Clinically interpretable multiclass neural network for discriminating cardiac diseases

Deep-learning applications in cardiology typically perform trivial binary classification and are able to discriminate between subjects affected or not affected by a specific cardiac disease. However, this working scenario is very different from the real one, where clinicians are required to recogniz...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Heliyon Ročník 11; číslo 1; s. e41195
Hlavní autoři: Sbrollini, Agnese, Leoni, Chiara, Morettini, Micaela, Swenne, Cees A., Burattini, Laura
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Elsevier Ltd 15.01.2025
Elsevier
Témata:
ISSN:2405-8440, 2405-8440
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Deep-learning applications in cardiology typically perform trivial binary classification and are able to discriminate between subjects affected or not affected by a specific cardiac disease. However, this working scenario is very different from the real one, where clinicians are required to recognize the occurrence of one cardiac disease among the several possible ones, performing a multiclass classification. The present work aims to create a new interpretable deep-learning tool able to perform a multiclass classification and, thus, discriminate among several different cardiac diseases. The “China Physiological Signal Challenge in 2018” Physionet database was used to develop a multiclass neural network, constructed by the Advanced Repeated Structuring & Learning Procedure (AdvRS&LP). Data, consisting of 6877 12-lead 10-second electrocardiograms, was processed to obtain 252 electrocardiographic and vectorcardiographic input features, used to classify the data into eight classes (normal sinus rhythm, atrial fibrillation, first-degree atrioventricular block, left bundle branch block, right bundle branch block, premature atrial contraction, premature ventricular contraction, and unknown). Classification performance was evaluated by the area under the curve of the receiver operating characteristics. Clinical interpretability was assessed by standard statistical analysis and the local interpretable model-agnostic explainer algorithm. Performance ranged from 89.88% to 90.10% (95.98 ± 3.32%) in the learning dataset and from 69.15% to 91.14% (83.65 ± 8.24%) in the testing dataset. These results are good considering the difficult, realistic multiclass classification task. The proposed multiclass neural network constructed using the AdvRS&LP represents a promising deep-learning tool for discriminating several cardiac diseases while ensuring clinical interpretability.
AbstractList Background: Deep-learning applications in cardiology typically perform trivial binary classification and are able to discriminate between subjects affected or not affected by a specific cardiac disease. However, this working scenario is very different from the real one, where clinicians are required to recognize the occurrence of one cardiac disease among the several possible ones, performing a multiclass classification. The present work aims to create a new interpretable deep-learning tool able to perform a multiclass classification and, thus, discriminate among several different cardiac diseases. Methods: The “China Physiological Signal Challenge in 2018” Physionet database was used to develop a multiclass neural network, constructed by the Advanced Repeated Structuring & Learning Procedure (AdvRS&LP). Data, consisting of 6877 12-lead 10-second electrocardiograms, was processed to obtain 252 electrocardiographic and vectorcardiographic input features, used to classify the data into eight classes (normal sinus rhythm, atrial fibrillation, first-degree atrioventricular block, left bundle branch block, right bundle branch block, premature atrial contraction, premature ventricular contraction, and unknown). Classification performance was evaluated by the area under the curve of the receiver operating characteristics. Clinical interpretability was assessed by standard statistical analysis and the local interpretable model-agnostic explainer algorithm. Results: Performance ranged from 89.88% to 90.10% (95.98 ± 3.32%) in the learning dataset and from 69.15% to 91.14% (83.65 ± 8.24%) in the testing dataset. These results are good considering the difficult, realistic multiclass classification task. Conclusions: The proposed multiclass neural network constructed using the AdvRS&LP represents a promising deep-learning tool for discriminating several cardiac diseases while ensuring clinical interpretability.
Deep-learning applications in cardiology typically perform trivial binary classification and are able to discriminate between subjects affected or not affected by a specific cardiac disease. However, this working scenario is very different from the real one, where clinicians are required to recognize the occurrence of one cardiac disease among the several possible ones, performing a multiclass classification. The present work aims to create a new interpretable deep-learning tool able to perform a multiclass classification and, thus, discriminate among several different cardiac diseases. The “China Physiological Signal Challenge in 2018” Physionet database was used to develop a multiclass neural network, constructed by the Advanced Repeated Structuring & Learning Procedure (AdvRS&LP). Data, consisting of 6877 12-lead 10-second electrocardiograms, was processed to obtain 252 electrocardiographic and vectorcardiographic input features, used to classify the data into eight classes (normal sinus rhythm, atrial fibrillation, first-degree atrioventricular block, left bundle branch block, right bundle branch block, premature atrial contraction, premature ventricular contraction, and unknown). Classification performance was evaluated by the area under the curve of the receiver operating characteristics. Clinical interpretability was assessed by standard statistical analysis and the local interpretable model-agnostic explainer algorithm. Performance ranged from 89.88% to 90.10% (95.98 ± 3.32%) in the learning dataset and from 69.15% to 91.14% (83.65 ± 8.24%) in the testing dataset. These results are good considering the difficult, realistic multiclass classification task. The proposed multiclass neural network constructed using the AdvRS&LP represents a promising deep-learning tool for discriminating several cardiac diseases while ensuring clinical interpretability.
Deep-learning applications in cardiology typically perform trivial binary classification and are able to discriminate between subjects affected or not affected by a specific cardiac disease. However, this working scenario is very different from the real one, where clinicians are required to recognize the occurrence of one cardiac disease among the several possible ones, performing a multiclass classification. The present work aims to create a new interpretable deep-learning tool able to perform a multiclass classification and, thus, discriminate among several different cardiac diseases. The “China Physiological Signal Challenge in 2018” Physionet database was used to develop a multiclass neural network, constructed by the Advanced Repeated Structuring & Learning Procedure (AdvRS&LP). Data, consisting of 6877 12-lead 10-second electrocardiograms, was processed to obtain 252 electrocardiographic and vectorcardiographic input features, used to classify the data into eight classes (normal sinus rhythm, atrial fibrillation, first-degree atrioventricular block, left bundle branch block, right bundle branch block, premature atrial contraction, premature ventricular contraction, and unknown). Classification performance was evaluated by the area under the curve of the receiver operating characteristics. Clinical interpretability was assessed by standard statistical analysis and the local interpretable model-agnostic explainer algorithm. Performance ranged from 89.88% to 90.10% (95.98 ± 3.32%) in the learning dataset and from 69.15% to 91.14% (83.65 ± 8.24%) in the testing dataset. These results are good considering the difficult, realistic multiclass classification task. The proposed multiclass neural network constructed using the AdvRS&LP represents a promising deep-learning tool for discriminating several cardiac diseases while ensuring clinical interpretability.
Deep-learning applications in cardiology typically perform trivial binary classification and are able to discriminate between subjects affected or not affected by a specific cardiac disease. However, this working scenario is very different from the real one, where clinicians are required to recognize the occurrence of one cardiac disease among the several possible ones, performing a multiclass classification. The present work aims to create a new interpretable deep-learning tool able to perform a multiclass classification and, thus, discriminate among several different cardiac diseases.BackgroundDeep-learning applications in cardiology typically perform trivial binary classification and are able to discriminate between subjects affected or not affected by a specific cardiac disease. However, this working scenario is very different from the real one, where clinicians are required to recognize the occurrence of one cardiac disease among the several possible ones, performing a multiclass classification. The present work aims to create a new interpretable deep-learning tool able to perform a multiclass classification and, thus, discriminate among several different cardiac diseases.The "China Physiological Signal Challenge in 2018" Physionet database was used to develop a multiclass neural network, constructed by the Advanced Repeated Structuring & Learning Procedure (AdvRS&LP). Data, consisting of 6877 12-lead 10-second electrocardiograms, was processed to obtain 252 electrocardiographic and vectorcardiographic input features, used to classify the data into eight classes (normal sinus rhythm, atrial fibrillation, first-degree atrioventricular block, left bundle branch block, right bundle branch block, premature atrial contraction, premature ventricular contraction, and unknown). Classification performance was evaluated by the area under the curve of the receiver operating characteristics. Clinical interpretability was assessed by standard statistical analysis and the local interpretable model-agnostic explainer algorithm.MethodsThe "China Physiological Signal Challenge in 2018" Physionet database was used to develop a multiclass neural network, constructed by the Advanced Repeated Structuring & Learning Procedure (AdvRS&LP). Data, consisting of 6877 12-lead 10-second electrocardiograms, was processed to obtain 252 electrocardiographic and vectorcardiographic input features, used to classify the data into eight classes (normal sinus rhythm, atrial fibrillation, first-degree atrioventricular block, left bundle branch block, right bundle branch block, premature atrial contraction, premature ventricular contraction, and unknown). Classification performance was evaluated by the area under the curve of the receiver operating characteristics. Clinical interpretability was assessed by standard statistical analysis and the local interpretable model-agnostic explainer algorithm.Performance ranged from 89.88% to 90.10% (95.98 ± 3.32%) in the learning dataset and from 69.15% to 91.14% (83.65 ± 8.24%) in the testing dataset. These results are good considering the difficult, realistic multiclass classification task.ResultsPerformance ranged from 89.88% to 90.10% (95.98 ± 3.32%) in the learning dataset and from 69.15% to 91.14% (83.65 ± 8.24%) in the testing dataset. These results are good considering the difficult, realistic multiclass classification task.The proposed multiclass neural network constructed using the AdvRS&LP represents a promising deep-learning tool for discriminating several cardiac diseases while ensuring clinical interpretability.ConclusionsThe proposed multiclass neural network constructed using the AdvRS&LP represents a promising deep-learning tool for discriminating several cardiac diseases while ensuring clinical interpretability.
ArticleNumber e41195
Author Leoni, Chiara
Burattini, Laura
Swenne, Cees A.
Morettini, Micaela
Sbrollini, Agnese
Author_xml – sequence: 1
  givenname: Agnese
  orcidid: 0000-0002-9152-7216
  surname: Sbrollini
  fullname: Sbrollini, Agnese
  organization: Department of Information Engineering, Università Politecnica delle Marche, via Brecce Bianche, Ancona, 60131, Italy
– sequence: 2
  givenname: Chiara
  surname: Leoni
  fullname: Leoni, Chiara
  organization: Department of Information Engineering, Università Politecnica delle Marche, via Brecce Bianche, Ancona, 60131, Italy
– sequence: 3
  givenname: Micaela
  orcidid: 0000-0002-8327-8379
  surname: Morettini
  fullname: Morettini, Micaela
  organization: Department of Information Engineering, Università Politecnica delle Marche, via Brecce Bianche, Ancona, 60131, Italy
– sequence: 4
  givenname: Cees A.
  surname: Swenne
  fullname: Swenne, Cees A.
  organization: Cardiology Department, Leiden University Medical Center, PO Box 9600, Leiden, 2300 RC, the Netherlands
– sequence: 5
  givenname: Laura
  orcidid: 0000-0002-9474-7046
  surname: Burattini
  fullname: Burattini, Laura
  email: l.burattini@univpm.it
  organization: Department of Information Engineering, Università Politecnica delle Marche, via Brecce Bianche, Ancona, 60131, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39834449$$D View this record in MEDLINE/PubMed
BookMark eNqFkktvEzEUhS3UipbSnwCaJZsEv8deIRTxqFSJTdut5fHcSR0cO9gzRfn3eEgo7arywtb10adz7z1v0ElMERB6R_CSYCI_bpb3EPw-xSXFlC-BE6LFK3ROORYLxTk-efI-Q5elbDDGRCipW_YanTGtGOdcn6O7VfDROxvCvvFxhLzLMNouQLOdwuhdsKU0EaZsQ73G3yn_bIaUm94Xl_3WRzv6uG6czb23bi6DLVDeotPBhgKXx_sC3X79crP6vrj-8e1q9fl64Tir9kjfcixBq2FoeyU7pQfBBpBOEqCKth0dtJiP6xjHriUWOgXESQHc9p1jF-jqwO2T3ZhddWTz3iTrzd9Cymtj89wGGEk1qxjJGAYuAVunWtsPWroO47aDyvp0YO2mbgu9gzjWrp9Bn_9Ef2_W6cEQ0nKqBK2ED0dCTr8mKKPZ1jFBCDZCmophFGOqJefiZSkRrRCCClal75_6ejT0b4lVIA4Cl1MpGYZHCcFmzovZmGNezJwXc8jL_4ahbujBQzbFeYgOep_BjXWE_gXCH0XhzU8
