume: 139 start-page: 80 year: 2019 end-page: 101 ident: b6 article-title: Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in europe publication-title: Renew Energy – volume: 254 year: 2019 ident: b12 article-title: Optimal energy management in all-electric residential energy systems with heat and electricity storage publication-title: Appl Energy – volume: 29 start-page: 1189 year: 2001 end-page: 1232 ident: b34 article-title: Greedy function approximation: A gradient boosting machine publication-title: Statistics (Berl.) – volume: 7 start-page: 1747 year: 2013 end-page: 1782 ident: b44 article-title: Combining predictive distributions publication-title: Electron J Stat – volume: 271 year: 2020 ident: b18 article-title: Model predictive control with adaptive machine-learning-based model for building energy efficiency and comfort optimization publication-title: Appl Energy – volume: 116 start-page: 141 year: 2016 end-page: 150 ident: b21 article-title: Energy management for a commercial building microgrid with stationary and mobile battery storage publication-title: Energy Build – year: 2019 ident: b30 article-title: National survey report of PV power applications in Sweden 2018 – year: 2020 ident: b50 article-title: Comment on “Verification of deterministic solar forecasts”: Verification of probabilistic solar forecasts publication-title: Sol Energy – start-page: 49 year: 2018 end-page: 89 ident: b39 article-title: Chapter 3 - univariate ensemble postprocessing publication-title: Statistical postprocessing of ensemble forecasts – volume: 115 start-page: 1330 year: 1987 end-page: 1338 ident: b46 article-title: A general framework for forecast verification publication-title: Mon Weather Rev – volume: 213 start-page: 195 year: 2018 end-page: 207 ident: b29 article-title: Probabilistic forecasting of electricity consumption, photovoltaic power generation and net demand of an individual building using Gaussian processes publication-title: Appl Energy – start-page: 1 year: 2015 end-page: 5 ident: b20 article-title: Stochastic optimal scheduling of residential appliances with renewable energy sources publication-title: 2015 IEEE power energy society general meeting – year: 2007 ident: b1 article-title: American council for an energy-efficient economy – volume: 242 start-page: 769 year: 2019 end-page: 781 ident: b22 article-title: Two-stage stochastic optimization for cost-minimal charging of electric vehicles at public charging stations with photovoltaics publication-title: Appl Energy – volume: 132 start-page: 338 year: 2004 end-page: 347 ident: b38 article-title: Probabilistic forecasts of precipitation in terms of quantiles using NWP model output publication-title: Mon Weather Rev – volume: 17 start-page: 1 year: 2016 end-page: 5 ident: b45 article-title: CVXPY: A python-embedded modeling language for convex optimization publication-title: J Mach Learn Res – year: 2019 ident: b55 article-title: Statistical methods in the atmospheric sciences – year: 2020 ident: b4 article-title: Building consumption by energy – volume: 114 start-page: 158 year: 2018 end-page: 170 ident: b16 article-title: Stochastic model predictive control how does it work? publication-title: Comput Chem Eng – volume: 25 start-page: 105 year: 2016 end-page: 122 ident: b54 article-title: Assessing the calibration of high-dimensional ensemble forecasts using rank histograms publication-title: J Comput Graph Statist – volume: 23 start-page: 766 year: 2008 end-page: 772 ident: b8 article-title: Distributed reactive power generation control for voltage rise mitigation in distribution networks publication-title: IEEE Trans Power Syst – volume: 12 start-page: 51 year: 2009 end-page: 62 ident: b42 article-title: From probabilistic forecasts to statistical scenarios of