An ANN to Predict Ground Condition ahead of Tunnel Face using TBM Operational Data
This paper presents an artificial neural network (ANN) model that predicts ground conditions ahead of a tunnel face by using shield tunnel boring machine (TBM) data obtained during the tunneling operation. The primary advantage of the proposed technique is that, by using TBM data, no additional data...
Uloženo v:
| Vydáno v: | KSCE Journal of Civil Engineering Ročník 23; číslo 7; s. 3200 - 3206 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Seoul
Korean Society of Civil Engineers
01.07.2019
Springer Nature B.V 대한토목학회 |
| Témata: | |
| ISSN: | 1226-7988, 1976-3808 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper presents an artificial neural network (ANN) model that predicts ground conditions ahead of a tunnel face by using shield tunnel boring machine (TBM) data obtained during the tunneling operation. The primary advantage of the proposed technique is that, by using TBM data, no additional data acquisition device is required. Ground type classifications and machine data normalization methods are introduced to maintain the consistency of the measured data and improve prediction accuracy. The efficacy of the proposed model is demonstrated by its 96% accuracy in predicting ground type one ring ahead of the tunnel face. |
|---|---|
| AbstractList | This paper presents an artificial neural network (ANN) model that predicts ground conditions ahead of a tunnel face by using shield tunnel boring machine (TBM) data obtained during the tunneling operation. The primary advantage of the proposed technique is that, by using TBM data, no additional data acquisition device is required. Ground type classifications and machine data normalization methods are introduced to maintain the consistency of the measured data and improve prediction accuracy. The efficacy of the proposed model is demonstrated by its 96% accuracy in predicting ground type one ring ahead of the tunnel face. This paper presents an artificial neural network (ANN) model that predicts ground conditions ahead of a tunnel face by using shield tunnel boring machine (TBM) data obtained during the tunneling operation. The primary advantage of the proposed technique is that, by using TBM data, no additional data acquisition device is required. Ground type classifications and machine data normalization methods are introduced to maintain the consistency of the measured data and improve prediction accuracy. The efficacy of the proposed model is demonstrated by its 96% accuracy in predicting ground type one ring ahead of the tunnel face. KCI Citation Count: 55 |
| Author | Jung, Jee-Hee Chung, Heeyoung Lee, In-Mo Kwon, Young-Sam |
| Author_xml | – sequence: 1 givenname: Jee-Hee surname: Jung fullname: Jung, Jee-Hee organization: School of Civil, Environmental and Architectural Engineering, Korea University – sequence: 2 givenname: Heeyoung surname: Chung fullname: Chung, Heeyoung organization: School of Civil, Environmental and Architectural Engineering, Korea University – sequence: 3 givenname: Young-Sam surname: Kwon fullname: Kwon, Young-Sam organization: School of Civil, Environmental and Architectural Engineering, Korea University – sequence: 4 givenname: In-Mo surname: Lee fullname: Lee, In-Mo email: inmolee@korea.ac.kr organization: School of Civil, Environmental and Architectural Engineering, Korea University |
| BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002474184$$DAccess content in National Research Foundation of Korea (NRF) |
| BookMark | eNp9kU1LAzEQhoNU8PMHeAt48rCazG42ybHWr4JfSD2HNJut0ZrUZPfgvzd1BUGwc5lheN5hZt49NPLBW4SOKDmlhPCzRAEIKwiVBa1qUsgttEslr4tSEDHKNUBdcCnEDjpM6ZXkKIGLku2ip7HH4_t73AX8GG3jTIevY-h9gyfBN65zwWP9YnWDQ4tnvfd2ia-0sbhPzi_w7PwOP6xs1GtQL_GF7vQB2m71MtnDn7yPnq8uZ5Ob4vbhejoZ3xamKklXUDKX1hoiacNq3dgWdMWNFHVlJFQcmopq4MZyObf5DF7lkhnIPWAtJXW5j06GuT626s04FbT7zoug3qIaP82mitUgBdDMHg_sKoaP3qZOvYY-5o2TAkklK4UQciMFwBihFbBM8YEyMaQUbauM674f0EXtlooStXZFDa6o7Ipau6LW8-kf5Sq6dx0_N2pg0KTM-oWNvzv9L_oCHymcdQ |
| CitedBy_id | crossref_primary_10_1080_17486025_2024_2354289 crossref_primary_10_1007_s00603_024_03903_9 crossref_primary_10_3390_app14114623 crossref_primary_10_1016_j_earscirev_2022_103991 crossref_primary_10_1007_s00603_022_02834_7 crossref_primary_10_1007_s40808_024_02093_1 crossref_primary_10_1016_j_tust_2025_106741 crossref_primary_10_1111_exsy_12563 crossref_primary_10_1016_j_tust_2020_103700 crossref_primary_10_1108_FEBE_07_2021_0036 crossref_primary_10_1007_s00603_022_02971_z crossref_primary_10_1016_j_measurement_2021_109545 crossref_primary_10_1016_j_asoc_2022_108686 crossref_primary_10_1038_s41598_024_60681_8 crossref_primary_10_1016_j_autcon_2021_103719 crossref_primary_10_1680_jsmic_20_00011 crossref_primary_10_1007_s42452_021_04903_y crossref_primary_10_1016_j_tust_2021_104196 crossref_primary_10_1007_s11600_024_01320_8 crossref_primary_10_1007_s10706_021_02033_1 crossref_primary_10_1007_s10706_023_02516_3 crossref_primary_10_1007_s00603_025_04501_z crossref_primary_10_1016_j_tust_2022_104654 crossref_primary_10_1016_j_aei_2025_103786 crossref_primary_10_1016_j_tust_2022_104497 crossref_primary_10_3390_app122211480 crossref_primary_10_1061__ASCE_GM_1943_5622_0002064 crossref_primary_10_1016_j_gsf_2022_101519 crossref_primary_10_1016_j_undsp_2020_02_007 crossref_primary_10_3390_app131810026 crossref_primary_10_1109_ACCESS_2019_2952649 crossref_primary_10_3390_app12146851 crossref_primary_10_1002_dug2_12084 crossref_primary_10_3390_app132011435 crossref_primary_10_1088_1755_1315_570_5_052056 crossref_primary_10_1016_j_autcon_2022_104672 crossref_primary_10_3390_app11031060 crossref_primary_10_1007_s00603_021_02723_5 crossref_primary_10_1007_s40515_025_00572_1 crossref_primary_10_1016_j_ymssp_2021_108353 crossref_primary_10_1016_j_ymssp_2021_108035 crossref_primary_10_3390_app12052656 crossref_primary_10_1007_s00603_024_04212_x crossref_primary_10_1038_s41598_023_28243_6 crossref_primary_10_1016_j_tust_2024_105643 crossref_primary_10_1016_j_tust_2024_106258 crossref_primary_10_1016_j_tust_2024_105923 crossref_primary_10_1177_09544062211061682 crossref_primary_10_1109_ACCESS_2020_3004995 crossref_primary_10_1016_j_jrmge_2024_11_011 crossref_primary_10_1007_s10706_025_03165_4 crossref_primary_10_1007_s11440_022_01779_z crossref_primary_10_1108_MLAG_06_2024_0004 crossref_primary_10_1007_s13369_021_06285_0 crossref_primary_10_1016_j_undsp_2024_06_007 |
| Cites_doi | 10.1007/s12205-018-0912-y 10.1016/j.ijmst.2015.05.019 10.1109/4235.585893 10.1016/j.tust.2017.06.015 10.1016/j.tust.2004.02.128 |
| ContentType | Journal Article |
| Copyright | Korean Society of Civil Engineers 2019 KSCE Journal of Civil Engineering is a copyright of Springer, (2019). All Rights Reserved. Korean Society of Civil Engineers 2019. |
| Copyright_xml | – notice: Korean Society of Civil Engineers 2019 – notice: KSCE Journal of Civil Engineering is a copyright of Springer, (2019). All Rights Reserved. – notice: Korean Society of Civil Engineers 2019. |