Cites_doi 10.1155/2019/6320651
10.1088/1361-6579/ace241
10.1038/s41591-018-0268-3
10.1016/j.bspc.2021.103470
10.1016/j.compbiomed.2020.103866
10.1093/eurheartj/ehx628
10.1016/j.inffus.2019.06.024
10.1016/j.bspc.2020.102194
10.1016/j.ijcard.2020.04.046
10.1016/j.compbiomed.2018.08.003
10.3390/s20216318
10.1161/JAHA.119.013924
10.1109/JBHI.2019.2910082
10.1016/j.cmpb.2021.106006
10.1109/JBHI.2020.2980454
10.1016/j.compbiomed.2020.104057
10.1016/j.bspc.2019.101819
10.1093/europace/euaa377
10.1016/S2589-7500(20)30107-2
10.3390/s20123570
10.1016/j.jelectrocard.2015.05.002
10.18637/jss.v008.i02
10.1109/ACCESS.2020.3040166
10.1049/iet-spr.2018.5465
10.1109/TBME.1985.325532
10.2307/2531595
10.1088/1361-6579/aaf34d
10.1186/s12938-019-0630-9
10.3389/fdgth.2020.610956
10.1016/j.compbiolchem.2022.107688
10.1016/j.jelectrocard.2008.01.012
10.1016/j.future.2018.03.057
10.1016/S0893-6080(05)80056-5
10.1054/jelc.2000.20296
10.1038/s41569-020-00503-2
10.1109/JBHI.2021.3138986
10.1161/01.CIR.101.23.e215
10.1088/1361-6579/aadf49
10.1007/s13755-020-00103-x
10.1007/s13246-019-00722-z
10.1109/JBHI.2020.3035191
10.1016/j.patrec.2019.02.016
ContentType Journal Article
Copyright 2025 The Authors
2025 The Authors. Published by Elsevier Ltd.
2025 The Authors. Published by Elsevier Ltd. 2024
Copyright_xml – notice: 2025 The Authors
– notice: 2025 The Authors. Published by Elsevier Ltd.
– notice: 2025 The Authors. Published by Elsevier Ltd. 2024
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
DOA
DOI 10.1016/j.heliyon.2024.e41195
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2405-8440
ExternalDocumentID oai_doaj_org_article_6293cb36330e46e0ac87adf96cb007be
PMC11742852
39834449
10_1016_j_heliyon_2024_e41195
S240584402417226X
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 0R~
457
53G
5VS
6I.
AAEDW
AAFTH
AAFWJ
AALRI
AAYWO
ABMAC
ACGFS
ACLIJ
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPKN
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BAWUL
BCNDV
DIK
EBS
FDB
GROUPED_DOAJ
HYE
KQ8
M~E
O9-
OK1
ROL
RPM
SSZ
AAYXX
CITATION
EJD
IPNFZ
RIG
0SF
AACTN
NCXOZ
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c4305-1d7406e98ff7d86b89f53fe6c61e2827b2f959595cb340c71aeb8e1c65e4adbc3
IEDL.DBID DOA
ISSN 2405-8440
IngestDate Tue Oct 14 19:01:19 EDT 2025
Thu Aug 21 18:40:09 EDT 2025
Fri Aug 22 20:41:16 EDT 2025
Fri Jul 11 09:32:00 EDT 2025
Thu Jan 30 12:30:00 EST 2025
Thu Nov 20 00:46:36 EST 2025
Sat Nov 29 17:05:27 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep learning
Electrocardiography
Multiclass neural network
Vectorcardiography
Cardiac rhythm
Repeated structuring & learning procedure
Language English
License This is an open access article under the CC BY-NC-ND license.
2025 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4305-1d7406e98ff7d86b89f53fe6c61e2827b2f959595cb340c71aeb8e1c65e4adbc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9152-7216
0000-0002-9474-7046
0000-0002-8327-8379
OpenAccessLink https://doaj.org/article/6293cb36330e46e0ac87adf96cb007be
PMID 39834449
PQID 3157555253
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_6293cb36330e46e0ac87adf96cb007be
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11742852
proquest_miscellaneous_3200296445
proquest_miscellaneous_3157555253
pubmed_primary_39834449
crossref_primary_10_1016_j_heliyon_2024_e41195
elsevier_sciencedirect_doi_10_1016_j_heliyon_2024_e41195
PublicationCentury 2000
PublicationDate 2025-01-15
PublicationDateYYYYMMDD 2025-01-15
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-15
  day: 15
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Heliyon
PublicationTitleAlternate Heliyon
PublicationYear 2025
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Cihan, Ozger (br0070) 2022; 98
Sbrollini, Leoni, de Jongh, Morettini, Burattini, Swenne (br0390) 2022
Baalman, Schroevers, Oakley, Brouwer, van der Stuijt, Bleijendaal, Ramos, Lopes, Marquering, Knops, de Groot (br0030) 2020; 316
Kung, Hu, Huang, Lee, Yao, Kuan (br0160) 2021; 25
Ng, Liu, Liu, Zhao, Zhang, Wu, Xu, Liu, Ma, Wei, He, Li (br0260) 2018
Baloglu, Talo, Yildirim, Tan, Acharya (br0040) 2019; 122
Schijvenaars, van Herpen, Kors (br0410) 2008; 41
Yao, Wang, Fan, Liu, Li (br0510) 2020; 53
Sevakula, Au-Yeung, Singh, Heist, Isselbacher, Armoundas (br0420) 2020; 9
Ribeiro, Ribeiro, Paixão, Oliveira, Gomes, Canazart, Ferreira, Andersson, Macfarlane, Wagner, Schön, Ribeiro (br0320) 2020; 11
Sbrollini, De Jongh, Ter Haar, Treskes, Man, Burattini, Swenne (br0370) 2019; 18
King, Zeng (br0140) 2003; 8
Chen, Hua, Zhang, Liu, Wen (br0060) 2020; 57
Król-Józaga (br0150) 2022; 74
Sbrollini, Sedova, Van Dam, Kautzner, Morettini, Burattini (br0400) 2022
DeLong, DeLong, Clarke-Pearson (br0080) 1988; 44
Nurmaini, Darmawahyuni, Mukti, Rachmatullah, Firdaus, Tutuko (br0270) 2020; 9
Sbrollini, ter Haar, Leoni, Morettini, Burattini, Swenne (br0380) 2023
Liang, Hussain, Abbott, Menon, Ward, Elgendi (br0180) 2020; 2
Zhang, Yang, Yuan, Zhang (br0520) 2021; 24
Siontis, Noseworthy, Attia, Friedman (br0430) 2021; 18
Ibrahim, Mesinovic, Yang, Eid (br0130) 2020
Aston, Mehari, Bosnjakovic, Harris, Sundar, Williams, Dössel, Loewe, Nagel, Strodthoff (br0020) 2022
Marinucci, Sbrollini, Marcantoni, Morettini, Swenne, Burattini (br0220) 2020; 20
Bouaziz, Oulhadj, Boutana, Siarry (br0050) 2019; 13
Yang, Si, Wang, Guo (br0500) 2018; 101
Hannun, Rajpurkar, Haghpanahi, Tison, Bourn, Turakhia, Ng (br0120) 2019; 25
Macfarlane, Devine, Clark (br0200) 2005
Nelwan, Kors, Meij (br0250) 2000; 33
Mousavi, Afghah, Acharya (br0230) 2020; 127
Gao, Zhang, Lu, Wang (br0090) 2019; 2019
Strodthoff, Strodthoff (br0450) 2019; 40
Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng, Stanley (br0110) 2000; 101
Lai, Bu, Su, Zhang, Ma (br0170) 2020; 24
Petmezas, Haris, Stefanopoulos, Kilintzis, Tzavelis, Rogers, Katsaggelos, Maglaveras (br0290) 2021; 63
Liu, Wang, Huang, Chang, Wang, He (br0190) 2020; 24
Pan, Tompkins (br0280) 1985; BME-32
Sbrollini, De Jongh, Cato Ter Haar, Treskes, Man, Burattini, Swenne (br0360) 2018
Wang, Qiao, Liu, Wang, Liu, Yao, Zhang (br0480) 2021; 203
Xie, Li, Zhou, He, Zhu (br0490) 2020; 20
Zhu, Cheng, Yin, Li, Zuo, Ding, Lin, Wang, Zhou, Li, Hu, Xiong, Wang, Wan, Yang, Yuan (br0540) 2020; 2
Romdhane, Alhichri, Ouni, Atri (br0340) 2020; 123
Somani, Russak, Richter, Zhao, Vaid, Chaudhry, De Freitas, Naik, Miotto, Nadkarni, Narula, Argulian, Glicksberg (br0440) 2021; 23
Timmis, Townsend, Gale, Grobbee, Maniadakis, Flather, Wilkins, Wright, Vos, Bax, Blum, Pinto, Vardas (br0470) 2018; 39
Alqudah, Albadarneh, Abu-Qasmieh, Alquran (br0010) 2019; 42
Prechelt (br0310) 2012; vol. 7700
Møller (br0240) 1993; 6
Man, Maan, Schalij, Swenne (br0210) 2015; 48
Prabhakararao, Dandapat (br0300) 2022; 26
Sannino, De Pietro (br0350) 2018; 86
Gliner, Yaniv (br0100) 2018; 39
Ribeiro, Singh, Guestrin (br0330) 2016
Sun, Wang, He, Li, Peng, Wang (br0460) 2020; 8
Zheng, Chu, Struppa, Zhang, Yacoub, El-Askary, Chang, Ehwerhemuepha, Abudayyeh, Barrett, Fu, Yao, Li, Guo, Rakovski (br0530) 2020; 10
Cihan (10.1016/j.heliyon.2024.e41195_br0070) 2022; 98
Gliner (10.1016/j.heliyon.2024.e41195_br0100) 2018; 39
Bouaziz (10.1016/j.heliyon.2024.e41195_br0050) 2019; 13
Marinucci (10.1016/j.heliyon.2024.e41195_br0220) 2020; 20
Yang (10.1016/j.heliyon.2024.e41195_br0500) 2018; 101
Lai (10.1016/j.heliyon.2024.e41195_br0170) 2020; 24
Liang (10.1016/j.heliyon.2024.e41195_br0180) 2020; 2
Zhu (10.1016/j.heliyon.2024.e41195_br0540) 2020; 2
Baalman (10.1016/j.heliyon.2024.e41195_br0030) 2020; 316
Sannino (10.1016/j.heliyon.2024.e41195_br0350) 2018; 86
Król-Józaga (10.1016/j.heliyon.2024.e41195_br0150) 2022; 74
Sbrollini (10.1016/j.heliyon.2024.e41195_br0380) 2023
Sbrollini (10.1016/j.heliyon.2024.e41195_br0390) 2022
Wang (10.1016/j.heliyon.2024.e41195_br0480) 2021; 203
Pan (10.1016/j.heliyon.2024.e41195_br0280) 1985; BME-32
Romdhane (10.1016/j.heliyon.2024.e41195_br0340) 2020; 123
Schijvenaars (10.1016/j.heliyon.2024.e41195_br0410) 2008; 41
Alqudah (10.1016/j.heliyon.2024.e41195_br0010) 2019; 42
Gao (10.1016/j.heliyon.2024.e41195_br0090) 2019; 2019
Aston (10.1016/j.heliyon.2024.e41195_br0020) 2022
Chen (10.1016/j.heliyon.2024.e41195_br0060) 2020; 57
Kung (10.1016/j.heliyon.2024.e41195_br0160) 2021; 25
Sevakula (10.1016/j.heliyon.2024.e41195_br0420) 2020; 9
Sun (10.1016/j.heliyon.2024.e41195_br0460) 2020; 8
Macfarlane (10.1016/j.heliyon.2024.e41195_br0200) 2005
Baloglu (10.1016/j.heliyon.2024.e41195_br0040) 2019; 122
Sbrollini (10.1016/j.heliyon.2024.e41195_br0360) 2018
Mousavi (10.1016/j.heliyon.2024.e41195_br0230) 2020; 127
Nurmaini (10.1016/j.heliyon.2024.e41195_br0270) 2020; 9
Ribeiro (10.1016/j.heliyon.2024.e41195_br0330)
Petmezas (10.1016/j.heliyon.2024.e41195_br0290) 2021; 63
Møller (10.1016/j.heliyon.2024.e41195_br0240) 1993; 6
Zheng (10.1016/j.heliyon.2024.e41195_br0530) 2020; 10
Yao (10.1016/j.heliyon.2024.e41195_br0510) 2020; 53
Siontis (10.1016/j.heliyon.2024.e41195_br0430) 2021; 18
Nelwan (10.1016/j.heliyon.2024.e41195_br0250) 2000; 33
King (10.1016/j.heliyon.2024.e41195_br0140) 2003; 8
Zhang (10.1016/j.heliyon.2024.e41195_br0520) 2021; 24
Ibrahim (10.1016/j.heliyon.2024.e41195_br0130) 2020
DeLong (10.1016/j.heliyon.2024.e41195_br0080) 1988; 44
Sbrollini (10.1016/j.heliyon.2024.e41195_br0400) 2022
Timmis (10.1016/j.heliyon.2024.e41195_br0470) 2018; 39
Sbrollini (10.1016/j.heliyon.2024.e41195_br0370) 2019; 18
Liu (10.1016/j.heliyon.2024.e41195_br0190) 2020; 24
Xie (10.1016/j.heliyon.2024.e41195_br0490) 2020; 20
Somani (10.1016/j.heliyon.2024.e41195_br0440) 2021; 23
Ng (10.1016/j.heliyon.2024.e41195_br0260) 2018
Strodthoff (10.1016/j.heliyon.2024.e41195_br0450) 2019; 40
Ribeiro (10.1016/j.heliyon.2024.e41195_br0320) 2020; 11
Goldberger (10.1016/j.heliyon.2024.e41195_br0110) 2000; 101
Man (10.1016/j.heliyon.2024.e41195_br0210) 2015; 48
Prechelt (10.1016/j.heliyon.2024.e41195_br0310) 2012; vol. 7700
Hannun (10.1016/j.heliyon.2024.e41195_br0120) 2019; 25
Prabhakararao (10.1016/j.heliyon.2024.e41195_br0300) 2022; 26
References_xml – volume: 25
  start-page: 65
  year: 2019
  end-page: 69
  ident: br0120
  article-title: Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network
  publication-title: Nat. Med.
– volume: 122
  start-page: 23
  year: 2019
  end-page: 30
  ident: br0040
  article-title: Classification of myocardial infarction with multi-lead ECG signals and deep CNN
  publication-title: Pattern Recognit. Lett.
– volume: 41
  start-page: 190
  year: 2008
  end-page: 196
  ident: br0410
  article-title: Intraindividual variability in electrocardiograms
  publication-title: J. Electrocardiol.
– volume: 53
  start-page: 174
  year: 2020
  end-page: 182
  ident: br0510
  article-title: Multi-class arrhythmia detection from 12-lead varied-length ECG using attention-based time-incremental convolutional neural network
  publication-title: Inf. Fusion
– start-page: 451
  year: 2005
  end-page: 454
  ident: br0200
  article-title: The University of Glasgow (Uni-G) ECG analysis program
  publication-title: Computers in Cardiology
– volume: 9
  year: 2020
  ident: br0270
  article-title: Deep learning-based stacked denoising and autoencoder for ECG heartbeat classification
  publication-title: Electronics (Switzerland)
– year: 2023
  ident: br0380
  article-title: Advanced repeated structuring & learning procedure to detect acute myocardial ischemia in serial 12-lead ECGs
  publication-title: Physiol. Meas.
– year: 2020
  ident: br0130
  article-title: Explainable prediction of acute myocardial infarction using machine learning and Shapley values
  publication-title: IEEE Access
– volume: 23
  start-page: 1179
  year: 2021
  end-page: 1191
  ident: br0440
  article-title: Deep learning and the electrocardiogram: review of the current state-of-the-art
  publication-title: Europace
– volume: 48
  start-page: 463
  year: 2015
  end-page: 475
  ident: br0210
  article-title: Vectorcardiographic diagnostic & prognostic information derived from the 12-lead electrocardiogram: historical review and clinical perspective
  publication-title: J. Electrocardiol.
– volume: 6
  start-page: 525
  year: 1993
  end-page: 533
  ident: br0240
  article-title: A scaled conjugate gradient algorithm for fast supervised learning
  publication-title: Neural Netw.
– volume: 18
  start-page: 465
  year: 2021
  end-page: 478
  ident: br0430
  article-title: Artificial intelligence-enhanced electrocardiography in cardiovascular disease management
  publication-title: Nat. Rev. Cardiol.
– volume: 203
  year: 2021
  ident: br0480
  article-title: Automated ECG classification using a non-local convolutional block attention module
  publication-title: Comput. Methods Programs Biomed.
– volume: 8
  year: 2020
  ident: br0460
  article-title: A stacked LSTM for atrial fibrillation prediction based on multivariate ECGs
  publication-title: Health Inf. Sci. Syst.
– volume: 8
  start-page: 137
  year: 2003
  end-page: 163
  ident: br0140
  article-title: Logistic regression in rare events data
  publication-title: J. Stat. Softw.
– volume: 13
  start-page: 726
  year: 2019
  end-page: 735
  ident: br0050
  article-title: Automatic ECG arrhythmias classification scheme based on the conjoint use of the multi-layer perceptron neural network and a new improved metaheuristic approach
  publication-title: IET Signal Process.
– volume: 20
  start-page: 1
  year: 2020
  end-page: 16
  ident: br0220
  article-title: Artificial neural network for atrial fibrillation identification in portable devices
  publication-title: Sensors (Switzerland)
– start-page: 4
  year: 2022
  end-page: 9
  ident: br0400
  article-title: Point2ecg: an interactive software application for the identification of electrocardiographic fiducial points
– volume: 101
  start-page: 22
  year: 2018
  end-page: 32
  ident: br0500
  article-title: Automatic recognition of arrhythmia based on principal component analysis network and linear support vector machine
  publication-title: Comput. Biol. Med.
– volume: 11
  year: 2020
  ident: br0320
  article-title: Automatic diagnosis of the 12-lead ECG using a deep neural network
  publication-title: Nat. Commun.