short-term wind power production publication-title: Wind Energy – volume: 243 start-page: 274 year: 2019 end-page: 287 ident: b11 article-title: Flexible dispatch of a building energy system using building thermal storage and battery energy storage publication-title: Appl Energy – volume: 102 start-page: 359 year: 2007 end-page: 378 ident: b51 article-title: Strictly proper scoring rules, prediction, and estimation publication-title: J Amer Statist Assoc – year: 1990 ident: b2 article-title: International Energy Agency data and statistics – volume: 210 start-page: 1207 year: 2018 end-page: 1218 ident: b28 article-title: On the use of probabilistic forecasts in scheduling of renewable energy sources coupled to storages publication-title: Appl Energy – volume: 9 start-page: 356 year: 2019 ident: b23 article-title: Stochastic model predictive control based scheduling optimization of multi-energy system considering hybrid CHPs and EVs publication-title: Appl Sci – volume: 31 start-page: 3850 year: 2016 end-page: 3863 ident: b25 article-title: Very short-term nonparametric probabilistic forecasting of renewable energy generation— with application to solar energy publication-title: IEEE Trans Power Syst – year: 2005 ident: b40 publication-title: Quantile regression – volume: 81 start-page: 1484 year: 2018 end-page: 1512 ident: b32 article-title: Review on probabilistic forecasting of photovoltaic power production and electricity consumption publication-title: Renew Sustain Energy Rev – volume: 23 start-page: 470 year: 1952 end-page: 472 ident: b43 article-title: Remarks on a multivariate transformation publication-title: Ann Math Stat – volume: 171 start-page: 953 year: 2018 end-page: 970 ident: b19 article-title: Model predictive control under forecast uncertainty for optimal operation of buildings with integrated solar systems publication-title: Sol Energy – volume: 39 start-page: 535 year: 2013 end-page: 576 ident: b31 article-title: Solar forecasting methods for renewable energy integration publication-title: Prog Energy Combust Sci – volume: 194 start-page: 254 year: 2019 end-page: 271 ident: b48 article-title: Verification of solar irradiance probabilistic forecasts publication-title: Sol Energy – volume: 9 start-page: 1188 year: 2018 end-page: 1197 ident: b15 article-title: A stochastic optimization method for planning and real-time control of integrated PV-storage systems: Design and experimental validation publication-title: IEEE Trans Sustain Energy – volume: 46 start-page: 33 year: 1978 end-page: 50 ident: b36 article-title: Regression quantiles publication-title: Econometrica – volume: 11 start-page: 1166 year: 2018 ident: b14 article-title: Real-time demand side management algorithm using stochastic optimization publication-title: Energies – volume: 145 start-page: 1919 year: 2017 end-page: 1935 ident: b33 article-title: The HARMONIE AROME model configuration in the ALADIN HIRLAM NWP system publication-title: Mon Weather Rev – year: 2018 ident: b9 article-title: Self-consumption of photovoltaic electricity in residential buildings – volume: 270 year: 2020 ident: b56 article-title: User behavior in a real-world peer-to-peer electricity market publication-title: Appl Energy – volume: 118 year: 2020 ident: b24 article-title: Stochastic economic model predictive control for real-time scheduling of balance responsible parties publication-title: Int J Electr Power Energy Syst – volume: 17 start-page: 211 year: 2008 ident: b53 article-title: Assessing probabilistic forecasts of multivariate quantities, with an application to ensemble predictions of surface winds publication-title: TEST – start-page: 1 year: 2009 end-page: 764 ident: b35 article-title: The elements of statistical learning publication-title: Math. Intell. – volume: 130 