| DBID | AAYXX CITATION 7QH 7UA 8FD 8FE 8FG ABJCF AEUYN AFKRA BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 H96 HCIFZ KR7 L.G L6V M7S PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ACYCR |
| DOI | 10.1007/s12205-019-1460-9 |
| DatabaseName | CrossRef Aqualine Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Engineering Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Korean Citation Index |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1976-3808 |
| EndPage | 3206 |
| ExternalDocumentID | oai_kci_go_kr_ARTI_5629821 10_1007_s12205_019_1460_9 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 203 29L 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X 9ZL AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AALRI AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXUO AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADVLN ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AYJHY B-. BA0 BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR CAG CCPQU COF CS3 CSCUP DBRKI DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FDB FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GW5 H13 HCIFZ HF~ HG6 HMJXF HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD I~X I~Z J-C J0Z JBSCW JZLTJ KOV KVFHK L6V LK5 LLZTM M41 M4Y M7R M7S MA- MZR NPVJJ NQJWS NU0 O9- O9J P2P P9P PCBAR PF0 PT4 PT5 PTHSS QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TDB TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z83 ZMTXR ZY4 ZZE ~A9 AAYXX CITATION M~E 7QH 7UA 8FD AAPKM AAYWO ABFSG ACSTC ACVFH ADCNI AEUPX AEZWR AFFHD AFHIU AFOHR AFPUW AHPBZ AHWEU AIGII AIXLP AKBMS AKYEP AMRAJ ATHPR C1K DWQXO F1W FR3 H96 KR7 L.G PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ACDTI ACYCR |
| ID | FETCH-LOGICAL-c430t-10b9eec091d56adef2a47c9864c92472d41a27ce79be80874ce75c2a2725f1063 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 69 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000474382800035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1226-7988 |
| IngestDate | Sun Jan 19 03:36:43 EST 2025 Sun Jul 20 09:10:44 EDT 2025 Mon Nov 10 02:59:16 EST 2025 Tue Nov 18 22:39:22 EST 2025 Sat Nov 29 05:59:20 EST 2025 Fri Feb 21 02:33:47 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | artificial neural network (ANN) tunnel boring machine (TBM) ground types backpropagation (BP) algorithm tunnel face TBM data ground condition prediction |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c430t-10b9eec091d56adef2a47c9864c92472d41a27ce79be80874ce75c2a2725f1063 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://dx.doi.org/10.1007/s12205-019-1460-9 |
| PQID | 2225501425 |
| PQPubID | 1496355 |
| PageCount | 7 |
| ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_5629821 proquest_journals_2919538889 proquest_journals_2225501425 crossref_citationtrail_10_1007_s12205_019_1460_9 crossref_primary_10_1007_s12205_019_1460_9 springer_journals_10_1007_s12205_019_1460_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-07-01 |
| PublicationDateYYYYMMDD | 2019-07-01 |
| PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Seoul |
| PublicationPlace_xml | – name: Seoul |
| PublicationTitle | KSCE Journal of Civil Engineering |
| PublicationTitleAbbrev | KSCE J Civ Eng |
| PublicationYear | 2019 |
| Publisher | Korean Society of Civil Engineers Springer Nature B.V 대한토목학회 |
| Publisher_xml | – name: Korean Society of Civil Engineers – name: Springer Nature B.V – name: 대한토목학회 |
| References | KimPMATLAB deep learning: With machine learning, neural networks and artificial intelligence2017New York, NY, USAApress538010.1007/978-1-4842-2845-6 JungS MA risk management system applicable to TBM tunnel during design and construction stage2014Seoul, Korea (in Korean)Korea University PattersonD WArtificial neural networks: Theory and applications1995New York, NY, USASpringer1179 BudumaNLocascioNFundamentals of deep learning: Designing next-generation machine intelligence algorithms2017CA, USAO’Reilly Media, Sebastopol MaHYinLGongQWangJTBM tunneling in mixed-face ground: Problems and solutionsInternational Journal of Mining Science and Technology201525464164710.1016/j.ijmst.2015.05.019 WolpertD HMacreadyW GNo free lunch theorems for optimizationIEEE Transactions on Evolutionary Computation199711678210.1109/4235.585893 GholamnejadJTayaraniNApplication of artificial neural networks to the prediction of tunnel boring machine penetration rateMining Science and Technology2010205727733 RipleyB DPattern recognition and neural networks1996New York, NY, USACambridge University Press10.1017/CBO97805118126510853.62046 TaylorKDeep learning. Applications with MATAB2017Lavergne, TN, USACreateSpace Independent Publishing Platform HintonG EA practical guide to training restricted boltzmann machines2010Toronto, CanadaUniversity of Toronto VergaraaI MSarogloubCPrediction of TBM performance in mixed-face ground conditionsTunnelling and Underground Space Technology20176911612410.1016/j.tust.2017.06.015 BenardosA GKaliampakosD CModelling TBM performance with artificial neural networksTunnelling and Underground Space Technology200419659760510.1016/j.tust.2004.02.128 ChungHLeeI MJungJ HParkJBayesian networks-based shield TBM risk management system: Methodology development and applicationKSCE Journal of Civil Engineering201923145246510.1007/s12205-018-0912-y HyunK CA risk management system applicable to shield TBM tunnel2013Seoul, Korea (in Korean)Korea University LeCunY ABottouLOrrG BMullerK REfficient backpropNeural Networks: Tricks of the Trade20127700948 BealeM HHaganM TDemuthH BNeural Network Toolbox™ user’s guide2016Natick, MA, USA.The MathWorks Inc. LeeK HPredictions of ground conditions ahead of tunnel face applicable to TBM2014Seoul, Korea (in Korean)Korea University Gholamnejad (10.1007/s12205-019-1460-9_bib5) 2010; 20 Lee (10.1007/s12205-019-1460-9_bib11) 2014 Jung (10.1007/s12205-019-1460-9_bib8) 2014 Kim (10.1007/s12205-019-1460-9_bib9) 2017 Ripley (10.1007/s12205-019-1460-9_bib14) 1996 Hyun (10.1007/s12205-019-1460-9_bib7) 2013 Taylor (10.1007/s12205-019-1460-9_bib15) 2017 Benardos (10.1007/s12205-019-1460-9_bib2) 2004; 19 Hinton (10.1007/s12205-019-1460-9_bib6) 2010 Patterson (10.1007/s12205-019-1460-9_bib13) 1995 Buduma (10.1007/s12205-019-1460-9_bib3) 2017 Chung (10.1007/s12205-019-1460-9_bib4) 2019; 23 Vergaraa (10.1007/s12205-019-1460-9_bib16) 2017; 69 Beale (10.1007/s12205-019-1460-9_bib1) 2016 Wolpert (10.1007/s12205-019-1460-9_bib17) 1997; 1 Ma (10.1007/s12205-019-1460-9_bib12) 2015; 25 LeCun (10.1007/s12205-019-1460-9_bib10) 2012; 7700 |
| References_xml | – reference: LeeK HPredictions of ground conditions ahead of tunnel face applicable to TBM2014Seoul, Korea (in Korean)Korea University – reference: RipleyB DPattern recognition and neural networks1996New York, NY, USACambridge University Press10.1017/CBO97805118126510853.62046 – reference: ChungHLeeI MJungJ HParkJBayesian networks-based shield TBM risk management system: Methodology development and applicationKSCE Journal of Civil Engineering201923145246510.1007/s12205-018-0912-y – reference: JungS MA risk management system applicable to TBM tunnel during design and construction stage2014Seoul, Korea (in Korean)Korea University – reference: HyunK CA risk management system applicable to shield TBM tunnel2013Seoul, Korea (in Korean)Korea University – reference: HintonG EA practical guide to training restricted boltzmann machines2010Toronto, CanadaUniversity of Toronto – reference: TaylorKDeep learning. Applications with MATAB2017Lavergne, TN, USACreateSpace Independent Publishing Platform – reference: GholamnejadJTayaraniNApplication of artificial neural networks to the prediction of tunnel boring machine penetration rateMining Science and Technology2010205727733 – reference: VergaraaI MSarogloubCPrediction of TBM performance in mixed-face ground conditionsTunnelling and Underground Space Technology20176911612410.1016/j.tust.2017.06.015 – reference: MaHYinLGongQWangJTBM tunneling in mixed-face ground: Problems and solutionsInternational Journal of Mining Science and Technology201525464164710.1016/j.ijmst.2015.05.019 – reference: BudumaNLocascioNFundamentals of deep learning: Designing next-generation machine intelligence algorithms2017CA, USAO’Reilly Media, Sebastopol – reference: KimPMATLAB deep learning: With machine learning, neural networks and artificial intelligence2017New York, NY, USAApress538010.1007/978-1-4842-2845-6 – reference: WolpertD HMacreadyW GNo free lunch theorems for optimizationIEEE Transactions on Evolutionary Computation199711678210.1109/4235.585893 – reference: PattersonD WArtificial neural networks: Theory and applications1995New York, NY, USASpringer1179 – reference: LeCunY ABottouLOrrG BMullerK REfficient backpropNeural Networks: Tricks of the Trade20127700948 – reference: BealeM HHaganM TDemuthH BNeural Network Toolbox™ user’s guide2016Natick, MA, USA.The MathWorks Inc. – reference: BenardosA GKaliampakosD CModelling TBM performance with artificial neural networksTunnelling and Underground Space Technology200419659760510.1016/j.tust.2004.02.128 – year: 2010 ident: 10.1007/s12205-019-1460-9_bib6 – year: 2013 ident: 10.1007/s12205-019-1460-9_bib7 – volume: 20 start-page: 727 issue: 5 year: 2010 ident: 10.1007/s12205-019-1460-9_bib5 article-title: Application of artificial neural networks to the prediction of tunnel boring machine penetration rate publication-title: Mining Science and Technology – volume: 23 start-page: 452 issue: 1 year: 2019 ident: 10.1007/s12205-019-1460-9_bib4 article-title: Bayesian networks-based shield TBM risk management system: Methodology development and application publication-title: KSCE Journal of Civil Engineering doi: 10.1007/s12205-018-0912-y – volume: 25 start-page: 641 issue: 4 year: 2015 ident: 10.1007/s12205-019-1460-9_bib12 article-title: TBM tunneling in mixed-face ground: Problems and solutions publication-title: International Journal of Mining Science and Technology doi: 10.1016/j.ijmst.2015.05.019 – year: 2017 ident: 10.1007/s12205-019-1460-9_bib15 – year: 2014 ident: 10.1007/s12205-019-1460-9_bib11 – year: 1996 ident: 10.1007/s12205-019-1460-9_bib14 – start-page: 1 year: 1995 ident: 10.1007/s12205-019-1460-9_bib13 – volume: 7700 start-page: 