The Grassmannian Atlas: A General Framework for Exploring Linear Projections of High-Dimensional Data

Linear projections are one of the most common approaches to visualize high‐dimensional data. Since the space of possible projections is large, existing systems usually select a small set of interesting projections by ranking a large set of candidate projections based on a chosen quality measure. How...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer graphics forum Ročník 35; číslo 3; s. 1 - 10
Hlavní autoři: Liu, S., Bremer, P.-T, Jayaraman, J. J., Wang, B., Summa, B., Pascucci, V.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Blackwell Publishing Ltd 01.06.2016
Wiley
Témata:
ISSN:0167-7055, 1467-8659
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Linear projections are one of the most common approaches to visualize high‐dimensional data. Since the space of possible projections is large, existing systems usually select a small set of interesting projections by ranking a large set of candidate projections based on a chosen quality measure. However, while highly ranked projections can be informative, some lower ranked ones could offer important complementary information. Therefore, selection based on ranking may miss projections that are important to provide a global picture of the data. The proposed work fills this gap by presenting the Grassmannian Atlas, a framework that captures the global structures of quality measures in the space of all projections, which enables a systematic exploration of many complementary projections and provides new insights into the properties of existing quality measures.
AbstractList Linear projections are one of the most common approaches to visualize high-dimensional data. Since the space of possible projections is large, existing systems usually select a small set of interesting projections by ranking a large set of candidate projections based on a chosen quality measure. However, while highly ranked projections can be informative, some lower ranked ones could offer important complementary information. Therefore, selection based on ranking may miss projections that are important to provide a global picture of the data. The proposed work fills this gap by presenting the Grassmannian Atlas, a framework that captures the global structures of quality measures in the space of all projections, which enables a systematic exploration of many complementary projections and provides new insights into the properties of existing quality measures.
Linear projections are one of the most common approaches to visualize high-dimensional data. Since the space of possible projections is large, existing systems usually select a small set of interesting projections by ranking a large set of candidate projections based on a chosen quality measure. However, while highly ranked projections can be informative, some lower ranked ones could offer important complementary information. Therefore, selection based on ranking may miss projections that are important to provide a global picture of the data. Here, the proposed work fills this gap by presenting the Grassmannian Atlas, a framework that captures the global structures of quality measures in the space of all projections, which enables a systematic exploration of many complementary projections and provides new insights into the properties of existing quality measures.
Author Summa, B.
Jayaraman, J. J.
Wang, B.
Liu, S.
Bremer, P.-T
Pascucci, V.
Author_xml – sequence: 1
  givenname: S.
  surname: Liu
  fullname: Liu, S.
  organization: Scientific Computing and Imaging Institute, University of Utah
– sequence: 2
  givenname: P.-T
  surname: Bremer
  fullname: Bremer, P.-T
  organization: Lawrence Livermore National Laboratory
– sequence: 3
  givenname: J. J.
  surname: Jayaraman
  fullname: Jayaraman, J. J.
  organization: Lawrence Livermore National Laboratory
– sequence: 4
  givenname: B.
  surname: Wang
  fullname: Wang, B.
  organization: Scientific Computing and Imaging Institute, University of Utah
– sequence: 5
  givenname: B.
  surname: Summa
  fullname: Summa, B.
  organization: Department of Computer Science, Tulane University
– sequence: 6
  givenname: V.
  surname: Pascucci
  fullname: Pascucci, V.
  organization: Scientific Computing and Imaging Institute, University of Utah
BackLink https://www.osti.gov/servlets/purl/1417962$$D View this record in Osti.gov
BookMark eNp1kcFuEzEQhi1UJNLCgTew4AKHbe21197lFtJmWymCHorgZk3d2cTprp3aG7V9exzScqjAF1uj7xt7_B-SAx88EvKes2Oe14lddse8rLV6RSZcKl3UqmoOyITxfNasqt6Qw5TWjDGpVTUheLVC2kZIaQDvHXg6HXtIX-iUtugxQk_nEQa8D_GWdiHSs4dNH6LzS7pwHiHSyxjWaEcXfKKho-duuSpO3YA-5VLWT2GEt-R1B33Cd0_7EfkxP7uanReL7-3FbLoorBRMFYiKoy01u-alkIxVWIJWNbISEYQFVnF-LZABILAaa3aDjRRdqW-skFZacUQ-7PuGNDqTrBvRrmzwPj_QcMl1o8oMfdpDmxjutphGM7hkse_BY9gmw-uyqiRvZJPRjy_QddjGPNWOYlzqhgmVqZM9ZWNIKWJn8sWw-5ExgusNZ2aXjcnZmD_ZZOPzC2MT3QDx8Z_sU_d71-Pj_0Eza-fPRrE3XBrx4a8B8dYoLXRlfn5rDft1OfsqxdwsxG9Cza2o
CitedBy_id crossref_primary_10_1109_TVCG_2020_3011155
crossref_primary_10_1111_cgf_13416
crossref_primary_10_1007_s12650_017_0431_9
crossref_primary_10_1109_TVCG_2020_3030432
crossref_primary_10_1007_s12650_018_0531_1
crossref_primary_10_1109_TVCG_2017_2705189
crossref_primary_10_1109_TVCG_2019_2934812
crossref_primary_10_1016_j_jvlc_2018_08_003
Cites_doi 10.1109/VAST.2012.6400488
10.1057/palgrave.ivs.9500091
10.1111/cgf.12366
10.1198/106186005X77702
10.1137/0906011
10.1109/TVCG.2006.94
10.1057/palgrave.ivs.9500053
10.1145/312129.312199
10.1016/j.neucom.2012.11.046
10.1002/0470013192.bsa501
10.1109/MSP.2010.939739
10.1007/978-1-4757-2189-8
10.1109/TVCG.2011.229
10.1109/TVCG.2010.213
10.1109/TVCG.2011.244
10.2307/1390644
10.1109/LDAV.2014.7013202
10.1109/TVCG.2015.2467132
10.1016/S0167-9473(02)00286-4
10.1109/T-C.1974.224051
10.1198/106186008X318440
ContentType Journal Article
Copyright 2016 The Author(s) Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
2016 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2016 The Author(s) Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
– notice: 2016 The Eurographics Association and John Wiley & Sons Ltd.
CorporateAuthor Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
CorporateAuthor_xml – name: Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
OIOZB
OTOTI
DOI 10.1111/cgf.12876
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database


Computer and Information Systems Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 10
ExternalDocumentID 1417962
4107219961
10_1111_cgf_12876
CGF12876
ark_67375_WNG_0XPCB43F_L
Genre article
Feature
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAYXX
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
OIOZB
OTOTI
WRC
ID FETCH-LOGICAL-c4306-ee61ec270b1234005e2a768e02eea3ca0511b3e0aaea08e80de943f27dc34c4c3
IEDL.DBID DRFUL
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000379912300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Tue Nov 05 04:35:38 EST 2024
Fri Sep 05 09:58:57 EDT 2025
Sun Nov 09 08:20:23 EST 2025
Sat Nov 29 03:41:13 EST 2025
Tue Nov 18 21:16:30 EST 2025
Sun Sep 21 06:19:21 EDT 2025
Sun Sep 21 06:21:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4306-ee61ec270b1234005e2a768e02eea3ca0511b3e0aaea08e80de943f27dc34c4c3
Notes istex:BE613F9CEA7307F484522B99C9C60CE3957EF235
ArticleID:CGF12876
Supporting Information
ark:/67375/WNG-0XPCB43F-L
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
USDOE
AC52-07NA27344; EE0004449; NA0002375; SC0007446; SC0010498
National Science Foundation (NSF)
LLNL-JRNL-733805
OpenAccessLink https://www.osti.gov/servlets/purl/1417962
PQID 1801479036
PQPubID 30877
PageCount 10
ParticipantIDs osti_scitechconnect_1417962
proquest_miscellaneous_1825541949
proquest_journals_1801479036
crossref_citationtrail_10_1111_cgf_12876
crossref_primary_10_1111_cgf_12876
wiley_primary_10_1111_cgf_12876_CGF12876
istex_primary_ark_67375_WNG_0XPCB43F_L
PublicationCentury 2000
PublicationDate June 2016
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: June 2016
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: United States
PublicationTitle Computer graphics forum
PublicationTitleAlternate Computer Graphics Forum
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley
References Guo D.: Coordinating computational and visual approaches for interactive feature selection and multivariate clustering. Information Visualization 2, 4 (2003), 232-246. 2
Borg I., Groenen P.J.: Modern multidimensional scaling: Theory and applications. Springer Science & Business Media, 2005. 2
Mokbel B., Lueks W., Gisbrecht A., Hammer B.: Visualizing the quality of dimensionality reduction. Neurocomputing 112 (2013), 109-123. 2
Van der Maaten L., Hinton G.: Visualizing data using t-sne. Journal of Machine Learning Research 9, 2579-2605 (2008), 85. 8
Elmqvist N., Dragicevic P., Fekete J.-D.: Rolling the dice: Multidimensional visual exploration using scatterplot matrix navigation. IEEE TVCG 14, 6 (2008), 1539-1148. 1
Correa C., Lindstrom P., Bremer P.-T.: Topological spines: A structure-preserving visual representation of scalar fields. IEEE Transactions on Visualization and Computer Graphics 17, 12 (2011), 1842-1851. 1, 5
Lehmann D., Theisel H.: Optimal sets of projections of high-dimensional data. Visualization and Computer Graphics, IEEE Transactions on 22, 1 (Jan 2016), 609-618. 2
Wilkinson L., Anand A., Grossman R.L.: Graph-theoretic scagnostics. In INFOVIS (2005), vol. 5, p. 21. 1, 2, 4
Gerber S., Bremer P.-T., Pascucci V., Whitaker R.: visual exploration of high dimensional scalar functions. IEEE Transactions on Visualization and Computer Graphics 16, 6 (2010), 1271-1280. 5
Lee E.-K., Cook D., Klinke S., Lumley T.: Projection pursuit for exploratory supervised classification. Journal of Computational and Graphical Statistics 14, 4 (2005). 4
Buja A., Swayne D.F., Littman M.L., Dean N., Hofmann H., Chen L.: Data visualization with multidimensional scaling. Journal of Computational and Graphical Statistics 17, 2 (2008), 444-472. 4, 7
Bertini E., Tatu A., Keim D.: Quality metrics in high-dimensional data visualization: An overview and systematization. Visualization and Computer Graphics, IEEE Transactions on 17, 12 (2011), 2203-2212. 2
Friedman J., Tukey J.: A projection pursuit algorithm for exploratory data analysis. IEEE TC C-23, 9 (1974), 881-890. 1, 2, 4
Asimov D.: The grand tour: a tool for viewing multidimensional data. SIAM SISC 6, 1 (1985), 128-143. 1
Seo J., Shneiderman B.: Knowledge discovery in high-dimensional data: Case studies and a user survey for the rank-by-feature framework. IEEE TVCG 12, 3 (2006), 311-322. 2
Horton P., Nakai K.: A probabilistic classification system for predicting the cellular localization sites of proteins. In Ismb (1996), vol. 4, pp. 109-115. 8
Harris J.: Algebraic geometry: a first course, vol. 133. Springer Science & Business Media, 1992. 1, 3
Seo J., Shneiderman B.: A rank-by-feature framework for interactive exploration of multidimensional data. Information Visualization 4, 2 (2005), 96-113. 1
Swayne D.F., Temple Lang D., Buja A., Cook D.: GGobi: evolving from XGobi into an extensible framework for interactive data visualization. Computational Statistics & Data Analysis 43 (2003), 423-444. 1, 5
Liu S., Wang B., Bremer P.-T., Pascucci V.: Distortionguided structure-driven interactive exploration of high-dimensional data. Computer Graphics Forum 33, 3 (2014), 101-110. 2, 4
Jennings A., McKeown J.J.: Matrix computation. Wiley New York, 1992. 3
Wilkinson L., Anand A., Grossman R.: High-dimensional visual analytics: interactive exploration guided by pairwise views of point distributions. Visualization and Computer Graphics, IEEE Transactions on 12, 6 (2006), 1363-1372. 1, 2, 4
Jolliffe I.: Principal component analysis. Wiley Online Library, 2005. 6
Cook D., Buja A., Cabrera J.: Projection pursuit indexes based on orthonormal function expansions. Journal of Computational and Graphical Statistics 2, 3 (1993), 225-250. 4
2010; 16
2006; 12
2012
2011
1985; 6
2008; 17
1974; C‐23
2008; 14
2008; 9
2007
2006
2005
2004
1992
2011; 17
1993; 2
1999
1992; 133
2003; 2
2013; 112
2005; 5
2005; 4
2014
2013
1996; 4
2014; 33
2003; 43
2005; 14
2016; 22
e_1_2_7_5_2
Elmqvist N. (e_1_2_7_10_2) 2008; 14
e_1_2_7_2_2
e_1_2_7_9_2
e_1_2_7_8_2
e_1_2_7_7_2
e_1_2_7_6_2
e_1_2_7_19_2
e_1_2_7_18_2
e_1_2_7_17_2
e_1_2_7_14_2
e_1_2_7_13_2
e_1_2_7_12_2
e_1_2_7_11_2
e_1_2_7_26_2
e_1_2_7_28_2
e_1_2_7_29_2
Horton P. (e_1_2_7_15_2) 1996; 4
Jennings A. (e_1_2_7_16_2) 1992
Borg I. (e_1_2_7_4_2) 2005
e_1_2_7_24_2
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_22_2
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_20_2
Wilkinson L. (e_1_2_7_32_2) 2005; 5
Seo J. (e_1_2_7_27_2) 2006; 12
Seo J. (e_1_2_7_25_2) 2004
Van der Maaten L. (e_1_2_7_30_2) 2008; 9
Arthur D. (e_1_2_7_3_2) 2007
References_xml – reference: Horton P., Nakai K.: A probabilistic classification system for predicting the cellular localization sites of proteins. In Ismb (1996), vol. 4, pp. 109-115. 8
– reference: Gerber S., Bremer P.-T., Pascucci V., Whitaker R.: visual exploration of high dimensional scalar functions. IEEE Transactions on Visualization and Computer Graphics 16, 6 (2010), 1271-1280. 5
– reference: Lehmann D., Theisel H.: Optimal sets of projections of high-dimensional data. Visualization and Computer Graphics, IEEE Transactions on 22, 1 (Jan 2016), 609-618. 2
– reference: Wilkinson L., Anand A., Grossman R.: High-dimensional visual analytics: interactive exploration guided by pairwise views of point distributions. Visualization and Computer Graphics, IEEE Transactions on 12, 6 (2006), 1363-1372. 1, 2, 4
– reference: Cook D., Buja A., Cabrera J.: Projection pursuit indexes based on orthonormal function expansions. Journal of Computational and Graphical Statistics 2, 3 (1993), 225-250. 4
– reference: Mokbel B., Lueks W., Gisbrecht A., Hammer B.: Visualizing the quality of dimensionality reduction. Neurocomputing 112 (2013), 109-123. 2
– reference: Seo J., Shneiderman B.: A rank-by-feature framework for interactive exploration of multidimensional data. Information Visualization 4, 2 (2005), 96-113. 1
– reference: Van der Maaten L., Hinton G.: Visualizing data using t-sne. Journal of Machine Learning Research 9, 2579-2605 (2008), 85. 8
– reference: Guo D.: Coordinating computational and visual approaches for interactive feature selection and multivariate clustering. Information Visualization 2, 4 (2003), 232-246. 2
– reference: Borg I., Groenen P.J.: Modern multidimensional scaling: Theory and applications. Springer Science & Business Media, 2005. 2
– reference: Buja A., Swayne D.F., Littman M.L., Dean N., Hofmann H., Chen L.: Data visualization with multidimensional scaling. Journal of Computational and Graphical Statistics 17, 2 (2008), 444-472. 4, 7
– reference: Asimov D.: The grand tour: a tool for viewing multidimensional data. SIAM SISC 6, 1 (1985), 128-143. 1
– reference: Friedman J., Tukey J.: A projection pursuit algorithm for exploratory data analysis. IEEE TC C-23, 9 (1974), 881-890. 1, 2, 4
– reference: Elmqvist N., Dragicevic P., Fekete J.-D.: Rolling the dice: Multidimensional visual exploration using scatterplot matrix navigation. IEEE TVCG 14, 6 (2008), 1539-1148. 1
– reference: Wilkinson L., Anand A., Grossman R.L.: Graph-theoretic scagnostics. In INFOVIS (2005), vol. 5, p. 21. 1, 2, 4
– reference: Bertini E., Tatu A., Keim D.: Quality metrics in high-dimensional data visualization: An overview and systematization. Visualization and Computer Graphics, IEEE Transactions on 17, 12 (2011), 2203-2212. 2
– reference: Jennings A., McKeown J.J.: Matrix computation. Wiley New York, 1992. 3
– reference: Jolliffe I.: Principal component analysis. Wiley Online Library, 2005. 6
– reference: Correa C., Lindstrom P., Bremer P.-T.: Topological spines: A structure-preserving visual representation of scalar fields. IEEE Transactions on Visualization and Computer Graphics 17, 12 (2011), 1842-1851. 1, 5
– reference: Swayne D.F., Temple Lang D., Buja A., Cook D.: GGobi: evolving from XGobi into an extensible framework for interactive data visualization. Computational Statistics & Data Analysis 43 (2003), 423-444. 1, 5
– reference: Harris J.: Algebraic geometry: a first course, vol. 133. Springer Science & Business Media, 1992. 1, 3
– reference: Seo J., Shneiderman B.: Knowledge discovery in high-dimensional data: Case studies and a user survey for the rank-by-feature framework. IEEE TVCG 12, 3 (2006), 311-322. 2
– reference: Lee E.-K., Cook D., Klinke S., Lumley T.: Projection pursuit for exploratory supervised classification. Journal of Computational and Graphical Statistics 14, 4 (2005). 4
– reference: Liu S., Wang B., Bremer P.-T., Pascucci V.: Distortionguided structure-driven interactive exploration of high-dimensional data. Computer Graphics Forum 33, 3 (2014), 101-110. 2, 4
– year: 2011
– volume: 2
  start-page: 225
  issue: 3
  year: 1993
  end-page: 250
  article-title: Projection pursuit indexes based on orthonormal function expansions
  publication-title: Journal of Computational and Graphical Statistics
– year: 2005
– volume: 17
  start-page: 444
  issue: 2
  year: 2008
  end-page: 472
  article-title: Data visualization with multidimensional scaling
  publication-title: Journal of Computational and Graphical Statistics
– start-page: 1027
  year: 2007
  end-page: 1035
– volume: 14
  start-page: 1539
  issue: 6
  year: 2008
  end-page: 1148
  article-title: Rolling the dice: Multidimensional visual exploration using scatterplot matrix navigation
  publication-title: IEEE TVCG
– volume: 22
  start-page: 609
  issue: 1
  year: 2016
  end-page: 618
  article-title: Optimal sets of projections of high‐dimensional data
  publication-title: Visualization and Computer Graphics, IEEE Transactions on
– start-page: 63
  year: 2012
  end-page: 72
– volume: 112
  start-page: 109
  year: 2013
  end-page: 123
  article-title: Visualizing the quality of dimensionality reduction
  publication-title: Neurocomputing
– year: 1992
– start-page: 65
  year: 2004
  end-page: 72
– volume: 16
  start-page: 1271
  issue: 6
  year: 2010
  end-page: 1280
  article-title: visual exploration of high dimensional scalar functions
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 133
  year: 1992
– start-page: 3111
  year: 2013
  end-page: 3119
– volume: 12
  start-page: 311
  issue: 3
  year: 2006
  end-page: 322
  article-title: Knowledge discovery in high‐dimensional data: Case studies and a user survey for the rank‐by‐feature framework
  publication-title: IEEE TVCG
– volume: 17
  start-page: 1842
  issue: 12
  year: 2011
  end-page: 1851
  article-title: Topological spines: A structure‐preserving visual representation of scalar fields
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 9
  start-page: 85
  issue: 2579
  year: 2008
  end-page: 2605
  article-title: Visualizing data using t‐sne
  publication-title: Journal of Machine Learning Research
– volume: 6
  start-page: 128
  issue: 1
  year: 1985
  end-page: 143
  article-title: The grand tour: a tool for viewing multidimensional data
  publication-title: SIAM SISC
– volume: 2
  start-page: 232
  issue: 4
  year: 2003
  end-page: 246
  article-title: Coordinating computational and visual approaches for interactive feature selection and multivariate clustering
  publication-title: Information Visualization
– volume: 14
  issue: 4
  year: 2005
  article-title: Projection pursuit for exploratory supervised classification
  publication-title: Journal of Computational and Graphical Statistics
– volume: 5
  start-page: 21
  year: 2005
  article-title: Graph‐theoretic scagnostics
  publication-title: INFOVIS
– year: 2006
– volume: 4
  start-page: 109
  year: 1996
  end-page: 115
  article-title: A probabilistic classification system for predicting the cellular localization sites of proteins
  publication-title: Ismb
– start-page: 84
  year: 1999
  end-page: 93
– volume: C‐23
  start-page: 881
  issue: 9
  year: 1974
  end-page: 890
  article-title: A projection pursuit algorithm for exploratory data analysis
  publication-title: IEEE TC
– start-page: 35
  year: 2014
  end-page: 42
– volume: 43
  start-page: 423
  year: 2003
  end-page: 444
  article-title: GGobi: evolving from XGobi into an extensible framework for interactive data visualization
  publication-title: Computational Statistics & Data Analysis
– volume: 33
  start-page: 101
  issue: 3
  year: 2014
  end-page: 110
  article-title: Distortionguided structure‐driven interactive exploration of high‐dimensional data
  publication-title: Computer Graphics Forum
– volume: 4
  start-page: 96
  issue: 2
  year: 2005
  end-page: 113
  article-title: A rank‐by‐feature framework for interactive exploration of multidimensional data
  publication-title: Information Visualization
– volume: 12
  start-page: 1363
  issue: 6
  year: 2006
  end-page: 1372
  article-title: High‐dimensional visual analytics: interactive exploration guided by pairwise views of point distributions
  publication-title: Visualization and Computer Graphics, IEEE Transactions on
– volume: 17
  start-page: 2203
  issue: 12
  year: 2011
  end-page: 2212
  article-title: Quality metrics in high‐dimensional data visualization: An overview and systematization
  publication-title: Visualization and Computer Graphics, IEEE Transactions on
– ident: e_1_2_7_29_2
  doi: 10.1109/VAST.2012.6400488
– ident: e_1_2_7_26_2
  doi: 10.1057/palgrave.ivs.9500091
– start-page: 65
  volume-title: Information Visualization, 2004. INFOVIS 2004. IEEE Symposium on
  year: 2004
  ident: e_1_2_7_25_2
– ident: e_1_2_7_20_2
  doi: 10.1111/cgf.12366
– ident: e_1_2_7_18_2
  doi: 10.1198/106186005X77702
– ident: e_1_2_7_2_2
  doi: 10.1137/0906011
– ident: e_1_2_7_24_2
– volume: 9
  start-page: 85
  issue: 2579
  year: 2008
  ident: e_1_2_7_30_2
  article-title: Visualizing data using t‐sne
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_7_33_2
  doi: 10.1109/TVCG.2006.94
– volume-title: Matrix computation.
  year: 1992
  ident: e_1_2_7_16_2
– ident: e_1_2_7_13_2
  doi: 10.1057/palgrave.ivs.9500053
– ident: e_1_2_7_8_2
  doi: 10.1145/312129.312199
– ident: e_1_2_7_23_2
  doi: 10.1016/j.neucom.2012.11.046
– ident: e_1_2_7_17_2
  doi: 10.1002/0470013192.bsa501
– ident: e_1_2_7_31_2
  doi: 10.1109/MSP.2010.939739
– volume: 5
  start-page: 21
  year: 2005
  ident: e_1_2_7_32_2
  article-title: Graph‐theoretic scagnostics
  publication-title: INFOVIS
– ident: e_1_2_7_14_2
  doi: 10.1007/978-1-4757-2189-8
– ident: e_1_2_7_6_2
  doi: 10.1109/TVCG.2011.229
– volume: 4
  start-page: 109
  year: 1996
  ident: e_1_2_7_15_2
  article-title: A probabilistic classification system for predicting the cellular localization sites of proteins
  publication-title: Ismb
– ident: e_1_2_7_12_2
  doi: 10.1109/TVCG.2010.213
– ident: e_1_2_7_9_2
  doi: 10.1109/TVCG.2011.244
– volume: 14
  start-page: 1539
  issue: 6
  year: 2008
  ident: e_1_2_7_10_2
  article-title: Rolling the dice: Multidimensional visual exploration using scatterplot matrix navigation
  publication-title: IEEE TVCG
– ident: e_1_2_7_7_2
  doi: 10.2307/1390644
– ident: e_1_2_7_21_2
  doi: 10.1109/LDAV.2014.7013202
– ident: e_1_2_7_22_2
– ident: e_1_2_7_19_2
  doi: 10.1109/TVCG.2015.2467132
– volume: 12
  start-page: 311
  issue: 3
  year: 2006
  ident: e_1_2_7_27_2
  article-title: Knowledge discovery in high‐dimensional data: Case studies and a user survey for the rank‐by‐feature framework
  publication-title: IEEE TVCG
– ident: e_1_2_7_28_2
  doi: 10.1016/S0167-9473(02)00286-4
– volume-title: Modern multidimensional scaling: Theory and applications.
  year: 2005
  ident: e_1_2_7_4_2
– ident: e_1_2_7_11_2
  doi: 10.1109/T-C.1974.224051
– start-page: 1027
  volume-title: Proceedings of the eighteenth annual ACM‐SIAM symposium on Discrete algorithms
  year: 2007
  ident: e_1_2_7_3_2
– ident: e_1_2_7_5_2
  doi: 10.1198/106186008X318440
SSID ssj0004765
Score 2.2284353
Snippet Linear projections are one of the most common approaches to visualize high‐dimensional data. Since the space of possible projections is large, existing systems...
Linear projections are one of the most common approaches to visualize high-dimensional data. Since the space of possible projections is large, existing systems...
SourceID osti
proquest
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Analysis
Categories and Subject Descriptors (according to ACM CCS)
Computer Graphics
Exploration
I.3.3 [Computer Graphics]: Picture/Image Generation-Line and curve generation
Line and curve generation
MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE
Picture/Image Generation
Pictures
Projection
Ranking
Studies
Visualization
Title The Grassmannian Atlas: A General Framework for Exploring Linear Projections of High-Dimensional Data
URI https://api.istex.fr/ark:/67375/WNG-0XPCB43F-L/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12876
https://www.proquest.com/docview/1801479036
https://www.proquest.com/docview/1825541949
https://www.osti.gov/servlets/purl/1417962
Volume 35
WOSCitedRecordID wos000379912300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ni9RAEC3WGQ968Fs27iqtiHiJdJJOOtHTOGPGwzIM4uLcmk6nZhHdjMxkxaM_wd_oL7EqX86CguAtkAp0uutVv0qqXwE8lVmp0caJn6os9JXW0rdF4ny5TgpbxA7LuGiaTejFIl2tsuUBvOrPwrT6EMMHN0ZGE68Z4LbY7YHcna1fUHDVyRUYh-S3agTj2bv89OT3sUidxL20N4vGdMJCXMgzPHxpOxrzzH6j4LwheF2inPvEtdl58pv_NeZbcKMjnGLSeshtOMDqDlzfkyG8C2fkK2K-JRp9zh2MbCUmNZHql2IiOlVqkfc1XIJIrhgK9wSlsgQVsWy_57ALi81acPHIz-8_Ztw5oFX9EDNb23twmr95P33rdw0YfKcolfARkwAdTW5B-xuBPcbQUnqCMkS0kbME6KCIUFqLVqaYyhIzFa1DXbpIOeWi-zCqNhUegogprpQxSjLRClNrS5epMrOomSAVgQfP-3UwrlMn5yYZn02fpdDcmWbuPHgymH5pJTn-ZPSsWczBwm4_cQ2bjs2HxdzI1XL6WkW5OfHgiFfbEOFg1VzH5UWupoyIIlUSenDcO4HpwL0zASvu6Iz2fg8eD7cJlvyvxVa4uWAbytVUkKmM3qxxib-P1UzneXPx4N9Nj-AaUbekLVo7hlG9vcCHcNV9rT_uto86JPwCdLcLyA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ni9RAEC3WGUE9-C3GXbUVES9ZOkl3OhEv44yZFcdhkF2cW9Pp1Cyya0Zms-LRn-Bv9JdYnS9nQUHwFkgFku561a861a8AnvG0UGhk7CciDX2hFPdNHlufr-Lc5NJiIfO62YSaz5PlMl3swKvuLEyjD9FvuDlk1PHaAdxtSG-h3B6v9im6qvgSDAW5kRzAcPIhO5r9PhepYtlpezvVmFZZyFXy9A9fWI-Gbmi_UXReE74ucM5t5lovPdmN_3vpm3C9pZxs1PjILdjB8jZc2xIivAPH5C1suiEi_dn1MDIlG1VEq1-yEWt1qVnWVXExormsL91jlMwSWNii2dFxTszWK-bKR35-_zFxvQMa3Q82MZW5C0fZm8Pxgd-2YPCtoGTCR4wDtKHiOa1wBHeJoaEEBXmIaCJrCNJBHiE3Bg1PMOEFpiJahaqwkbDCRvdgUK5LvA9MUmQpJHIyUQITYwqbiiI1qBxFygMPXnQToW2rT-7aZJzqLk-hsdP12HnwtDf90ohy_MnoeT2bvYXZnLgqNiX1x_lU8-Vi_FpEmZ55sOumWxPlcLq51hUY2YpyIopVcejBXucFuoX3mQ6c5o5KafX34El_m4Dp_raYEtfnzoayNRGkIqUvq33i7--qx9Osvnjw76aP4crB4fuZnr2dv9uFq0Tk4qaEbQ8G1eYcH8Jl-7X6dLZ51MLiF3UuD7g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9RAEB5qT0Qf6m8aW3UVEV9SNskmmxVfzjtziuU4xOK9LZvNpIg2V66p-Oif4N_Yv8TZ_PIKCoJvgUxgszvf7DfJ7DcAz7gqJJo48VOhQl9IyX2TJ9bnZZKbPLZYxHnTbELO5-lyqRZb8Ko_C9PqQwwf3BwymnjtAI6nRbmBcntcHlB0lckVGIlYJQTL0fRDdnT4-1ykTOJe29upxnTKQq6SZ3j40n40clP7naLzivB1iXNuMtdm68lu_t-gb8FORznZuPWR27CF1R24sSFEeBeOyVvYbE1E-sT1MDIVG9dEq1-yMet0qVnWV3ExorlsKN1jlMwSWNii_aLjnJitSubKRy5-_Jy63gGt7gebmtrcg6PszcfJW79rweBbQcmEj5gEaEPJc9rhCO4xhoYSFOQhoomsIUgHeYTcGDQ8xZQXqERUhrKwkbDCRvdhu1pVuAsspshSxMjJRApMjSmsEoUyKB1FygMPXvQLoW2nT-7aZHzVfZ5Cc6ebufPg6WB62opy_MnoebOag4VZf3FVbDLWn-YzzZeLyWsRZfrQgz233Jooh9PNta7AyNaUE1GsSkIP9nsv0B28z3TgNHekot3fgyfDbQKm-9tiKlydOxvK1kSghKI3a3zi72PVk1nWXDz4d9PHcG0xpeG_m7_fg-vE45K2gm0ftuv1OT6Eq_Zb_fls_ahDxS_pwA8z
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Grassmannian+Atlas%3A+A+General+Framework+for+Exploring+Linear+Projections+of+High-Dimensional+Data&rft.jtitle=Computer+graphics+forum&rft.au=Liu%2C+S&rft.au=Bremer%2C+P-T&rft.au=Jayaraman%2C+J+J&rft.au=Wang%2C+B&rft.date=2016-06-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=35&rft.issue=3&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1111%2Fcgf.12876&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon