Three-dimensional Mohr-Coulomb limit analysis using semidefinite programming
Recently, Krabbenhøft et al. (Int. J. Solids Struct. 2007; 44:1533–1549) have presented a formulation of the three‐dimensional Mohr–Coulomb criterion in terms of positive‐definite cones. The capabilities of this formulation when applied to large‐scale three‐dimensional problems of limit analysis are...
Uloženo v:
| Vydáno v: | Communications in numerical methods in engineering Ročník 24; číslo 11; s. 1107 - 1119 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Chichester, UK
John Wiley & Sons, Ltd
01.11.2008
Wiley |
| Témata: | |
| ISSN: | 1069-8299, 1099-0887 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Recently, Krabbenhøft et al. (Int. J. Solids Struct. 2007; 44:1533–1549) have presented a formulation of the three‐dimensional Mohr–Coulomb criterion in terms of positive‐definite cones. The capabilities of this formulation when applied to large‐scale three‐dimensional problems of limit analysis are investigated. Following a brief discussion on a number of theoretical and algorithmic issues, three common, but traditionally difficult, geomechanics problems are solved and the performance of a common primal–dual interior‐point algorithm (SeDuMi (Appl. Numer. Math. 1999; 29:301–315)) is documented in detail. Although generally encouraging, the results also reveal several difficulties which support the idea of constructing a conic programming algorithm specifically dedicated to plasticity problems. Copyright © 2007 John Wiley
& Sons, Ltd. |
|---|---|
| AbstractList | Recently, Krabbenhøft
et al
. (
Int. J. Solids Struct
. 2007;
44
:1533–1549) have presented a formulation of the three‐dimensional Mohr–Coulomb criterion in terms of positive‐definite cones. The capabilities of this formulation when applied to large‐scale three‐dimensional problems of limit analysis are investigated. Following a brief discussion on a number of theoretical and algorithmic issues, three common, but traditionally difficult, geomechanics problems are solved and the performance of a common primal–dual interior‐point algorithm (SeDuMi (
Appl. Numer. Math
. 1999;
29
:301–315)) is documented in detail. Although generally encouraging, the results also reveal several difficulties which support the idea of constructing a conic programming algorithm specifically dedicated to plasticity problems. Copyright © 2007 John Wiley
& Sons, Ltd. Recently, Krabbenhoft et al. (Int. J. Solids Struct. 2007; 44:1533-1549) have presented a formulation of the three-dimensional Mohr-Coulomb criterion in terms of positive-definite cones. The capabilities of this formulation when applied to large-scale three-dimensional problems of limit analysis are investigated. Following a brief discussion on a number of theoretical and algorithmic issues, three common, but traditionally difficult, geomechanics problems are solved and the performance of a common primal-dual interior-point algorithm (SeDuMi (Appl. Numer. Math. 1999; 29:301-315)) is documented in detail. Although generally encouraging, the results also reveal several difficulties which support the idea of constructing a conic programming algorithm specifically dedicated to plasticity problems. Recently, Krabbenhøft et al. (Int. J. Solids Struct. 2007; 44:1533–1549) have presented a formulation of the three‐dimensional Mohr–Coulomb criterion in terms of positive‐definite cones. The capabilities of this formulation when applied to large‐scale three‐dimensional problems of limit analysis are investigated. Following a brief discussion on a number of theoretical and algorithmic issues, three common, but traditionally difficult, geomechanics problems are solved and the performance of a common primal–dual interior‐point algorithm (SeDuMi (Appl. Numer. Math. 1999; 29:301–315)) is documented in detail. Although generally encouraging, the results also reveal several difficulties which support the idea of constructing a conic programming algorithm specifically dedicated to plasticity problems. Copyright © 2007 John Wiley & Sons, Ltd. |
| Author | Krabbenhøft, K. Lyamin, A. V. Sloan, S. W. |