start-page: 1146 year: 2019 end-page: 1158 ident: b27 article-title: Corrective receding horizon EV charge scheduling using short-term solar forecasting publication-title: Renew Energy – volume: 136 start-page: 77 year: 2010 end-page: 90 ident: b26 article-title: Reliability diagrams for non-parametric density forecasts of continuous variables: Accounting for serial correlation publication-title: Q J R Meteorol Soc – year: 2014 ident: b3 article-title: Climate finance for cities and buildings - A handbook for local governments – volume: 69 start-page: 243 year: 2007 end-page: 268 ident: b47 article-title: Probabilistic forecasts, calibration and sharpness publication-title: J R Stat Soc Ser B Stat Methodol – volume: 22 start-page: 651 year: 2007 end-page: 661 ident: b49 article-title: Increasing the reliability of reliability diagrams publication-title: Weather Forecast – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: b37 article-title: Scikit-learn: Machine learning in python publication-title: v – volume: 210 start-page: 1207 year: 2018 ident: 10.1016/j.apenergy.2020.116289_b28 article-title: On the use of probabilistic forecasts in scheduling of renewable energy sources coupled to storages publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.08.133 – year: 2014 ident: 10.1016/j.apenergy.2020.116289_b3 – volume: 45 start-page: 15 year: 2012 ident: 10.1016/j.apenergy.2020.116289_b17 article-title: Use of model predictive control and weather forecasts for energy efficient building climate control publication-title: Energy Build doi: 10.1016/j.enbuild.2011.09.022 – volume: 23 start-page: 766 issue: 2 year: 2008 ident: 10.1016/j.apenergy.2020.116289_b8 article-title: Distributed reactive power generation control for voltage rise mitigation in distribution networks publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2008.919203 – volume: 118 year: 2020 ident: 10.1016/j.apenergy.2020.116289_b24 article-title: Stochastic economic model predictive control for real-time scheduling of balance responsible parties publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2019.105800 – year: 2007 ident: 10.1016/j.apenergy.2020.116289_b1 – volume: 39 start-page: 535 issue: 6 year: 2013 ident: 10.1016/j.apenergy.2020.116289_b31 article-title: Solar forecasting methods for renewable energy integration publication-title: Prog Energy Combust Sci doi: 10.1016/j.pecs.2013.06.002 – start-page: 299 year: 2019 ident: 10.1016/j.apenergy.2020.116289_b5 – volume: 7 start-page: 1747 year: 2013 ident: 10.1016/j.apenergy.2020.116289_b44 article-title: Combining predictive distributions publication-title: Electron J Stat doi: 10.1214/13-EJS823 – volume: 243 start-page: 274 year: 2019 ident: 10.1016/j.apenergy.2020.116289_b11 article-title: Flexible dispatch of a building energy system using building thermal storage and battery energy storage publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.03.187 – volume: 242 start-page: 769 year: 2019 ident: 10.1016/j.apenergy.2020.116289_b22 article-title: Two-stage stochastic optimization for cost-minimal charging of electric vehicles at public charging stations with photovoltaics publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.03.036 – volume: 116 start-page: 141 year: 2016 ident: 10.1016/j.apenergy.2020.116289_b21 article-title: Energy management for a commercial building microgrid with stationary and mobile battery storage publication-title: Energy Build doi: 10.1016/j.enbuild.2015.12.055 – volume: 17 start-page: 1 issue: 83 year: 2016 ident: 10.1016/j.apenergy.2020.116289_b45 article-title: CVXPY: A python-embedded modeling language for convex optimization publication-title: J Mach Learn Res – year: 1990 ident: 10.1016/j.apenergy.2020.116289_b2 – volume: 29 start-page: 1189 issue: 5 year: 