An ANN to Predict Ground Condition ahead of Tunnel Face using TBM Operational Data

This paper presents an artificial neural network (ANN) model that predicts ground conditions ahead of a tunnel face by using shield tunnel boring machine (TBM) data obtained during the tunneling operation. The primary advantage of the proposed technique is that, by using TBM data, no additional data...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:KSCE Journal of Civil Engineering Ročník 23; číslo 7; s. 3200 - 3206
Hlavní autori: Jung, Jee-Hee, Chung, Heeyoung, Kwon, Young-Sam, Lee, In-Mo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Seoul Korean Society of Civil Engineers 01.07.2019
Springer Nature B.V
대한토목학회
Predmet:
ISSN:1226-7988, 1976-3808
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper presents an artificial neural network (ANN) model that predicts ground conditions ahead of a tunnel face by using shield tunnel boring machine (TBM) data obtained during the tunneling operation. The primary advantage of the proposed technique is that, by using TBM data, no additional data acquisition device is required. Ground type classifications and machine data normalization methods are introduced to maintain the consistency of the measured data and improve prediction accuracy. The efficacy of the proposed model is demonstrated by its 96% accuracy in predicting ground type one ring ahead of the tunnel face.
AbstractList This paper presents an artificial neural network (ANN) model that predicts ground conditions ahead of a tunnel face by using shield tunnel boring machine (TBM) data obtained during the tunneling operation. The primary advantage of the proposed technique is that, by using TBM data, no additional data acquisition device is required. Ground type classifications and machine data normalization methods are introduced to maintain the consistency of the measured data and improve prediction accuracy. The efficacy of the proposed model is demonstrated by its 96% accuracy in predicting ground type one ring ahead of the tunnel face.
This paper presents an artificial neural network (ANN) model that predicts ground conditions ahead of a tunnel face by using shield tunnel boring machine (TBM) data obtained during the tunneling operation. The primary advantage of the proposed technique is that, by using TBM data, no additional data acquisition device is required. Ground type classifications and machine data normalization methods are introduced to maintain the consistency of the measured data and improve prediction accuracy. The efficacy of the proposed model is demonstrated by its 96% accuracy in predicting ground type one ring ahead of the tunnel face. KCI Citation Count: 55
Author Jung, Jee-Hee
Chung, Heeyoung
Lee, In-Mo
Kwon, Young-Sam
Author_xml – sequence: 1
  givenname: Jee-Hee
  surname: Jung
  fullname: Jung, Jee-Hee
  organization: School of Civil, Environmental and Architectural Engineering, Korea University
– sequence: 2
  givenname: Heeyoung
  surname: Chung
  fullname: Chung, Heeyoung
  organization: School of Civil, Environmental and Architectural Engineering, Korea University
– sequence: 3
  givenname: Young-Sam
  surname: Kwon
  fullname: Kwon, Young-Sam
  organization: School of Civil, Environmental and Architectural Engineering, Korea University
– sequence: 4
  givenname: In-Mo
  surname: Lee
  fullname: Lee, In-Mo
  email: inmolee@korea.ac.kr