| Author_xml | – sequence: 1 givenname: K. surname: Krabbenhøft fullname: Krabbenhøft, K. email: kristian.krabbenhoft@newcastle.edu.au organization: Centre for Geotechnical and Materials Modelling, School of Engineering, University of Newcastle, Callaghan, NSW 2308, Australia – sequence: 2 givenname: A. V. surname: Lyamin fullname: Lyamin, A. V. organization: Centre for Geotechnical and Materials Modelling, School of Engineering, University of Newcastle, Callaghan, NSW 2308, Australia – sequence: 3 givenname: S. W. surname: Sloan fullname: Sloan, S. W. organization: Centre for Geotechnical and Materials Modelling, School of Engineering, University of Newcastle, Callaghan, NSW 2308, Australia |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20832948$$DView record in Pascal Francis |
| BookMark | eNp10E1P3DAQBmCrAql8VOpPyKWol9BxPmzn2K4oUC30UCp6sybOBNzaDthZlf33eLUIqRWcPLKfmZHffbYTpkCMvedwzAGqTyb4XHD1hu1x6LoSlJI7m1p0paq67i3bT-k3AHSgYI8tr24jUTlYTyHZKaArLqbbWC6mlZt8Xzjr7Vxgvl8nm4pVsuGmSOTtQKMNdqbiLk43Eb3PD4dsd0SX6N3TecB-fj25WpyVy--n54vPy9I0NaiyQiJsW1VJOQxSwIDEuenN2CI0ohfUi0G1ChvRqL4fDVA3Nhzzp1ozksL6gB1t5-bd9ytKs_Y2GXIOA02rpOtWghCyyvDDE8Rk0I0Rg7FJ30XrMa51BaquukZl93HrTJxSijQ-Ew56E6vOsepNrJke_0eNnXHO0c0RrXupodw2_LWO1q8O1ovLi3-9TTM9PHuMf7SQtWz19eWp_vWDn32R30Bf1481Fpry |
| CitedBy_id | crossref_primary_10_1016_j_enggeo_2022_106516 crossref_primary_10_1016_j_compstruc_2024_107361 crossref_primary_10_1016_j_compgeo_2014_11_001 crossref_primary_10_1007_s12517_022_09614_1 crossref_primary_10_1016_j_compgeo_2011_11_003 crossref_primary_10_1016_j_compstruc_2021_106672 crossref_primary_10_1002_nag_2781 crossref_primary_10_1680_jgeen_22_00071 crossref_primary_10_1080_19386362_2018_1534345 crossref_primary_10_1016_j_engstruct_2017_12_054 crossref_primary_10_1016_j_compstruc_2014_12_007 crossref_primary_10_1016_j_sandf_2025_101681 crossref_primary_10_1179_1939787914Y_0000000070 crossref_primary_10_1016_j_trgeo_2019_100277 crossref_primary_10_1016_j_ijnonlinmec_2025_105215 crossref_primary_10_1007_s40891_025_00629_8 crossref_primary_10_1016_j_ijmecsci_2013_01_017 crossref_primary_10_1061__ASCE_EM_1943_7889_0000669 crossref_primary_10_1061__ASCE_EM_1943_7889_0000820 crossref_primary_10_1002_nme_5206 crossref_primary_10_1016_j_compositesb_2011_05_019 crossref_primary_10_1007_s40571_017_0156_5 crossref_primary_10_1016_j_ijsolstr_2025_113307 crossref_primary_10_1061__ASCE_ST_1943_541X_0002979 crossref_primary_10_1016_j_compgeo_2023_105526 crossref_primary_10_1016_j_compstruc_2025_107872 crossref_primary_10_1007_s11709_022_0841_1 crossref_primary_10_1007_s11081_011_9144_4 crossref_primary_10_1007_s00466_008_0334_7 crossref_primary_10_1680_jgele_22_00015 crossref_primary_10_1007_s10596_010_9184_4 crossref_primary_10_1016_j_compgeo_2016_08_007 crossref_primary_10_1016_j_compgeo_2020_103739 crossref_primary_10_1016_j_icarus_2023_115928 crossref_primary_10_1016_j_compgeo_2019_103281 crossref_primary_10_1002_nag_3851 crossref_primary_10_1016_j_ijnonlinmec_2012_12_004 crossref_primary_10_1177_13694332211067459 crossref_primary_10_1016_j_compgeo_2018_09_002 crossref_primary_10_1016_j_soildyn_2023_108254 crossref_primary_10_1002_nag_2885 crossref_primary_10_1016_j_compgeo_2020_103571 crossref_primary_10_1016_j_soildyn_2024_109063 crossref_primary_10_1002_cnm_1224 crossref_primary_10_1007_s11629_023_8312_2 crossref_primary_10_1016_j_compgeo_2020_103906 crossref_primary_10_1016_j_advengsoft_2014_09_004 crossref_primary_10_1016_j_cma_2018_12_017 crossref_primary_10_1016_j_compgeo_2018_11_010 crossref_primary_10_1016_j_geotexmem_2021_05_002 crossref_primary_10_1007_s00466_012_0698_6 crossref_primary_10_1680_geot_12_RL_001 crossref_primary_10_1007_s00603_021_02608_7 crossref_primary_10_1007_s40996_021_00793_7 crossref_primary_10_1016_j_compgeo_2012_08_007 crossref_primary_10_1016_j_compstruc_2020_106341 crossref_primary_10_1007_s10957_022_02105_z crossref_primary_10_1007_s10706_023_02693_1 crossref_primary_10_1061_IJGNAI_GMENG_8848 crossref_primary_10_1016_j_compgeo_2020_103587 crossref_primary_10_1061__ASCE_GM_1943_5622_0000980 crossref_primary_10_1061__ASCE_EM_1943_7889_0001296 crossref_primary_10_1002_nme_3053 crossref_primary_10_1002_nme_2421 crossref_primary_10_1002_nme_6985 crossref_primary_10_1002_nme_3358 crossref_primary_10_1016_j_taml_2020_01_044 crossref_primary_10_1002_nag_3152 crossref_primary_10_1016_j_tust_2021_103904 crossref_primary_10_1080_17486025_2021_1903091 crossref_primary_10_1016_j_ijsolstr_2009_08_007 crossref_primary_10_1016_j_istruc_2022_04_008 crossref_primary_10_1007_s00158_019_02468_4 crossref_primary_10_1016_j_compstruc_2025_107842 crossref_primary_10_1061__ASCE_GM_1943_5622_0000454 crossref_primary_10_1016_j_enggeo_2020_105910 crossref_primary_10_1016_j_compgeo_2021_104119 crossref_primary_10_1007_s11081_021_09595_2 crossref_primary_10_1061__ASCE_GM_1943_5622_0000725 crossref_primary_10_1155_2021_8503490 crossref_primary_10_1016_j_compgeo_2012_02_006 crossref_primary_10_1002_nme_4716 crossref_primary_10_1007_s11440_016_0481_5 crossref_primary_10_1061__ASCE_GM_1943_5622_0001370 crossref_primary_10_1002_nag_3324 crossref_primary_10_1002_cae_20555 crossref_primary_10_1016_j_engstruct_2009_06_015 crossref_primary_10_1680_jgein_23_00049 crossref_primary_10_1016_j_camwa_2015_03_003 crossref_primary_10_1680_jgeot_18_P_103 crossref_primary_10_1080_19648189_2020_1805643 crossref_primary_10_1007_s00419_020_01806_z crossref_primary_10_1007_s10706_023_02381_0 crossref_primary_10_1007_s11831_016_9208_x crossref_primary_10_1016_j_conbuildmat_2024_135012 crossref_primary_10_1007_s40891_023_00475_6 crossref_primary_10_1016_j_compgeo_2024_106484 crossref_primary_10_1007_s00158_021_02923_1 crossref_primary_10_1061__ASCE_GM_1943_5622_0001760 crossref_primary_10_1002_nag_3537 crossref_primary_10_1016_j_compgeo_2022_104662 crossref_primary_10_1002_nme_7340 crossref_primary_10_1016_j_compgeo_2020_103531 crossref_primary_10_1016_j_compgeo_2021_104302 crossref_primary_10_1007_s11440_017_0589_2 crossref_primary_10_1007_s11770_024_1176_6 crossref_primary_10_1016_j_compgeo_2022_104787 crossref_primary_10_1002_nme_4616 crossref_primary_10_1061__ASCE_EM_1943_7889_0000326 crossref_primary_10_1016_j_compgeo_2018_06_008 crossref_primary_10_1080_17486025_2019_1664775 crossref_primary_10_1016_j_trgeo_2023_100979 crossref_primary_10_1016_j_compgeo_2019_103101 crossref_primary_10_1002_nme_5273 crossref_primary_10_1016_j_compgeo_2024_106897 |
| Cites_doi | 10.1002/nme.1771 10.1108/02644409410799281 10.1137/S1052623495290209 10.1016/0020-7683(93)90220-2 10.1137/S1052623495293056 10.1080/10556789908805766 10.1137/S1052623496304700 10.1061/AJGEB6.0000204 10.1080/1055678021000045123 10.1002/nme.511 10.1002/nme.1620171009 10.1137/0806020 10.1002/(SICI)1097-0207(19991120)46:8<1185::AID-NME743>3.0.CO;2-N 10.1016/0020-7683(72)90088-1 10.1016/j.ijsolstr.2006.06.036 10.1002/nme.551 10.1007/s10107-002-0349-3 10.1002/nag.198 10.1016/S0168-9274(98)00099-3 10.2208/jscej1969.1974.232_59 10.1016/S1570-8659(96)80004-4 10.1287/moor.22.1.1 10.1002/nme.1314 10.1007/s10107-002-0339-5 10.1016/0045-7949(94)00339-5 |
| ContentType | Journal Article |
| Copyright | Copyright © 2007 John Wiley & Sons, Ltd. 2009 INIST-CNRS |
| Copyright_xml | – notice: Copyright © 2007 John Wiley & Sons, Ltd. – notice: 2009 INIST-CNRS |
| DBID | BSCLL AAYXX CITATION IQODW 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1002/cnm.1018 |
| DatabaseName | Istex CrossRef Pascal-Francis Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Mathematics Physics |
| EISSN | 1099-0887 |
| EndPage | 1119 |
| ExternalDocumentID | 20832948 10_1002_cnm_1018 CNM1018 ark_67375_WNG_XS1HB7J0_W |
| Genre | article |
| GroupedDBID | -~X .GA .Y3 10A 1L6 1OB 1OC 1ZS 31~ 4.4 51W 51X 52N 52O 52P 52S 52T 52W 52X 5GY 5VS 66C 6J9 7PT 8-1 8-4 8-5 930 A03 AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ACAHQ ACBWZ ACCZN ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADEOM ADIZJ ADMGS ADNMO ADOZA AEFGJ AEIGN AEIMD AEUYR AFBPY AFFNX AFFPM AFGKR AFWVQ AFZJQ AGQPQ AGXDD AGYGG AHBTC AI. AIDQK AIDYY AIQQE AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZFZN BDRZF BRXPI BSCLL BY8 CO8 CS3 D-F DCZOG DRFUL DRSTM DU5 EBS EJD ESX F00 F01 F04 F5P FEDTE G-S GBZZK GNP GODZA HBH HF~ HGLYW HHY HVGLF I-F JPC KQQ LATKE LAW LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M6O MEWTI MK~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM OIG P4D PALCI QB0 QRW RIWAO RJQFR ROL RYL SAMSI SUPJJ TN5 TUS UB1 VH1 WIB WIH WIK WQJ WXSBR XG1 XPP XV2 ZY4 ~02 AAYXX CITATION O8X IQODW 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c4308-2aeea558277dd760dae11cbcf5a046b6eb6d858a4648bbfc0e9f41a0185cfe8a3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 133 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000261200200016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1069-8299 |
| IngestDate | Sun Nov 09 14:02:06 EST 2025 Mon Jul 21 09:12:48 EDT 2025 Tue Nov 18 22:35:31 EST 2025 Sat Nov 29 06:28:02 EST 2025 Sun Sep 21 06:19:27 EDT 2025 Sun Sep 21 06:22:01 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Issue | 11 |
| Keywords | High performance conic programming limit analysis Algorithmics Interior point method geophysics plasticity Mohr-Coulomb Distributed computing Mohr circle semidefinite programming Inelasticity optimization Dimensional analysis cones Positive definite matrix Primal dual method Ultimate load |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4308-2aeea558277dd760dae11cbcf5a046b6eb6d858a4648bbfc0e9f41a0185cfe8a3 |