2001 ident: 10.1016/j.apenergy.2020.116289_b34 article-title: Greedy function approximation: A gradient boosting machine publication-title: Statistics (Berl.) – volume: 102 start-page: 359 issue: 477 year: 2007 ident: 10.1016/j.apenergy.2020.116289_b51 article-title: Strictly proper scoring rules, prediction, and estimation publication-title: J Amer Statist Assoc doi: 10.1198/016214506000001437 – volume: 132 start-page: 338 issue: 1 year: 2004 ident: 10.1016/j.apenergy.2020.116289_b38 article-title: Probabilistic forecasts of precipitation in terms of quantiles using NWP model output publication-title: Mon Weather Rev doi: 10.1175/1520-0493(2004)132<0338:PFOPIT>2.0.CO;2 – volume: 171 start-page: 953 year: 2018 ident: 10.1016/j.apenergy.2020.116289_b19 article-title: Model predictive control under forecast uncertainty for optimal operation of buildings with integrated solar systems publication-title: Sol Energy doi: 10.1016/j.solener.2018.06.038 – year: 2019 ident: 10.1016/j.apenergy.2020.116289_b55 – volume: 136 start-page: 77 year: 2010 ident: 10.1016/j.apenergy.2020.116289_b26 article-title: Reliability diagrams for non-parametric density forecasts of continuous variables: Accounting for serial correlation publication-title: Q J R Meteorol Soc doi: 10.1002/qj.559 – year: 2019 ident: 10.1016/j.apenergy.2020.116289_b30 – volume: 184 start-page: 410 year: 2019 ident: 10.1016/j.apenergy.2020.116289_b52 article-title: A universal benchmarking method for probabilistic solar irradiance forecasting publication-title: Sol Energy doi: 10.1016/j.solener.2019.04.018 – volume: 194 start-page: 254 year: 2019 ident: 10.1016/j.apenergy.2020.116289_b48 article-title: Verification of solar irradiance probabilistic forecasts publication-title: Sol Energy doi: 10.1016/j.solener.2019.10.041 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.apenergy.2020.116289_b37 article-title: Scikit-learn: Machine learning in python publication-title: v – volume: 69 start-page: 243 issue: 2 year: 2007 ident: 10.1016/j.apenergy.2020.116289_b47 article-title: Probabilistic forecasts, calibration and sharpness publication-title: J R Stat Soc Ser B Stat Methodol doi: 10.1111/j.1467-9868.2007.00587.x – year: 2020 ident: 10.1016/j.apenergy.2020.116289_b4 – volume: 9 start-page: 2065 issue: 3 year: 2018 ident: 10.1016/j.apenergy.2020.116289_b13 article-title: Stochastic optimal energy management of smart home with PEV energy storage publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2016.2606442 – year: 2018 ident: 10.1016/j.apenergy.2020.116289_b9 – volume: 31 start-page: 3850 issue: 5 year: 2016 ident: 10.1016/j.apenergy.2020.116289_b25 article-title: Very short-term nonparametric probabilistic forecasting of renewable energy generation— with application to solar energy publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2015.2502423 – volume: 145 start-page: 1919 issue: 5 year: 2017 ident: 10.1016/j.apenergy.2020.116289_b33 article-title: The HARMONIE AROME model configuration in the ALADIN HIRLAM NWP system publication-title: Mon Weather Rev doi: 10.1175/MWR-D-16-0417.1 – volume: 9 start-page: 1188 issue: 3 year: 2018 ident: 10.1016/j.apenergy.2020.116289_b15 article-title: A stochastic optimization method for planning and real-time control of integrated PV-storage systems: Design and experimental validation publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2017.2775339 – volume: 23 start-page: 470 issue: 3 year: 1952 ident: 10.1016/j.apenergy.2020.116289_b43 article-title: Remarks on a multivariate transformation publication-title: Ann Math Stat doi: 10.1214/aoms/1177729394 – volume: 11 start-page: 1166 year: 2018 ident: 10.1016/j.apenergy.2020.116289_b14 article-title: Real-time demand side management algorithm using stochastic optimization