  organization: School of Civil, Environmental and Architectural Engineering, Korea University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002474184$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kU1LAzEQhoNU8PMHeAt48rCazG42ybHWr4JfSD2HNJut0ZrUZPfgvzd1BUGwc5lheN5hZt49NPLBW4SOKDmlhPCzRAEIKwiVBa1qUsgttEslr4tSEDHKNUBdcCnEDjpM6ZXkKIGLku2ip7HH4_t73AX8GG3jTIevY-h9gyfBN65zwWP9YnWDQ4tnvfd2ia-0sbhPzi_w7PwOP6xs1GtQL_GF7vQB2m71MtnDn7yPnq8uZ5Ob4vbhejoZ3xamKklXUDKX1hoiacNq3dgWdMWNFHVlJFQcmopq4MZyObf5DF7lkhnIPWAtJXW5j06GuT626s04FbT7zoug3qIaP82mitUgBdDMHg_sKoaP3qZOvYY-5o2TAkklK4UQciMFwBihFbBM8YEyMaQUbauM674f0EXtlooStXZFDa6o7Ipau6LW8-kf5Sq6dx0_N2pg0KTM-oWNvzv9L_oCHymcdQ
CitedBy_id crossref_primary_10_1080_17486025_2024_2354289
crossref_primary_10_1007_s00603_024_03903_9
crossref_primary_10_3390_app14114623
crossref_primary_10_1016_j_earscirev_2022_103991
crossref_primary_10_1007_s00603_022_02834_7
crossref_primary_10_1007_s40808_024_02093_1
crossref_primary_10_1016_j_tust_2025_106741
crossref_primary_10_1111_exsy_12563
crossref_primary_10_1016_j_tust_2020_103700
crossref_primary_10_1108_FEBE_07_2021_0036
crossref_primary_10_1007_s00603_022_02971_z
crossref_primary_10_1016_j_measurement_2021_109545
crossref_primary_10_1016_j_asoc_2022_108686
crossref_primary_10_1038_s41598_024_60681_8
crossref_primary_10_1016_j_autcon_2021_103719
crossref_primary_10_1680_jsmic_20_00011
crossref_primary_10_1007_s42452_021_04903_y
crossref_primary_10_1016_j_tust_2021_104196
crossref_primary_10_1007_s11600_024_01320_8
crossref_primary_10_1007_s10706_021_02033_1
crossref_primary_10_1007_s10706_023_02516_3
crossref_primary_10_1007_s00603_025_04501_z
crossref_primary_10_1016_j_tust_2022_104654
crossref_primary_10_1016_j_aei_2025_103786
crossref_primary_10_1016_j_tust_2022_104497
crossref_primary_10_3390_app122211480
crossref_primary_10_1061__ASCE_GM_1943_5622_0002064
crossref_primary_10_1016_j_gsf_2022_101519
crossref_primary_10_1016_j_undsp_2020_02_007
crossref_primary_10_3390_app131810026
crossref_primary_10_1109_ACCESS_2019_2952649
crossref_primary_10_3390_app12146851
crossref_primary_10_1002_dug2_12084
crossref_primary_10_3390_app132011435
crossref_primary_10_1088_1755_1315_570_5_052056
crossref_primary_10_1016_j_autcon_2022_104672
crossref_primary_10_3390_app11031060
crossref_primary_10_1007_s00603_021_02723_5
crossref_primary_10_1007_s40515_025_00572_1
crossref_primary_10_1016_j_ymssp_2021_108353
crossref_primary_10_1016_j_ymssp_2021_108035
crossref_primary_10_3390_app12052656
crossref_primary_10_1007_s00603_024_04212_x
crossref_primary_10_1038_s41598_023_28243_6
crossref_primary_10_1016_j_tust_2024_105643
crossref_primary_10_1016_j_tust_2024_106258
crossref_primary_10_1016_j_tust_2024_105923
crossref_primary_10_1177_09544062211061682
crossref_primary_10_1109_ACCESS_2020_3004995
crossref_primary_10_1016_j_jrmge_2024_11_011
crossref_primary_10_1007_s10706_025_03165_4
crossref_primary_10_1007_s11440_022_01779_z
crossref_primary_10_1108_MLAG_06_2024_0004
crossref_primary_10_1007_s13369_021_06285_0
crossref_primary_10_1016_j_undsp_2024_06_007
Cites_doi 10.1007/s12205-018-0912-y
10.1016/j.ijmst.2015.05.019
10.1109/4235.585893
10.1016/j.tust.2017.06.015
10.1016/j.tust.2004.02.128
ContentType Journal Article
Copyright Korean Society of Civil Engineers 2019
KSCE Journal of Civil Engineering is a copyright of Springer, (2019). All Rights Reserved.
Korean Society of Civil Engineers 2019.
Copyright_xml – notice: Korean Society of Civil Engineers 2019
– notice: KSCE Journal of Civil Engineering is a copyright of Springer, (2019). All Rights Reserved.
– notice: Korean Society of Civil Engineers 2019.
DBID AAYXX
CITATION
7QH
7UA
8FD
8FE
8FG
ABJCF
AEUYN
AFKRA
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
H96
HCIFZ
KR7
L.G
L6V
M7S
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ACYCR
DOI 10.1007/s12205-019-1460-9
DatabaseName CrossRef
Aqualine
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
AUTh Library subscriptions: ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Engineering Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Korean Citation Index
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1976-3808
EndPage 3206
ExternalDocumentID oai_kci_go_kr_ARTI_5629821
10_1007_s12205_019_1460_9
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
203
29L
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
9ZL
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AALRI
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXUO
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADVLN
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
CAG
CCPQU
COF
CS3
CSCUP
DBRKI
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FDB
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GW5
H13
HCIFZ
HF~
HG6
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
KVFHK
L6V
LK5
LLZTM
M41
M4Y
M7R
M7S
MA-
MZR
NPVJJ
NQJWS
NU0
O9-
O9J
P2P
P9P
PCBAR
PF0
PT4
PT5
PTHSS
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TDB
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z83
ZMTXR
ZY4
ZZE
~A9
AAYXX
CITATION
M~E
7QH
7UA
8FD
AAPKM
AAYWO
ABFSG
ACSTC
ACVFH
ADCNI
AEUPX
AEZWR
AFFHD
AFHIU
AFOHR
AFPUW
AHPBZ
AHWEU
AIGII
AIXLP
AKBMS
AKYEP
AMRAJ
ATHPR
C1K
DWQXO
F1W
FR3
H96
KR7
L.G
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ACDTI
ACYCR
ID FETCH-LOGICAL-c430t-10b9eec091d56adef2a47c9864c92472d41a27ce79be80874ce75c2a2725f1063
IEDL.DBID RSV
ISICitedReferencesCount 69
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000474382800035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1226-7988
IngestDate Sun Jan 19 03:36:43 EST 2025
Sun Jul 20 09:10:44 EDT 2025
Mon Nov 10 02:59:16 EST 2025
Tue Nov 18 22:39:22 EST 2025
Sat Nov 29 05:59:20 EST 2025
Fri Feb 21 02:33:47 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords artificial neural network (ANN)
tunnel boring machine (TBM)
ground types
backpropagation (BP) algorithm
tunnel face
TBM data
ground condition prediction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c430t-10b9eec091d56adef2a47c9864c92472d41a27ce79be80874ce75c2a2725f1063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://dx.doi.org/10.1007/s12205-019-1460-9
PQID 2225501425
PQPubID 1496355
PageCount 7
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_5629821
proquest_journals_2919538889
proquest_journals_2225501425
crossref_citationtrail_10_1007_s12205_019_1460_9
crossref_primary_10_1007_s12205_019_1460_9
springer_journals_10_1007_s12205_019_1460_9
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
PublicationTitle KSCE Journal of Civil Engineering
PublicationTitleAbbrev KSCE J Civ Eng
PublicationYear 2019
Publisher Korean Society of Civil Engineers
Springer Nature B.V
대한토목학회
Publisher_xml – name: Korean Society of Civil Engineers
– name: Springer Nature B.V
– name: 대한토목학회
References KimPMATLAB deep learning: With machine learning, neural networks and artificial intelligence2017New York, NY, USAApress538010.1007/978-1-4842-2845-6
JungS MA risk management system applicable to TBM tunnel during design and construction stage2014Seoul, Korea (in Korean)Korea University
PattersonD WArtificial neural networks: Theory and applications1995New York, NY, USASpringer1179
BudumaNLocascioNFundamentals of deep learning: Designing next-generation machine intelligence algorithms2017CA, USAO’Reilly Media, Sebastopol
MaHYinLGongQWangJTBM tunneling in mixed-face ground: Problems and solutionsInternational Journal of Mining Science and Technology201525464164710.1016/j.ijmst.2015.05.019
WolpertD HMacreadyW GNo free lunch theorems for optimizationIEEE Transactions on Evolutionary Computation199711678210.1109/4235.585893
GholamnejadJTayaraniNApplication of artificial neural networks to the prediction of tunnel boring machine penetration rateMining Science and Technology2010205727733
RipleyB DPattern recognition and neural networks1996New York, NY, USACambridge University Press10.1017/CBO97805118126510853.62046
TaylorKDeep learning. Applications with MATAB2017Lavergne, TN, USACreateSpace Independent Publishing Platform
HintonG EA practical guide to training restricted boltzmann machines2010Toronto, CanadaUniversity of Toronto
VergaraaI MSarogloubCPrediction of TBM performance in mixed-face ground conditionsTunnelling and Underground Space Technology20176911612410.1016/j.tust.2017.06.015
BenardosA GKaliampakosD CModelling TBM performance with artificial neural networksTunnelling and Underground Space Technology200419659760510.1016/j.tust.2004.02.128
ChungHLeeI MJungJ HParkJBayesian networks-based shield TBM risk management system: Methodology development and applicationKSCE Journal of Civil Engineering201923145246510.1007/s12205-018-0912-y
HyunK CA risk management system applicable to shield TBM tunnel2013Seoul, Korea (in Korean)Korea University
LeCunY ABottouLOrrG BMullerK REfficient backpropNeural Networks: Tricks of the Trade20127700948
BealeM HHaganM TDemuthH BNeural Network Toolbox™ user’s guide2016Natick, MA, USA.The MathWorks Inc.