| Notes | ark:/67375/WNG-XS1HB7J0-W ArticleID:CNM1018 istex:335AA48020299EC5861265CFA4529A6704ACB00F ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PQID | 35706672 |
| PQPubID | 23500 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_35706672 pascalfrancis_primary_20832948 crossref_primary_10_1002_cnm_1018 crossref_citationtrail_10_1002_cnm_1018 wiley_primary_10_1002_cnm_1018_CNM1018 istex_primary_ark_67375_WNG_XS1HB7J0_W |
| PublicationCentury | 2000 |
| PublicationDate | November 2008 |
| PublicationDateYYYYMMDD | 2008-11-01 |
| PublicationDate_xml | – month: 11 year: 2008 text: November 2008 |
| PublicationDecade | 2000 |
| PublicationPlace | Chichester, UK |
| PublicationPlace_xml | – name: Chichester, UK – name: Chichester |
| PublicationTitle | Communications in numerical methods in engineering |
| PublicationTitleAlternate | Commun. Numer. Meth. Engng |
| PublicationYear | 2008 |
| Publisher | John Wiley & Sons, Ltd Wiley |
| Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley |
| References | Christiansen E. Computation of collapse loads. International Journal for Numerical Methods in Engineering 1981; 17:1547-1570. Shindoh S, Kojima M, Hara S. Interiorpoint methods for the monotone semidefinite linear complementarity problem in symmetric matrices. SIAM Journal on Optimization 1997; 7:81-125. Krabbenhoft K, Lyamin AV, Sloan SW. Formulation and solution of some plasticity problems as conic programs. International Journal of Solids and Structures 2007; 44:1533-1549. Zouain N, Herskovits J, Borges LA, Feijóo RA. An iterative algorithm for limit analysis with nonlinear yield functions. International Journal of Solids and Structures 1993; 30(10):1397-1417. Lyamin AV, Sloan SW. Lower bound limit analysis using non-linear programming. International Journal for Numerical Methods in Engineering 2002; 55:573-611. Andersen ED, Roos C, Terlaky T. On implementing a primal-dual interior-point method for conic quadratic optimization. Mathematical Programming 2003; 95:249-277. Sturm JF, Zhang S. Symmetric primal-dual path following algorithms for semidefinite programming. Applied Numerical Mathematics 1999; 29:301-315. Krabbenhoft K, Lyamin AV, Sloan SW, Wriggers P. An interior-point method for elastoplasticity. International Journal for Numerical Methods in Engineering 2007; 69:592-626. Matsuoka H, Nakai T. Stress-deformation and strength characteristics of soil under three different principal stresses. Proceedings of the Japanese Society of Civil Engineers 1974; 232:59-70. Golub G, van Loan C. Matrix Computations. Johns Hopkins University Press: Baltimore, MD, 1996. Sturm JF. SeDuMi 1.02, a MATLAB toolbox for optimizing over symmetric cones. Optimization Methods and Software 1999; 11-12:625-653. http://sedumi.mcmaster.ca Yu HS, Sloan SW, Kleeman PW. A quadratic element for upper bound limit analysis. Engineering Computations 1994; 11:195-212. Nesterov Y, Todd MJ. Primal-dual interiorpoint methods for selfscaled cones. SIAM Journal on Optimization 1998; 8:324-364. Sturm JF. Implementation of interiorpoint methods for mixed semidefinite and second order cone optimization problems. Optimization Methods and Software 2002; 17:1105-1154. Alizadeh F, Haeberly JA, Overton M. Primal-dual interiorpoint methods for semidefinite programming: convergence rates, stability and numerical results. SIAM Journal on Optimization 1998; 8:746-768. Abbo AJ, Sloan SW. A smoothed hyperbolic approximation to the Mohr-Coulomb yield criterion. Computers and Structures 1995; 54:427-441. Nesterov Y, Todd MJ. Selfscaled barriers and interiorpoint methods for convex programming. Mathematics of Operations Research 1997; 7:1-42. Borges LA, Zouain N, Huespe AE. A nonlinear optimization procedure for limit analysis. European Journal of Mechanics - A/Solids 1996; 15(3):487-512. Lade PV, Duncan JM. Elastoplastic stress-strain theory for cohesionless soil. Journal of the Geotechnical Engineering Division (ASCE) 1975; 101:1037-1053. Lyamin AV, Sloan SW. Upper bound limit analysis using linear finite elements and non-linear programming. International Journal for Numerical and Analytical Methods in Geomechanics 2002; 26:181-216. Monteiro RDC. Primal-dual path following algorithms for semidefinite programming. SIAM Journal on Optimization 1997; 7:663-678. Krabbenhoft