Visual Exploration of High-Dimensional Data through Subspace Analysis and Dynamic Projections

We introduce a novel interactive framework for visualizing and exploring high‐dimensional datasets based on subspace analysis and dynamic projections. We assume the high‐dimensional dataset can be represented by a mixture of low‐dimensional linear subspaces with mixed dimensions, and provide a metho...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer graphics forum Ročník 34; číslo 3; s. 271 - 280
Hlavní autoři: Liu, S., Wang, B., Thiagarajan, J. J., Bremer, P.-T., Pascucci, V.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Blackwell Publishing Ltd 01.06.2015
Témata:
ISSN:0167-7055, 1467-8659
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We introduce a novel interactive framework for visualizing and exploring high‐dimensional datasets based on subspace analysis and dynamic projections. We assume the high‐dimensional dataset can be represented by a mixture of low‐dimensional linear subspaces with mixed dimensions, and provide a method to reliably estimate the intrinsic dimension and linear basis of each subspace extracted from the subspace clustering. Subsequently, we use these bases to define unique 2D linear projections as viewpoints from which to visualize the data. To understand the relationships among the different projections and to discover hidden patterns, we connect these projections through dynamic projections that create smooth animated transitions between pairs of projections. We introduce the view transition graph, which provides flexible navigation among these projections to facilitate an intuitive exploration. Finally, we provide detailed comparisons with related systems, and use real‐world examples to demonstrate the novelty and usability of our proposed framework.
Bibliografie:ArticleID:CGF12639
ark:/67375/WNG-1SBR4R3Z-4
istex:4437B52B526211B76A840CED83934E799A0F156C
Supporting Information
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
DOE-UTAH-PASCUCCI-0003
NA0002375
USDOE National Nuclear Security Administration (NNSA)
ISSN:0167-7055
1467-8659
DOI:10.1111/cgf.12639