LeeK HPredictions of ground conditions ahead of tunnel face applicable to TBM2014Seoul, Korea (in Korean)Korea University
Gholamnejad (10.1007/s12205-019-1460-9_bib5) 2010; 20
Lee (10.1007/s12205-019-1460-9_bib11) 2014
Jung (10.1007/s12205-019-1460-9_bib8) 2014
Kim (10.1007/s12205-019-1460-9_bib9) 2017
Ripley (10.1007/s12205-019-1460-9_bib14) 1996
Hyun (10.1007/s12205-019-1460-9_bib7) 2013
Taylor (10.1007/s12205-019-1460-9_bib15) 2017
Benardos (10.1007/s12205-019-1460-9_bib2) 2004; 19
Hinton (10.1007/s12205-019-1460-9_bib6) 2010
Patterson (10.1007/s12205-019-1460-9_bib13) 1995
Buduma (10.1007/s12205-019-1460-9_bib3) 2017
Chung (10.1007/s12205-019-1460-9_bib4) 2019; 23
Vergaraa (10.1007/s12205-019-1460-9_bib16) 2017; 69
Beale (10.1007/s12205-019-1460-9_bib1) 2016
Wolpert (10.1007/s12205-019-1460-9_bib17) 1997; 1
Ma (10.1007/s12205-019-1460-9_bib12) 2015; 25
LeCun (10.1007/s12205-019-1460-9_bib10) 2012; 7700
References_xml – reference: LeeK HPredictions of ground conditions ahead of tunnel face applicable to TBM2014Seoul, Korea (in Korean)Korea University
– reference: RipleyB DPattern recognition and neural networks1996New York, NY, USACambridge University Press10.1017/CBO97805118126510853.62046
– reference: ChungHLeeI MJungJ HParkJBayesian networks-based shield TBM risk management system: Methodology development and applicationKSCE Journal of Civil Engineering201923145246510.1007/s12205-018-0912-y
– reference: JungS MA risk management system applicable to TBM tunnel during design and construction stage2014Seoul, Korea (in Korean)Korea University
– reference: HyunK CA risk management system applicable to shield TBM tunnel2013Seoul, Korea (in Korean)Korea University
– reference: HintonG EA practical guide to training restricted boltzmann machines2010Toronto, CanadaUniversity of Toronto
– reference: TaylorKDeep learning. Applications with MATAB2017Lavergne, TN, USACreateSpace Independent Publishing Platform
– reference: GholamnejadJTayaraniNApplication of artificial neural networks to the prediction of tunnel boring machine penetration rateMining Science and Technology2010205727733
– reference: VergaraaI MSarogloubCPrediction of TBM performance in mixed-face ground conditionsTunnelling and Underground Space Technology20176911612410.1016/j.tust.2017.06.015
– reference: MaHYinLGongQWangJTBM tunneling in mixed-face ground: Problems and solutionsInternational Journal of Mining Science and Technology201525464164710.1016/j.ijmst.2015.05.019
– reference: BudumaNLocascioNFundamentals of deep learning: Designing next-generation machine intelligence algorithms2017CA, USAO’Reilly Media, Sebastopol
– reference: KimPMATLAB deep learning: With machine learning, neural networks and artificial intelligence2017New York, NY, USAApress538010.1007/978-1-4842-2845-6
– reference: WolpertD HMacreadyW GNo free lunch theorems for optimizationIEEE Transactions on Evolutionary Computation199711678210.1109/4235.585893
– reference: PattersonD WArtificial neural networks: Theory and applications1995New York, NY, USASpringer1179
– reference: LeCunY ABottouLOrrG BMullerK REfficient backpropNeural Networks: Tricks of the Trade20127700948
– reference: BealeM HHaganM TDemuthH BNeural Network Toolbox™ user’s guide2016Natick, MA, USA.The MathWorks Inc.
– reference: BenardosA GKaliampakosD CModelling TBM performance with artificial neural networksTunnelling and Underground Space Technology200419659760510.1016/j.tust.2004.02.128
– year: 2010
  ident: 10.1007/s12205-019-1460-9_bib6
– year: 2013
  ident: 10.1007/s12205-019-1460-9_bib7
– volume: 20
  start-page: 727
  issue: 5
  year: 2010
  ident: 10.1007/s12205-019-1460-9_bib5
  article-title: Application of artificial neural networks to the prediction of tunnel boring machine penetration rate
  publication-title: Mining Science and Technology
– volume: 23
  start-page: 452
  issue: 1
  year: 2019
  ident: 10.1007/s12205-019-1460-9_bib4
  article-title: Bayesian networks-based shield TBM risk management system: Methodology development and application
  publication-title: KSCE Journal of Civil Engineering
  doi: 10.1007/s12205-018-0912-y
– volume: 25
  start-page: 641
  issue: 4
  year: 2015
  ident: 10.1007/s12205-019-1460-9_bib12
  article-title: TBM tunneling in mixed-face ground: Problems and solutions
  publication-title: International Journal of Mining Science and Technology
  doi: 10.1016/j.ijmst.2015.05.019
– year: 2017
  ident: 10.1007/s12205-019-1460-9_bib15
– year: 2014
  ident: 10.1007/s12205-019-1460-9_bib11
– year: 1996
  ident: 10.1007/s12205-019-1460-9_bib14
– start-page: 1
  year: 1995
  ident: 10.1007/s12205-019-1460-9_bib13
– volume: 7700
  start-page: 9
  year: 2012
  ident: 10.1007/s12205-019-1460-9_bib10
  article-title: Efficient backprop
  publication-title: Neural Networks: Tricks of the Trade
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 10.1007/s12205-019-1460-9_bib17
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.585893
– start-page: 53
  year: 2017
  ident: 10.1007/s12205-019-1460-9_bib9
– volume: 69
  start-page: 116
  year: 2017
  ident: 10.1007/s12205-019-1460-9_bib16
  article-title: Prediction of TBM performance in mixed-face ground conditions
  publication-title: Tunnelling and Underground Space Technology
  doi: 10.1016/j.tust.2017.06.015
– year: 2017
  ident: 10.1007/s12205-019-1460-9_bib3
– year: 2014
  ident: 10.1007/s12205-019-1460-9_bib8
– volume: 19
  start-page: 597
  issue: 6
  year: 2004
  ident: 10.1007/s12205-019-1460-9_bib2
  article-title: Modelling TBM performance with artificial neural networks
  publication-title: Tunnelling and Underground Space Technology
  doi: 10.1016/j.tust.2004.02.128
– year: 2016
  ident: 10.1007/s12205-019-1460-9_bib1
SSID ssj0000327835
ssib061798507
Score 2.4431906
Snippet This paper presents an artificial neural network (ANN) model that predicts ground conditions ahead of a tunnel face by using shield tunnel boring machine (TBM)...
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3200
SubjectTerms Accuracy
Algorithms
Architectural engineering
Artificial neural networks
Back propagation
Boring machines
Civil Engineering
Data
Data acquisition
Disclaimers
Drilling & boring machinery
Engineering
Geotechnical Engineering & Applied Earth Sciences
Industrial Pollution Prevention
Mathematical models
Methods
Model accuracy
Neural networks
Predictions
Trends
Tunnel construction
Tunnel Engineering
Tunneling shields
Tunnels
토목공학
SummonAdditionalLinks – databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RLQc48K5YKMhCnEARieMk9gltS1cgQVhVC-rN8vpRVUXJkk35_cykDksR9MIhShQncpKZjOf5DcBLntlQ4oZGjs8TYZEWqgghMUIYguiyYYBd_Pqxqmt5cqIW0eG2iWmVo0wcBLVrLfnI35BdQjEwXrxdf0-oaxRFV2MLjR3YJaQyMYHdg6N6cTxyVElwXCNg1yCbc-osQXmNGeodCYF1jaHOoZ6Oyk7RulYJCpA0UVcWq52mC1f00D9Cp8OKNL_7v-9yD-5EXZTNLpnnPtzwzQO4_RtC4UM4njVsVtesb9mio5hOz8hb1Th22FKwG6nKDMpzx9rAlheUNMPmxnpG-fSnbHnwiX1e-y56HNk705tH8GV-tDx8n8Q2DIkVedqjoF4p7y0qFq4ojfOBG1FZgnW3aLxV3InM8Mr6Sq28TGUl8LCwHM_xIqDFme_BpGkb_xiY5TLkospXpTIidZksVxUPrvCFDa4MYQrp-L21jRjl1Crjm96iKxOJNJKIjJZUqym8-nXL-hKg47qLXyAR9bk90wSrTfvTVp93Go2HDxpVQSV5NoX9kWo6_tAbvSXZ34cVhSOllDjF65EttsP_fKAn18_1FG7xdKgyQ6bch0nfXfhncNP-6M823fPI7D8Bk-X_FQ
  priority: 102
  providerName: ProQuest
Title An ANN to Predict Ground Condition ahead of Tunnel Face using TBM Operational Data
URI https://link.springer.com/article/10.1007/s12205-019-1460-9
https://www.proquest.com/docview/2225501425
https://www.proquest.com/docview/2919538889
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002474184
Volume 23
WOSCitedRecordID wos000474382800035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX KSCE Journal of Civil Engineering, 2019, 23(7), , pp.3200-3206
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1976-3808
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib061798507
  issn: 1226-7988
  databaseCode: M~E
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1976-3808
  dateEnd: 20241208
  omitProxy: false
  ssIdentifier: ssj0000327835
  issn: 1226-7988
  databaseCode: PCBAR
  dateStart: 19971201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1976-3808
  dateEnd: 20241208
  omitProxy: false
  ssIdentifier: ssj0000327835
  issn: 1226-7988
  databaseCode: M7S
  dateStart: 19971201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1976-3808
  dateEnd: 20241208
  omitProxy: false
  ssIdentifier: ssj0000327835
  issn: 1226-7988
  databaseCode: BENPR
  dateStart: 19971201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Online Journals
  customDbUrl:
  eissn: 1976-3808
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327835
  issn: 1226-7988
  databaseCode: RSV
  dateStart: 19971201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4V6KE90CdiKaysqqdWkbKOk9jHhe4KJEhXyxZxs7yOjRAoQdnQI7-dmZCwBdFKcMhDcZxYHj_m88x8BvjGB9YneCDIcVEgLMpCxd4HRghDFF3WN7SLJ4dplsnTUzVp47gXnbd7Z5JsRuplsBvFhCL0VQH27jBQK7CGs52k3jg9PrlfWAkj2jyCXBcxQxIQH1dnzXzqKw_mo5Wi8g9UzUfW0WbSGb97UXHfw3qrY7LhXaP4AK9c8RHe_sU8-Ammw4INs4zVJZtUZKupGa1CFTnbK8mIjdJiBsfpnJWeza7JGYaNjXWM_OTP2Gz3iP26clW7ksh-mtp8ht_j0WxvP2i3VwisiMIaB-C5cs6iwpDHicmd50aklujaLYKylOdiYHhqXarmToYyFXgbW47PeOwRSUYbsFqUhdsEZrn0kUijeaKMCPOBTOYp93nsYuvzxPsehF0la9tyj9MWGJd6yZpM1aWxugiMhFr14Pt9lqs74o3_vfwVJacv7Lkmumy6npX6otIICg40qnhK8kEPtjvB6rajLjTBXTKt8vjpZEVmRikl_uJHJ-dl8j8LtPWst7_AGx42wWTYXrZhta6u3Q68tn_q80XVh7XdUTaZ9skt9ZjON6N-0-RvAVZQ83E
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61BQk48EYsFLAQXEARieM8fEBoaVl11W2oYEG9Ga8fVVWULNkUxJ_iNzKTTViKoLceOESJ4iRO4s8zHo_nG4AnPDI-xQ2NHBcHwmBbyMT7QAuhiaLL-JZ28eMkK4r84EDur8GPPhaGllX2MrEV1LYyNEf-guwS8oHx5NX8S0BZo8i72qfQWMJi133_hibb4uV4G9v3KeejN9OtnaDLKhAYEYcNyp2ZdM6gnrRJqq3zXIvMEEu5QVsk41ZEmmfGZXLm8jDPBB4mhuM5nng0oGJ87jpcECT926WC73v8pkT-1dODtZogpjwWtIoywlFOQNRgvWO1jd6jIFe05WWA4ioM5CnVuF7W_tSo9w9Hbav_Rtf-tz93Ha52I202XHaNG7Dmyptw5Tf-xVvwbliyYVGwpmL7NXmsGkZzcaVlWxW58hGzTKO2sqzybHpCS4LYSBvHKFrgkE1f77G3c1d386lsWzf6Nnw4l4-6AxtlVbq7wAzPfSyyeJZKLUIb5eks494mLjHept4PIOzbV5mOgZ0SgXxWK-5ogoRCSJBJFio5gGe_bpkv6UfOuvgxgkYdmyNFpOG0P6zUca3QNBorHOjKnEcD2OxRojpxtVAriPy9WJKzNc9zrOJ5D8NV8T9f6N7ZdT2CSzvTvYmajIvd-3CZh208HXaITdho6hP3AC6ar83Ron7YdjMGn84bnT8BInhZ7Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB61BaHyUMoltgdYiCdQ1KzjJPbj9lhR0YYVLFXfLK-PqmqVrLIpv5-Z3aRLUUGqeIgSxXZieXzM5_F8A_CB923I8EKQ45NIWJSFSkOIjBCGKLpsmNMunp3kRSHPz9WojXM66067dybJhU8DsTSVzd7Uhb2l4xv5hyIMVhGO9DhSq_BIUMwgguvfz243WeKEAknQMUYskEXEzdVZNu_7yp21abWswx218w9L6XwBGj7776pvwkare7LBorM8hxVfvoCnvzESvoRvg5INioI1FRvVZMNpGO1OlY4dVGTcRikyg_O3Y1Vg4xs6JMOGxnpG5-cv2Hj_lH2d-rrdYWSHpjGv4MfwaHzwOWrDLkRWJHGDE_NEeW9RkXBpZpwP3IjcEo27RbCWcyf6hufW52riZSxzgY-p5fiOpwERZvIa1sqq9G-AWS5DIvJkkikjYteX2STnwaU-tcFlIfQg7hpc25aTnEJjXOslmzI1l8bmIpASa9WDj7dFpgtCjn9lfo9S1Ff2UhONNt0vKn1VawQLxxpVPyV5vwc7nZB1O4BnmmAwmVx5en-yIvOjlBJ_8amT-TL5rxXaelDud_BkdDjUJ8fFl21Y5_Hc3wy7zg6sNfWN34XH9mdzOavfznv9L3CQ-3Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+ANN+to+Predict+Ground+Condition+ahead+of+Tunnel+Face+using+TBM+Operational+Data&rft.jtitle=KSCE+journal+of+civil+engineering&rft.au=Jung%2C+Jee-Hee&rft.au=Chung%2C+Heeyoung&rft.au=Kwon%2C+Young-Sam&rft.au=Lee%2C+In-Mo&rft.date=2019-07-01&rft.pub=Korean+Society+of+Civil+Engineers&rft.issn=1226-7988&rft.eissn=1976-3808&rft.volume=23&rft.issue=7&rft.spage=3200&rft.epage=3206&rft_id=info:doi/10.1007%2Fs12205-019-1460-9&rft.externalDocID=10_1007_s12205_019_1460_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-7988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-7988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-7988&client=summon