publication-title: Energies doi: 10.3390/en11051166 – volume: 25 start-page: 105 issue: 1 year: 2016 ident: 10.1016/j.apenergy.2020.116289_b54 article-title: Assessing the calibration of high-dimensional ensemble forecasts using rank histograms publication-title: J Comput Graph Statist doi: 10.1080/10618600.2014.977447 – volume: 61 start-page: 30 year: 2016 ident: 10.1016/j.apenergy.2020.116289_b10 article-title: Smart home energy management systems: Concept, configurations, and scheduling strategies publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2016.03.047 – start-page: 49 year: 2018 ident: 10.1016/j.apenergy.2020.116289_b39 article-title: Chapter 3 - univariate ensemble postprocessing – volume: 271 year: 2020 ident: 10.1016/j.apenergy.2020.116289_b18 article-title: Model predictive control with adaptive machine-learning-based model for building energy efficiency and comfort optimization publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.115147 – volume: 139 start-page: 80 year: 2019 ident: 10.1016/j.apenergy.2020.116289_b6 article-title: Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in europe publication-title: Renew Energy doi: 10.1016/j.renene.2019.02.077 – volume: 9 start-page: 356 year: 2019 ident: 10.1016/j.apenergy.2020.116289_b23 article-title: Stochastic model predictive control based scheduling optimization of multi-energy system considering hybrid CHPs and EVs publication-title: Appl Sci doi: 10.3390/app9020356 – volume: 114 start-page: 158 year: 2018 ident: 10.1016/j.apenergy.2020.116289_b16 article-title: Stochastic model predictive control how does it work? publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2017.10.026 – volume: 46 start-page: 33 issue: 1 year: 1978 ident: 10.1016/j.apenergy.2020.116289_b36 article-title: Regression quantiles publication-title: Econometrica doi: 10.2307/1913643 – volume: 254 year: 2019 ident: 10.1016/j.apenergy.2020.116289_b12 article-title: Optimal energy management in all-electric residential energy systems with heat and electricity storage publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.113580 – volume: 12 issue: 2 year: 2020 ident: 10.1016/j.apenergy.2020.116289_b41 article-title: Clear-sky index space-time trajectories from probabilistic solar forecasts: Comparing promising copulas publication-title: J Renew Sustain Energy – volume: 81 start-page: 1484 year: 2018 ident: 10.1016/j.apenergy.2020.116289_b32 article-title: Review on probabilistic forecasting of photovoltaic power production and electricity consumption publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.05.212 – volume: 12 start-page: 51 issue: 1 year: 2009 ident: 10.1016/j.apenergy.2020.116289_b42 article-title: From probabilistic forecasts to statistical scenarios of short-term wind power production publication-title: Wind Energy doi: 10.1002/we.284 – volume: 17 start-page: 211 issue: 2 year: 2008 ident: 10.1016/j.apenergy.2020.116289_b53 article-title: Assessing probabilistic forecasts of multivariate quantities, with an application to ensemble predictions of surface winds publication-title: TEST doi: 10.1007/s11749-008-0114-x – year: 2005 ident: 10.1016/j.apenergy.2020.116289_b40 – volume: 270 year: 2020 ident: 10.1016/j.apenergy.2020.116289_b56 article-title: User behavior in a real-world peer-to-peer electricity market publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.115061 – start-page: 1 year: 2015 ident: 10.1016/j.apenergy.2020.116289_b20 article-title: Stochastic optimal scheduling of residential appliances with renewable energy sources – year: 2020 ident: 10.1016/j.apenergy.2020.116289_b50 article-title: Comment on “Verification of deterministic solar forecasts”: Verification of probabilistic solar forecasts publication-title: Sol Energy doi: 10.1016/j.solener.2020.04.015 – volume: 22 start-page: 651 issue: 3 year: 2007 ident: 10.1016/j.apenergy.2020.116289_b49 article-title: Increasing the reliability of reliability diagrams publication-title: Weather Forecast doi: 10.1175/WAF993.1 – volume: 130 start-page: 1146 year: 2019 ident: 10.1016/j.apenergy.2020.116289_b27 article-title: Corrective receding horizon EV charge scheduling using short-term solar forecasting publication-title: Renew Energy doi: 10.1016/j.renene.2018.08.056 – year: 2015 ident: 10.1016/j.apenergy.2020.116289_b7 – start-page: 1 year: 2009 ident: 10.1016/j.apenergy.2020.116289_b35 article-title: The elements of statistical learning – volume: 213 start-page: 195 year: 2018 ident: 10.1016/j.apenergy.2020.116289_b29 article-title: Probabilistic forecasting of electricity consumption, photovoltaic power generation and net demand of an individual building using Gaussian processes publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.12.104 – volume: 115 start-page: 1330 issue: 7 year: 1987 ident: 10.1016/j.apenergy.2020.116289_b46 article-title: A general framework for forecast verification publication-title: Mon Weather Rev doi: 10.1175/1520-0493(1987)115<1330:AGFFFV>2.0.CO;2 |
| SSID | ssj0002120 |
| Score | 2.5056174 |
| Snippet | Scenario-based stochastic model predictive control traditionally considers the optimal strategy to be the expectation of the optimal strategies across all... |
| SourceID | swepub proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 116289 |
| SubjectTerms | autocorrelation batteries case studies energy Engineering Science with specialization in Civil Engineering and Built Environment Gradient boosting management systems Multivariate forecasting prediction Quantile regression Scenario based solar collectors solar energy Stochastic model predictive control stochastic processes Sweden Teknisk fysik med inriktning mot byggteknik och byggd miljö variance covariance matrix |
| Title | An alternative optimal strategy for stochastic model predictive control of a residential battery energy management system with solar photovoltaic |
| URI | https://dx.doi.org/10.1016/j.apenergy.2020.116289 https://www.proquest.com/docview/2574325382 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-425812 |
| Volume | 283 |
| WOSCitedRecordID | wos000613289000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWWlgMcKihULAVkJDitAsTOl48RXQSVqDisYG-W4yRs2m6y2s1W5WfwG_ijjGM7MZ-lBy7RKlpbTuZl5k0y84zQMxnlMZFB5LGSCC_w88jLQiG9TAY5g3CpRC67zSbik5NkPmcfRqNvthfm4jyu6-Tykq3-q6nhHBhbtc5ew9z9pHACfoPR4Qhmh-M_GT6tJ90n8FpLejfgE5a6KUSJQuj6TGB8ciGURLPeCkdJBeRV5_r64vWucRKS8apr5YUZsk6K88uk0O2Cy75wxshBm3J3lStPVoumbcDztaKSLv-1pFfPYa2teqiUpsX7QgPoSJXc9GT_k3mlDWhWNQoL0Qwoqc8WYmmKxI8bYMNL9zUG8W3lc-_tIHfxVDrnumaSUMe5-n5E9H5Dv_h9_Qri9IVY6fVD4k9UOLADfhTa_ikA9mWJtuLtlNt5uJqH63luoF0Shwxc5276bjo_7gM-Meqf9gqcRvTfr-hPHMjNcVzd2o7rzO6gPZOk4FSD6y4aFfU-uu1IV-6jg-nQIQl_NSFicw99TWvs4A8b_GGLPwz4wwP-cIc_POAPG_zhpsQCO_jDBn9YXyke8Ic1_rDCH-7wh1383UezN9PZ67ee2ffDkwF91cI9LCXkvSyLWBj7LM-DMAgYUWqZWZGQHCh1Bml-mdOyKMtEUpEBr80SFufCzxk9QDt1UxcPEA6ijFJG_YJFLKCkSFgifCrKmEaQVfrJGIXWEFwaTXy1Ncs5_zsUxuhlP26lVWGuHMGsnbnhtpqzcoDwlWOfWmBwcP7qi56oi2a74RBv4bKAs5Axeq4R069H6cYfVR9T3qw_8-2WQ3AGMv_w2is_RLeG5_UR2mnX2-Ixuikv2mqzfmKehe__H-wp |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+alternative+optimal+strategy+for+stochastic+model+predictive+control+of+a+residential+battery+energy+management+system+with+solar+photovoltaic&rft.jtitle=Applied+energy&rft.au=van+der+Meer%2C+Dennis&rft.au=Wang%2C+Guang+Chao&rft.au=Munkhammar%2C+Joakim&rft.date=2021-02-01&rft.issn=0306-2619&rft.volume=283&rft.spage=116289&rft_id=info:doi/10.1016%2Fj.apenergy.2020.116289&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2020_116289 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |