Three-dimensional Mohr-Coulomb limit analysis using semidefinite programming

Recently, Krabbenhøft et al. (Int. J. Solids Struct. 2007; 44:1533–1549) have presented a formulation of the three‐dimensional Mohr–Coulomb criterion in terms of positive‐definite cones. The capabilities of this formulation when applied to large‐scale three‐dimensional problems of limit analysis are...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Communications in numerical methods in engineering Ročník 24; číslo 11; s. 1107 - 1119
Hlavní autoři: Krabbenhøft, K., Lyamin, A. V., Sloan, S. W.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Chichester, UK John Wiley & Sons, Ltd 01.11.2008
Wiley
Témata:
ISSN:1069-8299, 1099-0887
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Recently, Krabbenhøft et al. (Int. J. Solids Struct. 2007; 44:1533–1549) have presented a formulation of the three‐dimensional Mohr–Coulomb criterion in terms of positive‐definite cones. The capabilities of this formulation when applied to large‐scale three‐dimensional problems of limit analysis are investigated. Following a brief discussion on a number of theoretical and algorithmic issues, three common, but traditionally difficult, geomechanics problems are solved and the performance of a common primal–dual interior‐point algorithm (SeDuMi (Appl. Numer. Math. 1999; 29:301–315)) is documented in detail. Although generally encouraging, the results also reveal several difficulties which support the idea of constructing a conic programming algorithm specifically dedicated to plasticity problems. Copyright © 2007 John Wiley & Sons, Ltd.
AbstractList Recently, Krabbenhøft et al . ( Int. J. Solids Struct . 2007; 44 :1533–1549) have presented a formulation of the three‐dimensional Mohr–Coulomb criterion in terms of positive‐definite cones. The capabilities of this formulation when applied to large‐scale three‐dimensional problems of limit analysis are investigated. Following a brief discussion on a number of theoretical and algorithmic issues, three common, but traditionally difficult, geomechanics problems are solved and the performance of a common primal–dual interior‐point algorithm (SeDuMi ( Appl. Numer. Math . 1999; 29 :301–315)) is documented in detail. Although generally encouraging, the results also reveal several difficulties which support the idea of constructing a conic programming algorithm specifically dedicated to plasticity problems. Copyright © 2007 John Wiley & Sons, Ltd.
Recently, Krabbenhoft et al. (Int. J. Solids Struct. 2007; 44:1533-1549) have presented a formulation of the three-dimensional Mohr-Coulomb criterion in terms of positive-definite cones. The capabilities of this formulation when applied to large-scale three-dimensional problems of limit analysis are investigated. Following a brief discussion on a number of theoretical and algorithmic issues, three common, but traditionally difficult, geomechanics problems are solved and the performance of a common primal-dual interior-point algorithm (SeDuMi (Appl. Numer. Math. 1999; 29:301-315)) is documented in detail. Although generally encouraging, the results also reveal several difficulties which support the idea of constructing a conic programming algorithm specifically dedicated to plasticity problems.
Recently, Krabbenhøft et al. (Int. J. Solids Struct. 2007; 44:1533–1549) have presented a formulation of the three‐dimensional Mohr–Coulomb criterion in terms of positive‐definite cones. The capabilities of this formulation when applied to large‐scale three‐dimensional problems of limit analysis are investigated. Following a brief discussion on a number of theoretical and algorithmic issues, three common, but traditionally difficult, geomechanics problems are solved and the performance of a common primal–dual interior‐point algorithm (SeDuMi (Appl. Numer. Math. 1999; 29:301–315)) is documented in detail. Although generally encouraging, the results also reveal several difficulties which support the idea of constructing a conic programming algorithm specifically dedicated to plasticity problems. Copyright © 2007 John Wiley & Sons, Ltd.
Author Krabbenhøft, K.
Lyamin, A. V.
Sloan, S. W.
Author_xml – sequence: 1
  givenname: K.
  surname: Krabbenhøft
  fullname: Krabbenhøft, K.
  email: kristian.krabbenhoft@newcastle.edu.au
  organization: Centre for Geotechnical and Materials Modelling, School of Engineering, University of Newcastle, Callaghan, NSW 2308, Australia
– sequence: 2
  givenname: A. V.
  surname: Lyamin
  fullname: Lyamin, A. V.
  organization: Centre for Geotechnical and Materials Modelling, School of Engineering, University of Newcastle, Callaghan, NSW 2308, Australia
– sequence: 3
  givenname: S. W.
  surname: Sloan
  fullname: Sloan, S. W.
  organization: Centre for Geotechnical and Materials Modelling, School of Engineering, University of Newcastle, Callaghan, NSW 2308, Australia
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20832948$$DView record in Pascal Francis
BookMark eNp10E1P3DAQBmCrAql8VOpPyKWol9BxPmzn2K4oUC30UCp6sybOBNzaDthZlf33eLUIqRWcPLKfmZHffbYTpkCMvedwzAGqTyb4XHD1hu1x6LoSlJI7m1p0paq67i3bT-k3AHSgYI8tr24jUTlYTyHZKaArLqbbWC6mlZt8Xzjr7Vxgvl8nm4pVsuGmSOTtQKMNdqbiLk43Eb3PD4dsd0SX6N3TecB-fj25WpyVy--n54vPy9I0NaiyQiJsW1VJOQxSwIDEuenN2CI0ohfUi0G1ChvRqL4fDVA3Nhzzp1ozksL6gB1t5-bd9ytKs_Y2GXIOA02rpOtWghCyyvDDE8Rk0I0Rg7FJ30XrMa51BaquukZl93HrTJxSijQ-Ew56E6vOsepNrJke_0eNnXHO0c0RrXupodw2_LWO1q8O1ovLi3-9TTM9PHuMf7SQtWz19eWp_vWDn32R30Bf1481Fpry
CitedBy_id crossref_primary_10_1016_j_enggeo_2022_106516
crossref_primary_10_1016_j_compstruc_2024_107361
crossref_primary_10_1016_j_compgeo_2014_11_001
crossref_primary_10_1007_s12517_022_09614_1
crossref_primary_10_1016_j_compgeo_2011_11_003
crossref_primary_10_1016_j_compstruc_2021_106672
crossref_primary_10_1002_nag_2781
crossref_primary_10_1680_jgeen_22_00071
crossref_primary_10_1080_19386362_2018_1534345
crossref_primary_10_1016_j_engstruct_2017_12_054
crossref_primary_10_1016_j_compstruc_2014_12_007
crossref_primary_10_1016_j_sandf_2025_101681
crossref_primary_10_1179_1939787914Y_0000000070
crossref_primary_10_1016_j_trgeo_2019_100277
crossref_primary_10_1016_j_ijnonlinmec_2025_105215
crossref_primary_10_1007_s40891_025_00629_8
crossref_primary_10_1016_j_ijmecsci_2013_01_017
crossref_primary_10_1061__ASCE_EM_1943_7889_0000669
crossref_primary_10_1061__ASCE_EM_1943_7889_0000820
crossref_primary_10_1002_nme_5206
crossref_primary_10_1016_j_compositesb_2011_05_019
crossref_primary_10_1007_s40571_017_0156_5
crossref_primary_10_1016_j_ijsolstr_2025_113307
crossref_primary_10_1061__ASCE_ST_1943_541X_0002979
crossref_primary_10_1016_j_compgeo_2023_105526
crossref_primary_10_1016_j_compstruc_2025_107872
crossref_primary_10_1007_s11709_022_0841_1
crossref_primary_10_1007_s11081_011_9144_4
crossref_primary_10_1007_s00466_008_0334_7
crossref_primary_10_1680_jgele_22_00015
crossref_primary_10_1007_s10596_010_9184_4
crossref_primary_10_1016_j_compgeo_2016_08_007
crossref_primary_10_1016_j_compgeo_2020_103739
crossref_primary_10_1016_j_icarus_2023_115928
crossref_primary_10_1016_j_compgeo_2019_103281
crossref_primary_10_1002_nag_3851
crossref_primary_10_1016_j_ijnonlinmec_2012_12_004
crossref_primary_10_1177_13694332211067459
crossref_primary_10_1016_j_compgeo_2018_09_002
crossref_primary_10_1016_j_soildyn_2023_108254
crossref_primary_10_1002_nag_2885
crossref_primary_10_1016_j_compgeo_2020_103571
crossref_primary_10_1016_j_soildyn_2024_109063
crossref_primary_10_1002_cnm_1224
crossref_primary_10_1007_s11629_023_8312_2
crossref_primary_10_1016_j_compgeo_2020_103906
crossref_primary_10_1016_j_advengsoft_2014_09_004
crossref_primary_10_1016_j_cma_2018_12_017
crossref_primary_10_1016_j_compgeo_2018_11_010
crossref_primary_10_1016_j_geotexmem_2021_05_002
crossref_primary_10_1007_s00466_012_0698_6
crossref_primary_10_1680_geot_12_RL_001
crossref_primary_10_1007_s00603_021_02608_7
crossref_primary_10_1007_s40996_021_00793_7
crossref_primary_10_1016_j_compgeo_2012_08_007
crossref_primary_10_1016_j_compstruc_2020_106341
crossref_primary_10_1007_s10957_022_02105_z
crossref_primary_10_1007_s10706_023_02693_1
crossref_primary_10_1061_IJGNAI_GMENG_8848
crossref_primary_10_1016_j_compgeo_2020_103587
crossref_primary_10_1061__ASCE_GM_1943_5622_0000980
crossref_primary_10_1061__ASCE_EM_1943_7889_0001296
crossref_primary_10_1002_nme_3053
crossref_primary_10_1002_nme_2421
crossref_primary_10_1002_nme_6985
crossref_primary_10_1002_nme_3358
crossref_primary_10_1016_j_taml_2020_01_044
crossref_primary_10_1002_nag_3152
crossref_primary_10_1016_j_tust_2021_103904
crossref_primary_10_1080_17486025_2021_1903091
crossref_primary_10_1016_j_ijsolstr_2009_08_007
crossref_primary_10_1016_j_istruc_2022_04_008
crossref_primary_10_1007_s00158_019_02468_4
crossref_primary_10_1016_j_compstruc_2025_107842
crossref_primary_10_1061__ASCE_GM_1943_5622_0000454
crossref_primary_10_1016_j_enggeo_2020_105910
crossref_primary_10_1016_j_compgeo_2021_104119
crossref_primary_10_1007_s11081_021_09595_2
crossref_primary_10_1061__ASCE_GM_1943_5622_0000725
crossref_primary_10_1155_2021_8503490
crossref_primary_10_1016_j_compgeo_2012_02_006
crossref_primary_10_1002_nme_4716
crossref_primary_10_1007_s11440_016_0481_5
crossref_primary_10_1061__ASCE_GM_1943_5622_0001370
crossref_primary_10_1002_nag_3324
crossref_primary_10_1002_cae_20555
crossref_primary_10_1016_j_engstruct_2009_06_015
crossref_primary_10_1680_jgein_23_00049
crossref_primary_10_1016_j_camwa_2015_03_003
crossref_primary_10_1680_jgeot_18_P_103
crossref_primary_10_1080_19648189_2020_1805643
crossref_primary_10_1007_s00419_020_01806_z
crossref_primary_10_1007_s10706_023_02381_0
crossref_primary_10_1007_s11831_016_9208_x
crossref_primary_10_1016_j_conbuildmat_2024_135012
crossref_primary_10_1007_s40891_023_00475_6
crossref_primary_10_1016_j_compgeo_2024_106484
crossref_primary_10_1007_s00158_021_02923_1
crossref_primary_10_1061__ASCE_GM_1943_5622_0001760
crossref_primary_10_1002_nag_3537
crossref_primary_10_1016_j_compgeo_2022_104662
crossref_primary_10_1002_nme_7340
crossref_primary_10_1016_j_compgeo_2020_103531
crossref_primary_10_1016_j_compgeo_2021_104302
crossref_primary_10_1007_s11440_017_0589_2
crossref_primary_10_1007_s11770_024_1176_6
crossref_primary_10_1016_j_compgeo_2022_104787
crossref_primary_10_1002_nme_4616
crossref_primary_10_1061__ASCE_EM_1943_7889_0000326
crossref_primary_10_1016_j_compgeo_2018_06_008
crossref_primary_10_1080_17486025_2019_1664775
crossref_primary_10_1016_j_trgeo_2023_100979
crossref_primary_10_1016_j_compgeo_2019_103101
crossref_primary_10_1002_nme_5273
crossref_primary_10_1016_j_compgeo_2024_106897
Cites_doi 10.1002/nme.1771
10.1108/02644409410799281
10.1137/S1052623495290209
10.1016/0020-7683(93)90220-2
10.1137/S1052623495293056
10.1080/10556789908805766
10.1137/S1052623496304700
10.1061/AJGEB6.0000204
10.1080/1055678021000045123
10.1002/nme.511
10.1002/nme.1620171009
10.1137/0806020
10.1002/(SICI)1097-0207(19991120)46:8<1185::AID-NME743>3.0.CO;2-N
10.1016/0020-7683(72)90088-1
10.1016/j.ijsolstr.2006.06.036
10.1002/nme.551
10.1007/s10107-002-0349-3
10.1002/nag.198
10.1016/S0168-9274(98)00099-3
10.2208/jscej1969.1974.232_59
10.1016/S1570-8659(96)80004-4
10.1287/moor.22.1.1
10.1002/nme.1314
10.1007/s10107-002-0339-5
10.1016/0045-7949(94)00339-5
ContentType Journal Article
Copyright Copyright © 2007 John Wiley & Sons, Ltd.
2009 INIST-CNRS
Copyright_xml – notice: Copyright © 2007 John Wiley & Sons, Ltd.
– notice: 2009 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/cnm.1018
DatabaseName Istex
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
Physics
EISSN 1099-0887
EndPage 1119
ExternalDocumentID 20832948
10_1002_cnm_1018
CNM1018
ark_67375_WNG_XS1HB7J0_W
Genre article
GroupedDBID -~X
.GA
.Y3
10A
1L6
1OB
1OC
1ZS
31~
4.4
51W
51X
52N
52O
52P
52S
52T
52W
52X
5GY
5VS
66C
6J9
7PT
8-1
8-4
8-5
930
A03
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADEOM
ADIZJ
ADMGS
ADNMO
ADOZA
AEFGJ
AEIGN
AEIMD
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AI.
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZFZN
BDRZF
BRXPI
BSCLL
BY8
CO8
CS3
D-F
DCZOG
DRFUL
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
GBZZK
GNP
GODZA
HBH
HF~
HGLYW
HHY
HVGLF
I-F
JPC
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M6O
MEWTI
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
OIG
P4D
PALCI
QB0
QRW
RIWAO
RJQFR
ROL
RYL
SAMSI
SUPJJ
TN5
TUS
UB1
VH1
WIB
WIH
WIK
WQJ
WXSBR
XG1
XPP
XV2
ZY4
~02
AAYXX
CITATION
O8X
IQODW
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c4308-2aeea558277dd760dae11cbcf5a046b6eb6d858a4648bbfc0e9f41a0185cfe8a3
IEDL.DBID DRFUL
ISICitedReferencesCount 133
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000261200200016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1069-8299
IngestDate Sun Nov 09 14:02:06 EST 2025
Mon Jul 21 09:12:48 EDT 2025
Tue Nov 18 22:35:31 EST 2025
Sat Nov 29 06:28:02 EST 2025
Sun Sep 21 06:19:27 EDT 2025
Sun Sep 21 06:22:01 EDT 2025
IsPeerReviewed false
IsScholarly false
Issue 11
Keywords High performance
conic programming
limit analysis
Algorithmics
Interior point method
geophysics
plasticity
Mohr-Coulomb
Distributed computing
Mohr circle
semidefinite programming
Inelasticity
optimization
Dimensional analysis
cones
Positive definite matrix
Primal dual method
Ultimate load
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4308-2aeea558277dd760dae11cbcf5a046b6eb6d858a4648bbfc0e9f41a0185cfe8a3
Notes ark:/67375/WNG-XS1HB7J0-W
ArticleID:CNM1018
istex:335AA48020299EC5861265CFA4529A6704ACB00F
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 35706672
PQPubID 23500
PageCount 13
ParticipantIDs proquest_miscellaneous_35706672
pascalfrancis_primary_20832948
crossref_primary_10_1002_cnm_1018
crossref_citationtrail_10_1002_cnm_1018
wiley_primary_10_1002_cnm_1018_CNM1018
istex_primary_ark_67375_WNG_XS1HB7J0_W
PublicationCentury 2000
PublicationDate November 2008
PublicationDateYYYYMMDD 2008-11-01
PublicationDate_xml – month: 11
  year: 2008
  text: November 2008
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
PublicationTitle Communications in numerical methods in engineering
PublicationTitleAlternate Commun. Numer. Meth. Engng
PublicationYear 2008
Publisher John Wiley & Sons, Ltd
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
References Christiansen E. Computation of collapse loads. International Journal for Numerical Methods in Engineering 1981; 17:1547-1570.
Shindoh S, Kojima M, Hara S. Interiorpoint methods for the monotone semidefinite linear complementarity problem in symmetric matrices. SIAM Journal on Optimization 1997; 7:81-125.
Krabbenhoft K, Lyamin AV, Sloan SW. Formulation and solution of some plasticity problems as conic programs. International Journal of Solids and Structures 2007; 44:1533-1549.
Zouain N, Herskovits J, Borges LA, Feijóo RA. An iterative algorithm for limit analysis with nonlinear yield functions. International Journal of Solids and Structures 1993; 30(10):1397-1417.
Lyamin AV, Sloan SW. Lower bound limit analysis using non-linear programming. International Journal for Numerical Methods in Engineering 2002; 55:573-611.
Andersen ED, Roos C, Terlaky T. On implementing a primal-dual interior-point method for conic quadratic optimization. Mathematical Programming 2003; 95:249-277.
Sturm JF, Zhang S. Symmetric primal-dual path following algorithms for semidefinite programming. Applied Numerical Mathematics 1999; 29:301-315.
Krabbenhoft K, Lyamin AV, Sloan SW, Wriggers P. An interior-point method for elastoplasticity. International Journal for Numerical Methods in Engineering 2007; 69:592-626.
Matsuoka H, Nakai T. Stress-deformation and strength characteristics of soil under three different principal stresses. Proceedings of the Japanese Society of Civil Engineers 1974; 232:59-70.
Golub G, van Loan C. Matrix Computations. Johns Hopkins University Press: Baltimore, MD, 1996.
Sturm JF. SeDuMi 1.02, a MATLAB toolbox for optimizing over symmetric cones. Optimization Methods and Software 1999; 11-12:625-653. http://sedumi.mcmaster.ca
Yu HS, Sloan SW, Kleeman PW. A quadratic element for upper bound limit analysis. Engineering Computations 1994; 11:195-212.
Nesterov Y, Todd MJ. Primal-dual interiorpoint methods for selfscaled cones. SIAM Journal on Optimization 1998; 8:324-364.
Sturm JF. Implementation of interiorpoint methods for mixed semidefinite and second order cone optimization problems. Optimization Methods and Software 2002; 17:1105-1154.
Alizadeh F, Haeberly JA, Overton M. Primal-dual interiorpoint methods for semidefinite programming: convergence rates, stability and numerical results. SIAM Journal on Optimization 1998; 8:746-768.
Abbo AJ, Sloan SW. A smoothed hyperbolic approximation to the Mohr-Coulomb yield criterion. Computers and Structures 1995; 54:427-441.
Nesterov Y, Todd MJ. Selfscaled barriers and interiorpoint methods for convex programming. Mathematics of Operations Research 1997; 7:1-42.
Borges LA, Zouain N, Huespe AE. A nonlinear optimization procedure for limit analysis. European Journal of Mechanics - A/Solids 1996; 15(3):487-512.
Lade PV, Duncan JM. Elastoplastic stress-strain theory for cohesionless soil. Journal of the Geotechnical Engineering Division (ASCE) 1975; 101:1037-1053.
Lyamin AV, Sloan SW. Upper bound limit analysis using linear finite elements and non-linear programming. International Journal for Numerical and Analytical Methods in Geomechanics 2002; 26:181-216.
Monteiro RDC. Primal-dual path following algorithms for semidefinite programming. SIAM Journal on Optimization 1997; 7:663-678.
Krabbenhoft K, Damkilde L. A general nonlinear optimization algorithm for lower bound limit analysis. International Journal for Numerical Methods in Engineering 2003; 56:165-184.
Krabbenhoft K, Lyamin AV, Hjiaj M, Sloan SW. A new discontinuous upper bound limit analysis formulation. International Journal for Numerical Methods in Engineering 2005; 63:1069-1088.
Helmberg C, Rendl F, Vanderbei RJ, Wolkowicz H. An interior point method for semidefinite programming. SIAM Journal on Optimization 1996; 6:342-361.
Anderheggen E, Knöpfel H. Finite element limit analysis using linear programming. International Journal of Solids and Structures 1972; 8:1413-1431.
Christiansen E, Andersen KD. Computation of collapse loads with von Mises type yield condition. International Journal for Numerical Methods in Engineering 1999; 45:1185-1202.
Alizadeh F, Goldfarb D. Second order cone programming. Mathematical Programming, Series B 2003; 95:3-51.
2002; 17
1972; 8
1999; 11–12
1999; 29
2002; 55
1995; 54
1999; 45
2005; 63
1996
2006
2005
2003; 95
1996; 15
1997; 7
1999
2003; 56
2002; 26
1993; 30
1994; 11
1975; 101
1981; 17
1996; 4
1974; 232
2007; 44
2007; 69
1996; 6
1998; 8
Borges LA (e_1_2_1_17_2) 1996; 15
e_1_2_1_22_2
e_1_2_1_23_2
e_1_2_1_20_2
e_1_2_1_21_2
e_1_2_1_26_2
e_1_2_1_24_2
e_1_2_1_25_2
e_1_2_1_28_2
e_1_2_1_29_2
Lade PV (e_1_2_1_2_2) 1975; 101
Golub G (e_1_2_1_32_2) 1996
e_1_2_1_6_2
e_1_2_1_30_2
e_1_2_1_7_2
e_1_2_1_4_2
e_1_2_1_5_2
e_1_2_1_11_2
e_1_2_1_34_2
e_1_2_1_3_2
e_1_2_1_12_2
e_1_2_1_33_2
e_1_2_1_10_2
e_1_2_1_31_2
e_1_2_1_15_2
e_1_2_1_16_2
e_1_2_1_13_2
e_1_2_1_14_2
e_1_2_1_19_2
Shindoh S (e_1_2_1_27_2) 1997; 7
e_1_2_1_8_2
e_1_2_1_9_2
e_1_2_1_18_2
References_xml – reference: Krabbenhoft K, Lyamin AV, Sloan SW, Wriggers P. An interior-point method for elastoplasticity. International Journal for Numerical Methods in Engineering 2007; 69:592-626.
– reference: Lyamin AV, Sloan SW. Lower bound limit analysis using non-linear programming. International Journal for Numerical Methods in Engineering 2002; 55:573-611.
– reference: Krabbenhoft K, Lyamin AV, Hjiaj M, Sloan SW. A new discontinuous upper bound limit analysis formulation. International Journal for Numerical Methods in Engineering 2005; 63:1069-1088.
– reference: Alizadeh F, Haeberly JA, Overton M. Primal-dual interiorpoint methods for semidefinite programming: convergence rates, stability and numerical results. SIAM Journal on Optimization 1998; 8:746-768.
– reference: Krabbenhoft K, Damkilde L. A general nonlinear optimization algorithm for lower bound limit analysis. International Journal for Numerical Methods in Engineering 2003; 56:165-184.
– reference: Lade PV, Duncan JM. Elastoplastic stress-strain theory for cohesionless soil. Journal of the Geotechnical Engineering Division (ASCE) 1975; 101:1037-1053.
– reference: Nesterov Y, Todd MJ. Primal-dual interiorpoint methods for selfscaled cones. SIAM Journal on Optimization 1998; 8:324-364.
– reference: Golub G, van Loan C. Matrix Computations. Johns Hopkins University Press: Baltimore, MD, 1996.
– reference: Krabbenhoft K, Lyamin AV, Sloan SW. Formulation and solution of some plasticity problems as conic programs. International Journal of Solids and Structures 2007; 44:1533-1549.
– reference: Sturm JF. SeDuMi 1.02, a MATLAB toolbox for optimizing over symmetric cones. Optimization Methods and Software 1999; 11-12:625-653. http://sedumi.mcmaster.ca/
– reference: Sturm JF, Zhang S. Symmetric primal-dual path following algorithms for semidefinite programming. Applied Numerical Mathematics 1999; 29:301-315.
– reference: Yu HS, Sloan SW, Kleeman PW. A quadratic element for upper bound limit analysis. Engineering Computations 1994; 11:195-212.
– reference: Matsuoka H, Nakai T. Stress-deformation and strength characteristics of soil under three different principal stresses. Proceedings of the Japanese Society of Civil Engineers 1974; 232:59-70.
– reference: Borges LA, Zouain N, Huespe AE. A nonlinear optimization procedure for limit analysis. European Journal of Mechanics - A/Solids 1996; 15(3):487-512.
– reference: Zouain N, Herskovits J, Borges LA, Feijóo RA. An iterative algorithm for limit analysis with nonlinear yield functions. International Journal of Solids and Structures 1993; 30(10):1397-1417.
– reference: Alizadeh F, Goldfarb D. Second order cone programming. Mathematical Programming, Series B 2003; 95:3-51.
– reference: Christiansen E. Computation of collapse loads. International Journal for Numerical Methods in Engineering 1981; 17:1547-1570.
– reference: Sturm JF. Implementation of interiorpoint methods for mixed semidefinite and second order cone optimization problems. Optimization Methods and Software 2002; 17:1105-1154.
– reference: Abbo AJ, Sloan SW. A smoothed hyperbolic approximation to the Mohr-Coulomb yield criterion. Computers and Structures 1995; 54:427-441.
– reference: Christiansen E, Andersen KD. Computation of collapse loads with von Mises type yield condition. International Journal for Numerical Methods in Engineering 1999; 45:1185-1202.
– reference: Lyamin AV, Sloan SW. Upper bound limit analysis using linear finite elements and non-linear programming. International Journal for Numerical and Analytical Methods in Geomechanics 2002; 26:181-216.
– reference: Monteiro RDC. Primal-dual path following algorithms for semidefinite programming. SIAM Journal on Optimization 1997; 7:663-678.
– reference: Andersen ED, Roos C, Terlaky T. On implementing a primal-dual interior-point method for conic quadratic optimization. Mathematical Programming 2003; 95:249-277.
– reference: Anderheggen E, Knöpfel H. Finite element limit analysis using linear programming. International Journal of Solids and Structures 1972; 8:1413-1431.
– reference: Nesterov Y, Todd MJ. Selfscaled barriers and interiorpoint methods for convex programming. Mathematics of Operations Research 1997; 7:1-42.
– reference: Helmberg C, Rendl F, Vanderbei RJ, Wolkowicz H. An interior point method for semidefinite programming. SIAM Journal on Optimization 1996; 6:342-361.
– reference: Shindoh S, Kojima M, Hara S. Interiorpoint methods for the monotone semidefinite linear complementarity problem in symmetric matrices. SIAM Journal on Optimization 1997; 7:81-125.
– volume: 17
  start-page: 1547
  year: 1981
  end-page: 1570
  article-title: Computation of collapse loads
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 44
  start-page: 1533
  year: 2007
  end-page: 1549
  article-title: Formulation and solution of some plasticity problems as conic programs
  publication-title: International Journal of Solids and Structures
– volume: 30
  start-page: 1397
  issue: 10
  year: 1993
  end-page: 1417
  article-title: An iterative algorithm for limit analysis with nonlinear yield functions
  publication-title: International Journal of Solids and Structures
– volume: 8
  start-page: 746
  year: 1998
  end-page: 768
  article-title: Primal–dual interiorpoint methods for semidefinite programming: convergence rates, stability and numerical results
  publication-title: SIAM Journal on Optimization
– volume: 54
  start-page: 427
  year: 1995
  end-page: 441
  article-title: A smoothed hyperbolic approximation to the Mohr–Coulomb yield criterion
  publication-title: Computers and Structures
– year: 2005
– volume: 7
  start-page: 663
  year: 1997
  end-page: 678
  article-title: Primal–dual path following algorithms for semidefinite programming
  publication-title: SIAM Journal on Optimization
– volume: 26
  start-page: 181
  year: 2002
  end-page: 216
  article-title: Upper bound limit analysis using linear finite elements and non‐linear programming
  publication-title: International Journal for Numerical and Analytical Methods in Geomechanics
– volume: 56
  start-page: 165
  year: 2003
  end-page: 184
  article-title: A general nonlinear optimization algorithm for lower bound limit analysis
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 63
  start-page: 1069
  year: 2005
  end-page: 1088
  article-title: A new discontinuous upper bound limit analysis formulation
  publication-title: International Journal for Numerical Methods in Engineering
– year: 1996
– volume: 17
  start-page: 1105
  year: 2002
  end-page: 1154
  article-title: Implementation of interiorpoint methods for mixed semidefinite and second order cone optimization problems
  publication-title: Optimization Methods and Software
– volume: 95
  start-page: 249
  year: 2003
  end-page: 277
  article-title: On implementing a primal–dual interior‐point method for conic quadratic optimization
  publication-title: Mathematical Programming
– volume: 95
  start-page: 3
  year: 2003
  end-page: 51
  article-title: Second order cone programming
  publication-title: Mathematical Programming, Series B
– volume: 6
  start-page: 342
  year: 1996
  end-page: 361
  article-title: An interior point method for semidefinite programming
  publication-title: SIAM Journal on Optimization
– volume: 7
  start-page: 81
  year: 1997
  end-page: 125
  article-title: Interiorpoint methods for the monotone semidefinite linear complementarity problem in symmetric matrices
  publication-title: SIAM Journal on Optimization
– volume: 15
  start-page: 487
  issue: 3
  year: 1996
  end-page: 512
  article-title: A nonlinear optimization procedure for limit analysis
  publication-title: European Journal of Mechanics – A/Solids
– volume: 11–12
  start-page: 625
  year: 1999
  end-page: 653
  article-title: SeDuMi 1.02, a MATLAB toolbox for optimizing over symmetric cones
  publication-title: Optimization Methods and Software
– volume: 4
  start-page: 193
  year: 1996
  end-page: 312
– volume: 45
  start-page: 1185
  year: 1999
  end-page: 1202
  article-title: Computation of collapse loads with von Mises type yield condition
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 29
  start-page: 301
  year: 1999
  end-page: 315
  article-title: Symmetric primal–dual path following algorithms for semidefinite programming
  publication-title: Applied Numerical Mathematics
– year: 2006
– volume: 7
  start-page: 1
  year: 1997
  end-page: 42
  article-title: Selfscaled barriers and interiorpoint methods for convex programming
  publication-title: Mathematics of Operations Research
– volume: 101
  start-page: 1037
  year: 1975
  end-page: 1053
  article-title: Elastoplastic stress–strain theory for cohesionless soil
  publication-title: Journal of the Geotechnical Engineering Division
– volume: 55
  start-page: 573
  year: 2002
  end-page: 611
  article-title: Lower bound limit analysis using non‐linear programming
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 69
  start-page: 592
  year: 2007
  end-page: 626
  article-title: An interior‐point method for elastoplasticity
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 232
  start-page: 59
  year: 1974
  end-page: 70
  article-title: Stress‐deformation and strength characteristics of soil under three different principal stresses
  publication-title: Proceedings of the Japanese Society of Civil Engineers
– volume: 8
  start-page: 1413
  year: 1972
  end-page: 1431
  article-title: Finite element limit analysis using linear programming
  publication-title: International Journal of Solids and Structures
– volume: 8
  start-page: 324
  year: 1998
  end-page: 364
  article-title: Primal–dual interiorpoint methods for selfscaled cones
  publication-title: SIAM Journal on Optimization
– volume: 11
  start-page: 195
  year: 1994
  end-page: 212
  article-title: A quadratic element for upper bound limit analysis
  publication-title: Engineering Computations
– year: 1999
– ident: e_1_2_1_11_2
– volume: 15
  start-page: 487
  issue: 3
  year: 1996
  ident: e_1_2_1_17_2
  article-title: A nonlinear optimization procedure for limit analysis
  publication-title: European Journal of Mechanics – A/Solids
– ident: e_1_2_1_20_2
  doi: 10.1002/nme.1771
– ident: e_1_2_1_34_2
  doi: 10.1108/02644409410799281
– ident: e_1_2_1_30_2
  doi: 10.1137/S1052623495290209
– ident: e_1_2_1_21_2
  doi: 10.1016/0020-7683(93)90220-2
– ident: e_1_2_1_28_2
  doi: 10.1137/S1052623495293056
– ident: e_1_2_1_12_2
  doi: 10.1080/10556789908805766
– ident: e_1_2_1_25_2
  doi: 10.1137/S1052623496304700
– volume: 101
  start-page: 1037
  year: 1975
  ident: e_1_2_1_2_2
  article-title: Elastoplastic stress–strain theory for cohesionless soil
  publication-title: Journal of the Geotechnical Engineering Division
  doi: 10.1061/AJGEB6.0000204
– ident: e_1_2_1_31_2
  doi: 10.1080/1055678021000045123
– ident: e_1_2_1_5_2
  doi: 10.1002/nme.511
– volume: 7
  start-page: 81
  year: 1997
  ident: e_1_2_1_27_2
  article-title: Interiorpoint methods for the monotone semidefinite linear complementarity problem in symmetric matrices
  publication-title: SIAM Journal on Optimization
– ident: e_1_2_1_13_2
  doi: 10.1002/nme.1620171009
– ident: e_1_2_1_26_2
  doi: 10.1137/0806020
– ident: e_1_2_1_9_2
– ident: e_1_2_1_10_2
– ident: e_1_2_1_33_2
– ident: e_1_2_1_15_2
  doi: 10.1002/(SICI)1097-0207(19991120)46:8<1185::AID-NME743>3.0.CO;2-N
– ident: e_1_2_1_16_2
  doi: 10.1016/0020-7683(72)90088-1
– ident: e_1_2_1_8_2
  doi: 10.1016/j.ijsolstr.2006.06.036
– ident: e_1_2_1_18_2
  doi: 10.1002/nme.551
– ident: e_1_2_1_23_2
  doi: 10.1007/s10107-002-0349-3
– ident: e_1_2_1_6_2
  doi: 10.1002/nag.198
– ident: e_1_2_1_22_2
  doi: 10.1016/S0168-9274(98)00099-3
– ident: e_1_2_1_3_2
  doi: 10.2208/jscej1969.1974.232_59
– ident: e_1_2_1_14_2
  doi: 10.1016/S1570-8659(96)80004-4
– ident: e_1_2_1_29_2
  doi: 10.1287/moor.22.1.1
– ident: e_1_2_1_19_2
  doi: 10.1002/nme.1314
– volume-title: Matrix Computations
  year: 1996
  ident: e_1_2_1_32_2
– ident: e_1_2_1_24_2
  doi: 10.1007/s10107-002-0339-5
– ident: e_1_2_1_7_2
  doi: 10.1016/0045-7949(94)00339-5
– ident: e_1_2_1_4_2
SSID ssj0009080
Score 1.7274327
Snippet Recently, Krabbenhøft et al. (Int. J. Solids Struct. 2007; 44:1533–1549) have presented a formulation of the three‐dimensional Mohr–Coulomb criterion in terms...
Recently, Krabbenhøft et al . ( Int. J. Solids Struct . 2007; 44 :1533–1549) have presented a formulation of the three‐dimensional Mohr–Coulomb criterion in...
Recently, Krabbenhoft et al. (Int. J. Solids Struct. 2007; 44:1533-1549) have presented a formulation of the three-dimensional Mohr-Coulomb criterion in terms...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1107
SubjectTerms Computational techniques
Earth sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Engineering geology
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Inelasticity (thermoplasticity, viscoplasticity...)
limit analysis
Mathematical methods in physics
Mohr-Coulomb
optimization
Physics
plasticity
semidefinite programming
Solid mechanics
Structural and continuum mechanics
Title Three-dimensional Mohr-Coulomb limit analysis using semidefinite programming
URI https://api.istex.fr/ark:/67375/WNG-XS1HB7J0-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcnm.1018
https://www.proquest.com/docview/35706672
Volume 24
WOSCitedRecordID wos000261200200016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-0887
  dateEnd: 20091231
  omitProxy: false
  ssIdentifier: ssj0009080
  issn: 1069-8299
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BwgEOFAoV4VEWCcHJql_78LEEQoVIVEGr5rbaJ0QkNoqbqsf-BKT-w_4SZu2N20ggIXGyLM_a652Z3Rn7228Qeg0xeMospVGmjI1yWGAizk0WybgwHlYoqeZNsQk2mfDptDgMqEq_F6blh-g-uHnPaOZr7-BS1XvXpKG6XPjUk99G_RTMNu-h_vsvo-PP15S7MW-5CGgRcZh119Szcbq3bruxGPX9uJ57cKSsYXxcW9hiI_K8Gb82C9Bo63-6_gDdD2En3m_t5CG6ZctttBVCUBwcvN5G927wE8LZuCN1rR-hwyPQu726-GV8RYCWzQOPq-_Lq4vLYbWaVwuF536_FJaB6QR7VP03XNvFzFg38-EtDoCwBVx4jI5HH46GB1EoyBDpPIvBo6S1khCeMmYMo7GRNkm00o5ISLMVtYoaTrjMac6Vcjq2hcsTCW9KtLNcZjuoV1alfYKwdjorLKRTTkFClpHCySJRiSaWMpMk2QC9XWtG6MBW7otmzEXLs5wKGESPT-MD9KqT_NkydPxB5k2j3E5ALn94RBsj4mTyUUy_Jgfv2KdYnAzQ7ob2uwYphKppkcOdXq7NQYAj-r8rsrTVqhYZYR4wnMKzGt3_tTNiOBn749N_FXyG7jYolWYH5HPUO12u7At0R5-dzurlbjD731UqCRE
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD4aLRLwwGCAKJctSAieouXmS8QTFEqBNpqg0_pm-QoVbYKaFfG4n4DEP9wvwc5tqwQSEk9RlOPE8fGxz7E_fwfgqfXBI6Ix9mOhtJ_YCcanVMU-D1LlYIUcS1olmyBZRufz9GgHXrRnYWp-iG7BzVlGNV47A3cL0ocXrKEyX7nYk16BfmJ7EepB__XH0fHkgnM3oDUZAU59aofdlns2iA7bsluzUd817A-HjuSlbSBTZ7bYcj0vO7DVDDTa_a-634KbjePpvax7ym3Y0fke7DZOqNeYeLkHNy4xFNq7aUfrWt6Bo5nVvD4_-6lcToCaz8ObFl_W52e_hsVmWayEt3QnpjzecJ14Dlf_2Sv1aqG0WTgH12sgYSv74C4cj97MhmO_ScngyyQOrE1xrTlCNCJEKYIDxXUYSiEN4jbQFlgLrCiiPMEJFcLIQKcmCbn9UySNpjy-B728yPV98KSRcaptQGWEDclilBqehiKUSGOiwjAewPNWNUw2fOUubcaS1UzLEbON6BBqdABPOslvNUfHH2SeVdrtBPj6q8O0EcROsrds_ikcvyLvA3YygP0t9XcFIuusRmli33TQ9gdmTdHtr_BcF5uSxYg4yHBkv1Up_6-VYcNs6q4P_lXwAK6NZ9MJm7zLPjyE6xVmpToP-Qh6p-uNfgxX5ffTRbneb2zgNx6nDQE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VLkJwaKGAWAqtkRCcoublR8QJtiwFutEKWnVvluMHrNhNqk0XcexPqNR_2F-CnVe7EkhInKIo48TxeOyZ5JtvAF5aHzykmhAvypT2YrvBeIypyBN-ohysUBDJqmITNE3ZZJKM1-BNmwtT80N0H9ycZVTrtTNwfarM3jVrqMznLvZkt6AX44RYq-ztfxkeH15z7vqsJiMgicfssttyz_rhXtt2ZTfquYH95dCRorQDZOrKFiuu500HttqBhpv_1ff7sNE4nuhtPVMewJrOt2CzcUJRY-LlFty7wVBoz0YdrWv5EMZHVvP66vxCuZoANZ8HGhXfF1fnl4NiOSvmGZq5jCkkGq4T5HD131Cp51OlzdQ5uKiBhM3thUdwPHx_NDjwmpIMnowj39qU0FpgzEJKlaLEV0IHgcykwcIG2hnRGVEMMxGTmGWZkb5OTBwI-6ZYGs1E9BjW8yLXTwBJI6NE24DKZDYki3BiRBJkgcSaUBUEUR9et6rhsuErd2UzZrxmWg65HUSHUGN9eNFJntYcHX-QeVVptxMQix8O00YxP0k_8MnX4OAd_eTzkz7srKi_axBaZzVMYnun3XY-cGuK7v-KyHWxLHmEqYMMh_ZZlfL_2hk-SEfu-PRfBXfhznh_yA8_pp-34W4FWanSIZ_B-tliqZ_DbfnzbFoudhoT-A2ZrAx8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three-dimensional+Mohr-Coulomb+limit+analysis+using+semidefinite+programming&rft.jtitle=Communications+in+numerical+methods+in+engineering&rft.au=Krabbenhoft%2C+K&rft.au=Lyamin%2C+A+V&rft.au=Sloan%2C+S+W&rft.date=2008-11-01&rft.issn=1069-8299&rft.volume=24&rft.issue=11&rft.spage=1107&rft.epage=1119&rft_id=info:doi/10.1002%2Fcnm.1018&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1069-8299&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1069-8299&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1069-8299&client=summon