K, Damkilde L. A general nonlinear optimization algorithm for lower bound limit analysis. International Journal for Numerical Methods in Engineering 2003; 56:165-184. Krabbenhoft K, Lyamin AV, Hjiaj M, Sloan SW. A new discontinuous upper bound limit analysis formulation. International Journal for Numerical Methods in Engineering 2005; 63:1069-1088. Helmberg C, Rendl F, Vanderbei RJ, Wolkowicz H. An interior point method for semidefinite programming. SIAM Journal on Optimization 1996; 6:342-361. Anderheggen E, Knöpfel H. Finite element limit analysis using linear programming. International Journal of Solids and Structures 1972; 8:1413-1431. Christiansen E, Andersen KD. Computation of collapse loads with von Mises type yield condition. International Journal for Numerical Methods in Engineering 1999; 45:1185-1202. Alizadeh F, Goldfarb D. Second order cone programming. Mathematical Programming, Series B 2003; 95:3-51. 2002; 17 1972; 8 1999; 11–12 1999; 29 2002; 55 1995; 54 1999; 45 2005; 63 1996 2006 2005 2003; 95 1996; 15 1997; 7 1999 2003; 56 2002; 26 1993; 30 1994; 11 1975; 101 1981; 17 1996; 4 1974; 232 2007; 44 2007; 69 1996; 6 1998; 8 Borges LA (e_1_2_1_17_2) 1996; 15 e_1_2_1_22_2 e_1_2_1_23_2 e_1_2_1_20_2 e_1_2_1_21_2 e_1_2_1_26_2 e_1_2_1_24_2 e_1_2_1_25_2 e_1_2_1_28_2 e_1_2_1_29_2 Lade PV (e_1_2_1_2_2) 1975; 101 Golub G (e_1_2_1_32_2) 1996 e_1_2_1_6_2 e_1_2_1_30_2 e_1_2_1_7_2 e_1_2_1_4_2 e_1_2_1_5_2 e_1_2_1_11_2 e_1_2_1_34_2 e_1_2_1_3_2 e_1_2_1_12_2 e_1_2_1_33_2 e_1_2_1_10_2 e_1_2_1_31_2 e_1_2_1_15_2 e_1_2_1_16_2 e_1_2_1_13_2 e_1_2_1_14_2 e_1_2_1_19_2 Shindoh S (e_1_2_1_27_2) 1997; 7 e_1_2_1_8_2 e_1_2_1_9_2 e_1_2_1_18_2 |
| References_xml | – reference: Krabbenhoft K, Lyamin AV, Sloan SW, Wriggers P. An interior-point method for elastoplasticity. International Journal for Numerical Methods in Engineering 2007; 69:592-626. – reference: Lyamin AV, Sloan SW. Lower bound limit analysis using non-linear programming. International Journal for Numerical Methods in Engineering 2002; 55:573-611. – reference: Krabbenhoft K, Lyamin AV, Hjiaj M, Sloan SW. A new discontinuous upper bound limit analysis formulation. International Journal for Numerical Methods in Engineering 2005; 63:1069-1088. – reference: Alizadeh F, Haeberly JA, Overton M. Primal-dual interiorpoint methods for semidefinite programming: convergence rates, stability and numerical results. SIAM Journal on Optimization 1998; 8:746-768. – reference: Krabbenhoft K, Damkilde L. A general nonlinear optimization algorithm for lower bound limit analysis. International Journal for Numerical Methods in Engineering 2003; 56:165-184. – reference: Lade PV, Duncan JM. Elastoplastic stress-strain theory for cohesionless soil. Journal of the Geotechnical Engineering Division (ASCE) 1975; 101:1037-1053. – reference: Nesterov Y, Todd MJ. Primal-dual interiorpoint methods for selfscaled cones. SIAM Journal on Optimization 1998; 8:324-364. – reference: Golub G, van Loan C. Matrix Computations. Johns Hopkins University Press: Baltimore, MD, 1996. – reference: Krabbenhoft K, Lyamin AV, Sloan SW. Formulation and solution of some plasticity problems as conic programs. International Journal of Solids and Structures 2007; 44:1533-1549. – reference: Sturm JF. SeDuMi 1.02, a MATLAB toolbox for optimizing over symmetric cones. Optimization Methods and Software 1999; 11-12:625-653. http://sedumi.mcmaster.ca/ – reference: Sturm JF, Zhang S. Symmetric primal-dual path following algorithms for semidefinite programming. Applied Numerical Mathematics 1999; 29:301-315. – reference: Yu HS, Sloan SW, Kleeman PW. A quadratic element for upper bound limit analysis. Engineering Computations 1994; 11:195-212. – reference: Matsuoka H, Nakai T. Stress-deformation and strength characteristics of soil under three different principal stresses. Proceedings of the Japanese Society of Civil Engineers 1974; 232:59-70. – reference: Borges LA, Zouain N, Huespe AE. A nonlinear optimization procedure for limit analysis. European Journal of Mechanics - A/Solids 1996; 15(3):487-512. – reference: Zouain N, Herskovits J, Borges LA, Feijóo RA. An iterative algorithm for limit analysis with nonlinear yield functions. International Journal of Solids and Structures 1993; 30(10):1397-1417. – reference: Alizadeh F, Goldfarb D. Second order cone programming. Mathematical Programming, Series B 2003; 95:3-51. – reference: Christiansen E. Computation of collapse loads. International Journal for Numerical Methods in Engineering 1981; 17:1547-1570. – reference: Sturm JF. Implementation of interiorpoint methods for mixed semidefinite and second order cone optimization problems. Optimization Methods and Software 2002; 17:1105-1154. – reference: Abbo AJ, Sloan SW. A smoothed hyperbolic approximation to the Mohr-Coulomb yield criterion. Computers and Structures 1995; 54:427-441. – reference: Christiansen E, Andersen KD. Computation of collapse loads with von Mises type yield condition. International Journal for Numerical Methods in Engineering 1999; 45:1185-1202. – reference: Lyamin AV, Sloan SW. Upper bound limit analysis using linear finite elements and non-linear programming. International Journal for Numerical and Analytical Methods in Geomechanics 2002; 26:181-216. – reference: Monteiro RDC. Primal-dual path following algorithms for semidefinite programming. SIAM Journal on Optimization 1997; 7:663-678. – reference: Andersen ED, Roos C, Terlaky T. On implementing a primal-dual interior-point method for conic quadratic optimization. Mathematical Programming 2003; 95:249-277. – reference: Anderheggen E, Knöpfel H. Finite element limit analysis using linear programming. International Journal of Solids and Structures 1972; 8:1413-1431. – reference: Nesterov Y, Todd MJ. Selfscaled barriers and interiorpoint methods for convex programming. Mathematics of Operations Research 1997; 7:1-42. – reference: Helmberg C, Rendl F, Vanderbei RJ, Wolkowicz H. An interior point method for semidefinite programming. SIAM Journal on Optimization 1996; 6:342-361. – reference: Shindoh S, Kojima M, Hara S. Interiorpoint methods for the monotone semidefinite linear complementarity problem in symmetric matrices. SIAM Journal on Optimization 1997; 7:81-125. – volume: 17 start-page: 1547 year: 1981 end-page: 1570 article-title: Computation of collapse loads publication-title: International Journal for Numerical Methods in Engineering – volume: 44 start-page: 1533 year: 2007 end-page: 1549 article-title: Formulation and solution of some plasticity problems as conic programs publication-title: International Journal of Solids and Structures – volume: 30 start-page: 1397 issue: 10 year: 1993 end-page: 1417 article-title: An iterative algorithm for limit analysis with nonlinear yield functions publication-title: International Journal of Solids and Structures – volume: 8 start-page: 746 year: 1998 end-page: 768 article-title: Primal–dual interiorpoint methods for semidefinite programming: convergence rates, stability and numerical results publication-title: SIAM Journal on Optimization – volume: 54 start-page: 427 year: 1995 end-page: 441 article-title: A smoothed hyperbolic approximation to the Mohr–Coulomb yield criterion publication-title: Computers and Structures – year: 2005 – volume: 7 start-page: 663 year: 1997 end-page: 678 article-title: Primal–dual path following algorithms for semidefinite programming publication-title: SIAM Journal on Optimization – volume: 26 start-page: 181 year: 2002 end-page: 216 article-title: Upper bound limit analysis using linear finite elements and non‐linear programming publication-title: International Journal for Numerical and Analytical Methods in Geomechanics – volume: 56 start-page: 165 year: 2003 end-page: 184 article-title: A general nonlinear optimization algorithm for lower bound limit analysis publication-title: International Journal for Numerical Methods in Engineering – volume: 63 start-page: 1069 year: 2005 end-page: 1088 article-title: A new discontinuous upper bound limit analysis formulation publication-title: International Journal for Numerical Methods in Engineering – year: 1996 – volume: 17 start-page: 1105 year: 2002 end-page: 1154 article-title: Implementation of interiorpoint methods for mixed semidefinite and second order cone optimization problems publication-title: Optimization Methods and Software – volume: 95 start-page: 249 year: 2003 end-page: 277 article-title: On implementing a primal–dual interior‐point method for conic quadratic optimization publication-title: Mathematical Programming – volume: 95 start-page: 3 year: 2003 end-page: 51 article-title: Second order cone programming publication-title: Mathematical Programming, Series B – volume: 6 start-page: 342 year: 1996 end-page: 361 article-title: An interior point method for semidefinite programming publication-title: SIAM Journal on Optimization – volume: 7 start-page: 81 year: 1997 end-page: 125 article-title: Interiorpoint methods for the monotone semidefinite linear complementarity problem in symmetric matrices publication-title: SIAM Journal on Optimization – volume: 15 start-page: 487 issue: 3 year: 1996 end-page: 512 article-title: A nonlinear optimization procedure for limit analysis publication-title: European Journal of Mechanics – A/Solids – volume: 11–12 start-page: 625 year: 1999 end-page: 653 article-title: SeDuMi 1.02, a MATLAB toolbox for optimizing over symmetric cones publication-title: Optimization Methods and Software – volume: 4 start-page: 193 year: 1996 end-page: 312 – volume: 45 start-page: 1185 year: 1999 end-page: 1202 article-title: Computation of collapse loads with von Mises type yield condition publication-title: International Journal for Numerical Methods in Engineering – volume: 29 start-page: 301 year: 1999 end-page: 315 article-title: Symmetric primal–dual path following algorithms for semidefinite programming publication-title: Applied Numerical Mathematics – year: 2006 – volume: 7 start-page: 1 year: 1997 end-page: 42 article-title: Selfscaled barriers and interiorpoint methods for convex programming publication-title: Mathematics of Operations Research – volume: 101 start-page: 1037 year: 1975 end-page: 1053 article-title: Elastoplastic stress–strain theory for cohesionless soil publication-title: Journal of the Geotechnical Engineering Division – volume: 55 start-page: 573 year: 2002 end-page: 611 article-title: Lower bound limit analysis using non‐linear programming publication-title: International Journal for Numerical Methods in Engineering – volume: 69 start-page: 592 year: 2007 end-page: 626 article-title: An interior‐point method for elastoplasticity publication-title: International Journal for Numerical Methods in Engineering – volume: 232 start-page: 59 year: 1974 end-page: 70 article-title: Stress‐deformation and strength characteristics of soil under three different principal stresses publication-title: Proceedings of the Japanese Society of Civil Engineers – volume: 8 start-page: 1413 year: 1972 end-page: 1431 article-title: Finite element limit analysis using linear programming publication-title: International Journal of Solids and Structures – volume: 8 start-page: 324 year: 1998 end-page: 364 article-title: Primal–dual interiorpoint methods for selfscaled cones publication-title: SIAM Journal on Optimization – volume: 11 start-page: 195 year: 1994 end-page: 212 article-title: A quadratic element for upper bound limit analysis publication-title: Engineering Computations – year: 1999 – ident: e_1_2_1_11_2 – volume: 15 start-page: 487 issue: 3 year: 1996 ident: e_1_2_1_17_2 article-title: A nonlinear optimization procedure for limit analysis publication-title: European Journal of Mechanics – A/Solids – ident: e_1_2_1_20_2 doi: 10.1002/nme.1771 – ident: e_1_2_1_34_2 doi: 10.1108/02644409410799281 – ident: e_1_2_1_30_2 doi: 10.1137/S1052623495290209 – ident: e_1_2_1_21_2 doi: 10.1016/0020-7683(93)90220-2 – ident: e_1_2_1_28_2 doi: 10.1137/S1052623495293056 – ident: e_1_2_1_12_2 doi: 10.1080/10556789908805766 – ident: e_1_2_1_25_2 doi: 10.1137/S1052623496304700 – volume: 101 start-page: 1037 year: 1975 ident: e_1_2_1_2_2 article-title: Elastoplastic stress–strain theory for cohesionless soil publication-title: Journal of the Geotechnical Engineering Division doi: 10.1061/AJGEB6.0000204 – ident: e_1_2_1_31_2 doi: 10.1080/1055678021000045123 – ident: e_1_2_1_5_2 doi: 10.1002/nme.511 – volume: 7 start-page: 81 year: 1997 ident: e_1_2_1_27_2 article-title: Interiorpoint methods for the monotone semidefinite linear complementarity problem in symmetric matrices publication-title: SIAM Journal on Optimization – ident: e_1_2_1_13_2 doi: 10.1002/nme.1620171009 – ident: e_1_2_1_26_2 doi: 10.1137/0806020 – ident: e_1_2_1_9_2 – ident: e_1_2_1_10_2 – ident: e_1_2_1_33_2 – ident: e_1_2_1_15_2 doi: 10.1002/(SICI)1097-0207(19991120)46:8<1185::AID-NME743>3.0.CO;2-N – ident: e_1_2_1_16_2 doi: 10.1016/0020-7683(72)90088-1 – ident: e_1_2_1_8_2 doi: 10.1016/j.ijsolstr.2006.06.036 – ident: e_1_2_1_18_2 doi: 10.1002/nme.551 – ident: e_1_2_1_23_2 doi: 10.1007/s10107-002-0349-3 – ident: e_1_2_1_6_2 doi: 10.1002/nag.198 – ident: e_1_2_1_22_2 doi: 10.1016/S0168-9274(98)00099-3 – ident: e_1_2_1_3_2 doi: 10.2208/jscej1969.1974.232_59 – ident: e_1_2_1_14_2 doi: 10.1016/S1570-8659(96)80004-4 – ident: e_1_2_1_29_2 doi: 10.1287/moor.22.1.1 – ident: e_1_2_1_19_2 doi: 10.1002/nme.1314 – volume-title: Matrix Computations year: 1996 ident: e_1_2_1_32_2 – ident: e_1_2_1_24_2 doi: 10.1007/s10107-002-0339-5 – ident: e_1_2_1_7_2 doi: 10.1016/0045-7949(94)00339-5 – ident: e_1_2_1_4_2 |
| SSID | ssj0009080 |
| Score | 1.7274327 |
| Snippet | Recently, Krabbenhøft et al. (Int. J. Solids Struct. 2007; 44:1533–1549) have presented a formulation of the three‐dimensional Mohr–Coulomb criterion in terms... Recently, Krabbenhøft et al . ( Int. J. Solids Struct . 2007; 44 :1533–1549) have presented a formulation of the three‐dimensional Mohr–Coulomb criterion in... Recently, Krabbenhoft et al. (Int. J. Solids Struct. 2007; 44:1533-1549) have presented a formulation of the three-dimensional Mohr-Coulomb criterion in terms... |
| SourceID | proquest pascalfrancis crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1107 |
| SubjectTerms | Computational techniques Earth sciences Earth, ocean, space Engineering and environment geology. Geothermics Engineering geology Exact sciences and technology Fundamental areas of phenomenology (including applications) Inelasticity (thermoplasticity, viscoplasticity...) limit analysis Mathematical methods in physics Mohr-Coulomb optimization Physics plasticity semidefinite programming Solid mechanics Structural and continuum mechanics |
| Title | Three-dimensional Mohr-Coulomb limit analysis using semidefinite programming |
| URI | https://api.istex.fr/ark:/67375/WNG-XS1HB7J0-W/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcnm.1018 https://www.proquest.com/docview/35706672 |
| Volume | 24 |
| WOSCitedRecordID | wos000261200200016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1099-0887 dateEnd: 20091231 omitProxy: false ssIdentifier: ssj0009080 issn: 1069-8299 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BwgEOFAoV4VEWCcHJql_78LEEQoVIVEGr5rbaJ0QkNoqbqsf-BKT-w_4SZu2N20ggIXGyLM_a652Z3Rn7228Qeg0xeMospVGmjI1yWGAizk0WybgwHlYoqeZNsQk2mfDptDgMqEq_F6blh-g-uHnPaOZr7-BS1XvXpKG6XPjUk99G_RTMNu-h_vsvo-PP15S7MW-5CGgRcZh119Szcbq3bruxGPX9uJ57cKSsYXxcW9hiI_K8Gb82C9Bo63-6_gDdD2En3m_t5CG6ZctttBVCUBwcvN5G927wE8LZuCN1rR-hwyPQu726-GV8RYCWzQOPq-_Lq4vLYbWaVwuF536_FJaB6QR7VP03XNvFzFg38-EtDoCwBVx4jI5HH46GB1EoyBDpPIvBo6S1khCeMmYMo7GRNkm00o5ISLMVtYoaTrjMac6Vcjq2hcsTCW9KtLNcZjuoV1alfYKwdjorLKRTTkFClpHCySJRiSaWMpMk2QC9XWtG6MBW7otmzEXLs5wKGESPT-MD9KqT_NkydPxB5k2j3E5ALn94RBsj4mTyUUy_Jgfv2KdYnAzQ7ob2uwYphKppkcOdXq7NQYAj-r8rsrTVqhYZYR4wnMKzGt3_tTNiOBn749N_FXyG7jYolWYH5HPUO12u7At0R5-dzurlbjD731UqCRE |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD4aLRLwwGCAKJctSAieouXmS8QTFEqBNpqg0_pm-QoVbYKaFfG4n4DEP9wvwc5tqwQSEk9RlOPE8fGxz7E_fwfgqfXBI6Ix9mOhtJ_YCcanVMU-D1LlYIUcS1olmyBZRufz9GgHXrRnYWp-iG7BzVlGNV47A3cL0ocXrKEyX7nYk16BfmJ7EepB__XH0fHkgnM3oDUZAU59aofdlns2iA7bsluzUd817A-HjuSlbSBTZ7bYcj0vO7DVDDTa_a-634KbjePpvax7ym3Y0fke7DZOqNeYeLkHNy4xFNq7aUfrWt6Bo5nVvD4_-6lcToCaz8ObFl_W52e_hsVmWayEt3QnpjzecJ14Dlf_2Sv1aqG0WTgH12sgYSv74C4cj97MhmO_ScngyyQOrE1xrTlCNCJEKYIDxXUYSiEN4jbQFlgLrCiiPMEJFcLIQKcmCbn9UySNpjy-B728yPV98KSRcaptQGWEDclilBqehiKUSGOiwjAewPNWNUw2fOUubcaS1UzLEbON6BBqdABPOslvNUfHH2SeVdrtBPj6q8O0EcROsrds_ikcvyLvA3YygP0t9XcFIuusRmli33TQ9gdmTdHtr_BcF5uSxYg4yHBkv1Up_6-VYcNs6q4P_lXwAK6NZ9MJm7zLPjyE6xVmpToP-Qh6p-uNfgxX5ffTRbneb2zgNx6nDQE |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VLkJwaKGAWAqtkRCcoublR8QJtiwFutEKWnVvluMHrNhNqk0XcexPqNR_2F-CnVe7EkhInKIo48TxeOyZ5JtvAF5aHzykmhAvypT2YrvBeIypyBN-ohysUBDJqmITNE3ZZJKM1-BNmwtT80N0H9ycZVTrtTNwfarM3jVrqMznLvZkt6AX44RYq-ztfxkeH15z7vqsJiMgicfssttyz_rhXtt2ZTfquYH95dCRorQDZOrKFiuu500HttqBhpv_1ff7sNE4nuhtPVMewJrOt2CzcUJRY-LlFty7wVBoz0YdrWv5EMZHVvP66vxCuZoANZ8HGhXfF1fnl4NiOSvmGZq5jCkkGq4T5HD131Cp51OlzdQ5uKiBhM3thUdwPHx_NDjwmpIMnowj39qU0FpgzEJKlaLEV0IHgcykwcIG2hnRGVEMMxGTmGWZkb5OTBwI-6ZYGs1E9BjW8yLXTwBJI6NE24DKZDYki3BiRBJkgcSaUBUEUR9et6rhsuErd2UzZrxmWg65HUSHUGN9eNFJntYcHX-QeVVptxMQix8O00YxP0k_8MnX4OAd_eTzkz7srKi_axBaZzVMYnun3XY-cGuK7v-KyHWxLHmEqYMMh_ZZlfL_2hk-SEfu-PRfBXfhznh_yA8_pp-34W4FWanSIZ_B-tliqZ_DbfnzbFoudhoT-A2ZrAx8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three-dimensional+Mohr-Coulomb+limit+analysis+using+semidefinite+programming&rft.jtitle=Communications+in+numerical+methods+in+engineering&rft.au=Krabbenhoft%2C+K&rft.au=Lyamin%2C+A+V&rft.au=Sloan%2C+S+W&rft.date=2008-11-01&rft.issn=1069-8299&rft.volume=24&rft.issue=11&rft.spage=1107&rft.epage=1119&rft_id=info:doi/10.1002%2Fcnm.1018&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1069-8299&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1069-8299&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1069-8299&client=summon |