9 year: 2012 ident: 10.1007/s12205-019-1460-9_bib10 article-title: Efficient backprop publication-title: Neural Networks: Tricks of the Trade – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 10.1007/s12205-019-1460-9_bib17 article-title: No free lunch theorems for optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.585893 – start-page: 53 year: 2017 ident: 10.1007/s12205-019-1460-9_bib9 – volume: 69 start-page: 116 year: 2017 ident: 10.1007/s12205-019-1460-9_bib16 article-title: Prediction of TBM performance in mixed-face ground conditions publication-title: Tunnelling and Underground Space Technology doi: 10.1016/j.tust.2017.06.015 – year: 2017 ident: 10.1007/s12205-019-1460-9_bib3 – year: 2014 ident: 10.1007/s12205-019-1460-9_bib8 – volume: 19 start-page: 597 issue: 6 year: 2004 ident: 10.1007/s12205-019-1460-9_bib2 article-title: Modelling TBM performance with artificial neural networks publication-title: Tunnelling and Underground Space Technology doi: 10.1016/j.tust.2004.02.128 – year: 2016 ident: 10.1007/s12205-019-1460-9_bib1 |
| SSID | ssj0000327835 ssib061798507 |
| Score | 2.4431105 |
| Snippet | This paper presents an artificial neural network (ANN) model that predicts ground conditions ahead of a tunnel face by using shield tunnel boring machine (TBM)... |
| SourceID | nrf proquest crossref springer |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3200 |
| SubjectTerms | Accuracy Algorithms Architectural engineering Artificial neural networks Back propagation Boring machines Civil Engineering Data Data acquisition Disclaimers Drilling & boring machinery Engineering Geotechnical Engineering & Applied Earth Sciences Industrial Pollution Prevention Mathematical models Methods Model accuracy Neural networks Predictions Trends Tunnel construction Tunnel Engineering Tunneling shields Tunnels 토목공학 |
| SummonAdditionalLinks | – databaseName: SpringerLink Contemporary (1997 - Present) dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA86PejBb3E6JYgnpZD0Y02O82PowSk6xVtI03SMSStd9e_3va51TlTQU0uTNCEvyXsvv_dByJG0gZUWUV0ptONbbpyoHQVO4vNEGw4CRxyVySbCXk88Pcnbyo97XFu715BkeVJPnd3QJxRUX-nA7maOnCcLwO0E7sa7-8ePixXmYfIINF2EBm0H43HVaOZ3f5nhR_NpnsyIml_Q0ZLpdFf_Ndw1slLJmLQzWRTrZM6mG2T5U-TBTXLXSWmn16NFRm9zxGoKirdQaUzPMgSxgVpUwzkd0yyh_Vc0hqFdbSxFO_kB7Z9e05sXm1c3ifRcF3qLPHQv-meXTpVewTG-xwo4gCNprQGBIQ7aOraJq_3QYLh2A0pZ6MY-125obCgjK5gIfXgNjAvf3CABTdLbJo00S-0OoVJ7ngbBiDMLXJHFkkc8kkmUhCBhGB43CasnWZkq9jimwHhW06jJOF0KpguVEaZkkxx_NHmZBN74rfIhUE6NzFBhuGx8DjI1yhUoBVcKRDwpXN4krZqwqtqoY4XqLkKrbvB9sUSYUQgBXZzUdJ4W_zig3T_V3iNLLiudyWC9tEijyF_tPlk0b8VwnB-Uy_sdAwDvcQ priority: 102 providerName: Springer Nature |
| Title | An ANN to Predict Ground Condition ahead of Tunnel Face using TBM Operational Data |
| URI | https://link.springer.com/article/10.1007/s12205-019-1460-9 https://www.proquest.com/docview/2225501425 https://www.proquest.com/docview/2919538889 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002474184 |
| Volume | 23 |
| WOSCitedRecordID | wos000474382800035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| ispartofPNX | KSCE Journal of Civil Engineering, 2019, 23(7), , pp.3200-3206 |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1976-3808 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib061798507 issn: 1226-7988 databaseCode: M~E dateStart: 19970101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1976-3808 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0000327835 issn: 1226-7988 databaseCode: PCBAR dateStart: 19971201 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1976-3808 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0000327835 issn: 1226-7988 databaseCode: M7S dateStart: 19971201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1976-3808 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0000327835 issn: 1226-7988 databaseCode: BENPR dateStart: 19971201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLink customDbUrl: eissn: 1976-3808 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000327835 issn: 1226-7988 databaseCode: RSV dateStart: 19971201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RLQc48K7YUioLcQJZ2Hk08Qlty67gQFhtF9Sb5dhOVRUlSzbtkd_OTOpsKYJeuDhRnERWxhl_M994BuC18qlXnlhdlRueeGl5eVCmvEpkZaxEwOHKvthEVhT5yYmaB4fbOoRVDjqxV9SuseQjfxcpInzQXlPvVz84VY0idjWU0NiCbcpUloxg-3BazBcbL4uIqZIExTFKxBmcknMN1Ga_f462maI1rTgqDMHVjcVpq26rG7jzD6q0X4FmD_937I_gQcCebHI1WR7DHV8_gfu_ZSR8CotJzSZFwbqGzVvicDpG3qnasaOGyG2UIjOovx1rKra8oCAZNjPWM4qfP2XLw8_sy8q3wcPIPpjOPIOvs-ny6CMPZRe4TWLRoWIulfcWgYRLD4zzVWSSzFIad4vGWha5RJoosz5Tpc9FniV4mtoIr0VphRZmvAOjuqn9c2DKxLFBwCSFx9VSOCVLWaqqrDJEHla6MYjhe2sbcpJTaYzv-jqbMolIo4jISBFajeHN5pHVVUKO225-hULU5_ZMUxptOp42-rzVaCx80gj9VB7JMewNUtPhB15rMoOJco3Sv3dvJDqGt8O0uO7-54B2b3_ZC7gXiX5XGU7KPRh17YV_CXftZXe2bvfD5N6n-NRjan9OsV0cf_sF4kb-5Q |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NT9RAFH8BNDEexM-4ijoxetFM7Exb2jkQs4IbNkAluibchunMlBBMu3aLxn-Kv5H3uu0iRrlx8NSm007azm_e9wfAK-Vjrzx5dVVqeOSF5fl6HvMiEoWxAgUOl7fNJpIsSw8O1P4SnPW5MBRW2dPEllC7ypKN_J1U5PBBfU29n37n1DWKvKt9C405LHb8r5-oss02xlu4vq-lHH2cbG7zrqsAt1EYNEh3cuW9RT7p4nXjfCFNlFiqUm5RF0mki4SRifWJyn0apEmEp7GVeE3GBSpQIc67DDciov5tqOCXhU0nCKlvBUVNCpRqOJUC6x2pbbYeJbWi7q44kqeAq0uscLmsi0tS7h-O2ZbfjVb_tz91F-50kjUbzrfCPVjy5X24_Vu9xQfweViyYZaxpmL7NXmoGka2t9KxzYpc94hRZpA7OVYVbHJKIUBsZKxnlB1wxCYf9tinqa87-ynbMo15CF-v5aMewUpZlf4xMGXC0KA4KAKPskDglMhFroq8SFCussINIOjXV9uu4jo1_vimL2pFEyQ0QoJUsECrAbxZPDKdlxu56uaXCBp9Yo81FQmn41GlT2qNqtBYo2CrUikGsNajRHfkaaZJySeHsoz_PrxA0ADe9jC8GP7nCz25erIXcGt7srerd8fZzlMykARiHkq5BitNfeqfwU37ozme1c_bbcXg8LrReQ4uBFZu |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xMiH2AAw2rTCYNe0JFNXORxM_lo2KaRCqraC9WY4_pqkoqdKMv5-7NlkZGkiIp0SxnVg-O77z7-53AEfSJU46QnVlpoPYCRMUwyIJfCy8NgIVDlssk02keZ5dXspJm-d00Xm7d5DkKqaBWJrKZjC3frAOfKP4UDSDZYArnQdyAx7GlDOIzPWLb7eHLDyiRBLkxogNhgFxc3XI5n1vubM3bZS1v6N2_oaULjeg8dP_7vozeNLqnmy0mizb8MCVz2HrF0bCF3A-Ktkoz1lTsUlNGE7D6HSqtOy4InAbpcg0_r8tqzyb3pCTDBtr4xj5z1-x6fvP7Mvc1e0JIzvRjd6Br-MP0-OPQZt2ITBxxBv8MRfSOYOKhE2G2jof6jg1RONu0FhLQxsLHabGpbJwGc_SGG8TE-KzMPFoYUa70Cur0u0BkzqKNCpMgjvcLbmVohCF9IVPUfMwwvaBdwOuTMtJTqkxvqs1mzINl8LhIiOFK9mHt7dN5itCjr9VPkQpqpm5VkSjTderSs1qhcbCqULVT2ah6MN-J2TVLuCFIjOYINcwub9YEvyYZRl-4l0n83XxHzv08p9qH8CjyclYfTrNz17B45Av481w6uxDr6lv3GvYND-a60X9ZjnrfwIECPs5 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+ANN+to+Predict+Ground+Condition+ahead+of+Tunnel+Face+using+TBM+Operational+Data&rft.jtitle=KSCE+Journal+of+Civil+Engineering&rft.au=Jung%2C+Jee-Hee&rft.au=Chung%2C+Heeyoung&rft.au=Kwon%2C+Young-Sam&rft.au=Lee%2C+In-Mo&rft.date=2019-07-01&rft.issn=1226-7988&rft.volume=23&rft.issue=7&rft.spage=3200&rft.epage=3206&rft_id=info:doi/10.1007%2Fs12205-019-1460-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12205_019_1460_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-7988&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-7988&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-7988&client=summon |