– volume: 57
  year: 2020
  ident: br0060
  article-title: Automated arrhythmia classification based on a combination network of CNN and LSTM
  publication-title: Biomed. Signal Process. Control
– volume: 2
  start-page: e348
  year: 2020
  end-page: e357
  ident: br0540
  article-title: Automatic multilabel electrocardiogram diagnosis of heart rhythm or conduction abnormalities with deep learning: a cohort study
  publication-title: Lancet Digit. Health
– volume: vol. 7700
  year: 2012
  ident: br0310
  article-title: Early Stopping - But When?
  publication-title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– volume: 18
  year: 2019
  ident: br0370
  article-title: Serial electrocardiography to detect newly emerging or aggravating cardiac pathology: a deep-learning approach
  publication-title: Biomed. Eng. Online
– volume: 26
  start-page: 3802
  year: 2022
  end-page: 3812
  ident: br0300
  article-title: Multi-scale convolutional neural network ensemble for multi-class arrhythmia classification
  publication-title: IEEE J. Biomed. Health Inform.
– start-page: 1
  year: 2022
  end-page: 4
  ident: br0390
  article-title: Feature contributions to ECG-based heart-failure detection: deep learning vs statistical analysis
  publication-title: Computing in Cardiology 2022
– start-page: 1
  year: 2022
  end-page: 4
  ident: br0020
  article-title: Multi-class ECG feature importance rankings: cardiologists vs algorithms
  publication-title: 2022 Computing in Cardiology (CinC)
– volume: 74
  year: 2022
  ident: br0150
  article-title: Atrial fibrillation detection using convolutional neural networks on 2-dimensional representation of ECG signal
  publication-title: Biomed. Signal Process. Control
– volume: 2
  year: 2020
  ident: br0180
  article-title: Impact of data transformation: an ECG heartbeat classification approach
  publication-title: Front. Digit. Health
– volume: BME-32
  start-page: 230
  year: 1985
  end-page: 236
  ident: br0280
  article-title: A real-time QRS detection algorithm
  publication-title: IEEE Trans. Biomed. Eng.
– year: 2018
  ident: br0260
  article-title: An open access database for evaluating the algorithms of electrocardiogram rhythm and morphology abnormality detection
  publication-title: J. Med. Imaging Health Inform.
– volume: 20
  start-page: 1
  year: 2020
  end-page: 32
  ident: br0490
  article-title: Computational diagnostic techniques for electrocardiogram signal analysis
  publication-title: Sensors (Switzerland)
– volume: 98
  year: 2022
  ident: br0070
  article-title: A new approach for determining SARS-CoV-2 epitopes using machine learning-based in silico methods
  publication-title: Comput. Biol. Chem.
– volume: 9
  year: 2020
  ident: br0420
  article-title: State-of-the-art machine learning techniques aiming to improve patient outcomes pertaining to the cardiovascular system
  publication-title: J. Am. Heart Assoc.
– volume: 40
  year: 2019
  ident: br0450
  article-title: Detecting and interpreting myocardial infarction using fully convolutional neural networks
  publication-title: Physiol. Meas.
– volume: 316
  start-page: 130
  year: 2020
  end-page: 136
  ident: br0030
  article-title: A morphology based deep learning model for atrial fibrillation detection using single cycle electrocardiographic samples
  publication-title: Int. J. Cardiol.
– volume: 44
  start-page: 837
  year: 1988
  end-page: 845
  ident: br0080
  article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach
  publication-title: Biometrics
– volume: 24
  start-page: 1569
  year: 2020
  end-page: 1578
  ident: br0170
  article-title: Non-standardized patch-based ECG lead together with deep learning based algorithm for automatic screening of atrial fibrillation
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 24
  year: 2021
  ident: br0520
  article-title: Interpretable deep learning for automatic diagnosis of 12-lead electrocardiogram
  publication-title: iScience
– volume: 25
  start-page: 1904
  year: 2021
  end-page: 1914
  ident: br0160
  article-title: An efficient ECG classification system using resource-saving architecture and random forest
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 33
  start-page: 163
  year: 2000
  end-page: 166
  ident: br0250
  article-title: Minimal lead sets for reconstruction of 12-lead electrocardiograms
  publication-title: J. Electrocardiol.
– volume: 42
  start-page: 149
  year: 2019
  end-page: 157
  ident: br0010
  article-title: Developing of robust and high accurate ECG beat classification by combining Gaussian mixtures and wavelets features
  publication-title: Austral. Phys. Eng. Sci. Med.
– year: 2018
  ident: br0360
  article-title: Serial ECG analysis: absolute rather than signed changes in the spatial QRS-t angle should be used to detect emerging cardiac pathology
  publication-title: Computing in Cardiology
– volume: 39
  start-page: 508
  year: 2018
  end-page: 577
  ident: br0470
  article-title: European society of cardiology: cardiovascular disease statistics 2017
  publication-title: Eur. Heart J.
– volume: 39
  year: 2018
  ident: br0100
  article-title: An SVM approach for identifying atrial fibrillation
  publication-title: Physiol. Meas.
– volume: 2019
  year: 2019
  ident: br0090
  article-title: An effective LSTM recurrent network to detect arrhythmia on imbalanced ECG dataset
  publication-title: J. Healthcare Eng.
– volume: 86
  start-page: 446
  year: 2018
  end-page: 455
  ident: br0350
  article-title: A deep learning approach for ECG-based heartbeat classification for arrhythmia detection
  publication-title: Future Gener. Comput. Syst.
– volume: 63
  year: 2021
  ident: br0290
  article-title: Automated atrial fibrillation detection using a hybrid CNN-LSTM network on imbalanced ECG datasets
  publication-title: Biomed. Signal Process. Control
– volume: 10
  year: 2020
  ident: br0530
  article-title: Optimal multi-stage arrhythmia classification approach
  publication-title: Sci. Rep.
– volume: 101
  start-page: E215
  year: 2000
  end-page: E220
  ident: br0110
  article-title: Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
– volume: 123
  year: 2020
  ident: br0340
  article-title: Electrocardiogram heartbeat classification based on a deep convolutional neural network and focal loss
  publication-title: Comput. Biol. Med.
– volume: 24
  start-page: 503
  year: 2020
  end-page: 514
  ident: br0190
  article-title: MFB-CBRNN: a hybrid network for mi detection using 12-lead ECGs
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 127
  year: 2020
  ident: br0230
  article-title: Han-ECG: an interpretable atrial fibrillation detection model using hierarchical attention networks
  publication-title: Comput. Biol. Med.
– year: 2016
  ident: br0330
  article-title: “Why should I trust you?”: explaining the predictions of any classifier
– volume: 2019
  year: 2019
  ident: 10.1016/j.heliyon.2024.e41195_br0090
  article-title: An effective LSTM recurrent network to detect arrhythmia on imbalanced ECG dataset
  publication-title: J. Healthcare Eng.
  doi: 10.1155/2019/6320651
– year: 2023
  ident: 10.1016/j.heliyon.2024.e41195_br0380
  article-title: Advanced repeated structuring & learning procedure to detect acute myocardial ischemia in serial 12-lead ECGs
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/ace241
– volume: 25
  start-page: 65
  year: 2019
  ident: 10.1016/j.heliyon.2024.e41195_br0120
  article-title: Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0268-3
– volume: 74
  year: 2022
  ident: 10.1016/j.heliyon.2024.e41195_br0150
  article-title: Atrial fibrillation detection using convolutional neural networks on 2-dimensional representation of ECG signal
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.103470
– volume: 123
  year: 2020
  ident: 10.1016/j.heliyon.2024.e41195_br0340
  article-title: Electrocardiogram heartbeat classification based on a deep convolutional neural network and focal loss
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103866
– volume: 39
  start-page: 508
  year: 2018
  ident: 10.1016/j.heliyon.2024.e41195_br0470
  article-title: European society of cardiology: cardiovascular disease statistics 2017
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehx628
– volume: 53
  start-page: 174
  year: 2020
  ident: 10.1016/j.heliyon.2024.e41195_br0510
  article-title: Multi-class arrhythmia detection from 12-lead varied-length ECG using attention-based time-incremental convolutional neural network
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2019.06.024
– start-page: 4
  year: 2022
  ident: 10.1016/j.heliyon.2024.e41195_br0400
– volume: 63
  year: 2021
  ident: 10.1016/j.heliyon.2024.e41195_br0290
  article-title: Automated atrial fibrillation detection using a hybrid CNN-LSTM network on imbalanced ECG datasets
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.102194
– volume: 316
  start-page: 130
  year: 2020
  ident: 10.1016/j.heliyon.2024.e41195_br0030
  article-title: A morphology based deep learning model for atrial fibrillation detection using single cycle electrocardiographic samples
  publication-title: Int. J. Cardiol.
  doi: 10.1016/j.ijcard.2020.04.046
– volume: 101
  start-page: 22
  year: 2018
  ident: 10.1016/j.heliyon.2024.e41195_br0500
  article-title: Automatic recognition of arrhythmia based on principal component analysis network and linear support vector machine
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.08.003
– volume: 24
  year: 2021
  ident: 10.1016/j.heliyon.2024.e41195_br0520
  article-title: Interpretable deep learning for automatic diagnosis of 12-lead electrocardiogram
  publication-title: iScience
– volume: 20
  start-page: 1
  year: 2020
  ident: 10.1016/j.heliyon.2024.e41195_br0490
  article-title: Computational diagnostic techniques for electrocardiogram signal analysis
  publication-title: Sensors (Switzerland)
  doi: 10.3390/s20216318
– volume: 9
  year: 2020
  ident: 10.1016/j.heliyon.2024.e41195_br0420
  article-title: State-of-the-art machine learning techniques aiming to improve patient outcomes pertaining to the cardiovascular system
  publication-title: J. Am. Heart Assoc.
  doi: 10.1161/JAHA.119.013924
– volume: vol. 7700
  year: 2012
  ident: 10.1016/j.heliyon.2024.e41195_br0310
  article-title: Early Stopping - But When?
– volume: 24
  start-page: 503
  year: 2020
  ident: 10.1016/j.heliyon.2024.e41195_br0190
  article-title: MFB-CBRNN: a hybrid network for mi detection using 12-lead ECGs
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2019.2910082
– volume: 203
  year: 2021
  ident: 10.1016/j.heliyon.2024.e41195_br0480
  article-title: Automated ECG classification using a non-local convolutional block attention module
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2021.106006
– volume: 24
  start-page: 1569
  year: 2020
  ident: 10.1016/j.heliyon.2024.e41195_br0170
  article-title: Non-standardized patch-based ECG lead together with deep learning based algorithm for automatic screening of atrial fibrillation
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2020.2980454
– volume: 127
  year: 2020
  ident: 10.1016/j.heliyon.2024.e41195_br0230
  article-title: Han-ECG: an interpretable atrial fibrillation detection model using hierarchical attention networks
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.104057
– volume: 57
  year: 2020
  ident: 10.1016/j.heliyon.2024.e41195_br0060
  article-title: Automated arrhythmia classification based on a combination network of CNN and LSTM
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2019.101819
– volume: 23
  start-page: 1179
  year: 2021
  ident: 10.1016/j.heliyon.2024.e41195_br0440
  article-title: Deep learning and the electrocardiogram: review of the current state-of-the-art
  publication-title: Europace
  doi: 10.1093/europace/euaa377
– volume: 2
  start-page: e348
  year: 2020
  ident: 10.1016/j.heliyon.2024.e41195_br0540
  article-title: Automatic multilabel electrocardiogram diagnosis of heart rhythm or conduction abnormalities with deep learning: a cohort study
  publication-title: Lancet Digit. Health
  doi: 10.1016/S2589-7500(20)30107-2
– volume: 20
  start-page: 1
  year: 2020
  ident: 10.1016/j.heliyon.2024.e41195_br0220
  article-title: Artificial neural network for atrial fibrillation identification in portable devices
  publication-title: Sensors (Switzerland)
  doi: 10.3390/s20123570
– volume: 48
  start-page: 463
  year: 2015
  ident: 10.1016/j.heliyon.2024.e41195_br0210
  article-title: Vectorcardiographic diagnostic & prognostic information derived from the 12-lead electrocardiogram: historical review and clinical perspective
  publication-title: J. Electrocardiol.
  doi: 10.1016/j.jelectrocard.2015.05.002
– year: 2018
  ident: 10.1016/j.heliyon.2024.e41195_br0260
  article-title: An open access database for evaluating the algorithms of electrocardiogram rhythm and morphology abnormality detection
  publication-title: J. Med. Imaging Health Inform.
– volume: 8
  start-page: 137
  year: 2003
  ident: 10.1016/j.heliyon.2024.e41195_br0140
  article-title: Logistic regression in rare events data
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v008.i02
– year: 2020
  ident: 10.1016/j.heliyon.2024.e41195_br0130
  article-title: Explainable prediction of acute myocardial infarction using machine learning and Shapley values
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3040166
– volume: 13
  start-page: 726
  year: 2019
  ident: 10.1016/j.heliyon.2024.e41195_br0050
  article-title: Automatic ECG arrhythmias classification scheme based on the conjoint use of the multi-layer perceptron neural network and a new improved metaheuristic approach
  publication-title: IET Signal Process.
  doi: 10.1049/iet-spr.2018.5465
– volume: BME-32
  start-page: 230
  year: 1985
  ident: 10.1016/j.heliyon.2024.e41195_br0280
  article-title: A real-time QRS detection algorithm
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.1985.325532
– volume: 44
  start-page: 837
  year: 1988
  ident: 10.1016/j.heliyon.2024.e41195_br0080
  article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach
  publication-title: Biometrics
  doi: 10.2307/2531595
– start-page: 1
  year: 2022
  ident: 10.1016/j.heliyon.2024.e41195_br0390
  article-title: Feature contributions to ECG-based heart-failure detection: deep learning vs statistical analysis
– volume: 40
  year: 2019
  ident: 10.1016/j.heliyon.2024.e41195_br0450
  article-title: Detecting and interpreting myocardial infarction using fully convolutional neural networks
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/aaf34d
– year: 2018
  ident: 10.1016/j.heliyon.2024.e41195_br0360
  article-title: Serial ECG analysis: absolute rather than signed changes in the spatial QRS-t angle should be used to detect emerging cardiac pathology
– start-page: 1
  year: 2022
  ident: 10.1016/j.heliyon.2024.e41195_br0020
  article-title: Multi-class ECG feature importance rankings: cardiologists vs algorithms
– volume: 18
  year: 2019
  ident: 10.1016/j.heliyon.2024.e41195_br0370
  article-title: Serial electrocardiography to detect newly emerging or aggravating cardiac pathology: a deep-learning approach
  publication-title: Biomed. Eng. Online
  doi: 10.1186/s12938-019-0630-9
– volume: 2
  year: 2020
  ident: 10.1016/j.heliyon.2024.e41195_br0180
  article-title: Impact of data transformation: an ECG heartbeat classification approach
  publication-title: Front. Digit. Health
  doi: 10.3389/fdgth.2020.610956
– volume: 98
  year: 2022
  ident: 10.1016/j.heliyon.2024.e41195_br0070
  article-title: A new approach for determining SARS-CoV-2 epitopes using machine learning-based in silico methods
  publication-title: Comput. Biol. Chem.
  doi: 10.1016/j.compbiolchem.2022.107688
– volume: 41
  start-page: 190
  year: 2008
  ident: 10.1016/j.heliyon.2024.e41195_br0410
  article-title: Intraindividual variability in electrocardiograms
  publication-title: J. Electrocardiol.
  doi: 10.1016/j.jelectrocard.2008.01.012
– volume: 86
  start-page: 446
  year: 2018
  ident: 10.1016/j.heliyon.2024.e41195_br0350
  article-title: A deep learning approach for ECG-based heartbeat classification for arrhythmia detection
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.03.057
– volume: 10
  year: 2020
  ident: 10.1016/j.heliyon.2024.e41195_br0530
  article-title: Optimal multi-stage arrhythmia classification approach
  publication-title: Sci. Rep.
– volume: 6
  start-page: 525
  year: 1993
  ident: 10.1016/j.heliyon.2024.e41195_br0240
  article-title: A scaled conjugate gradient algorithm for fast supervised learning
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(05)80056-5
– volume: 33
  start-page: 163
  year: 2000
  ident: 10.1016/j.heliyon.2024.e41195_br0250
  article-title: Minimal lead sets for reconstruction of 12-lead electrocardiograms
  publication-title: J. Electrocardiol.
  doi: 10.1054/jelc.2000.20296
– volume: 18
  start-page: 465
  year: 2021
  ident: 10.1016/j.heliyon.2024.e41195_br0430
  article-title: Artificial intelligence-enhanced electrocardiography in cardiovascular disease management
  publication-title: Nat. Rev. Cardiol.
  doi: 10.1038/s41569-020-00503-2
– volume: 26
  start-page: 3802
  year: 2022
  ident: 10.1016/j.heliyon.2024.e41195_br0300
  article-title: Multi-scale convolutional neural network ensemble for multi-class arrhythmia classification
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2021.3138986
– volume: 101
  start-page: E215
  year: 2000
  ident: 10.1016/j.heliyon.2024.e41195_br0110
  article-title: Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– start-page: 451
  year: 2005
  ident: 10.1016/j.heliyon.2024.e41195_br0200
  article-title: The University of Glasgow (Uni-G) ECG analysis program
– volume: 39
  year: 2018
  ident: 10.1016/j.heliyon.2024.e41195_br0100
  article-title: An SVM approach for identifying atrial fibrillation
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/aadf49
– volume: 8
  year: 2020
  ident: 10.1016/j.heliyon.2024.e41195_br0460
  article-title: A stacked LSTM for atrial fibrillation prediction based on multivariate ECGs
  publication-title: Health Inf. Sci. Syst.
  doi: 10.1007/s13755-020-00103-x
– volume: 42
  start-page: 149
  year: 2019
  ident: 10.1016/j.heliyon.2024.e41195_br0010
  article-title: Developing of robust and high accurate ECG beat classification by combining Gaussian mixtures and wavelets features
  publication-title: Austral. Phys. Eng. Sci. Med.
  doi: 10.1007/s13246-019-00722-z
– volume: 25
  start-page: 1904
  year: 2021
  ident: 10.1016/j.heliyon.2024.e41195_br0160
  article-title: An efficient ECG classification system using resource-saving architecture and random forest
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2020.3035191
– ident: 10.1016/j.heliyon.2024.e41195_br0330
– volume: 9
  year: 2020
  ident: 10.1016/j.heliyon.2024.e41195_br0270
  article-title: Deep learning-based stacked denoising and autoencoder for ECG heartbeat classification
  publication-title: Electronics (Switzerland)
– volume: 122
  start-page: 23
  year: 2019
  ident: 10.1016/j.heliyon.2024.e41195_br0040
  article-title: Classification of myocardial infarction with multi-lead ECG signals and deep CNN
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2019.02.016
– volume: 11
  year: 2020
  ident: 10.1016/j.heliyon.2024.e41195_br0320
  article-title: Automatic diagnosis of the 12-lead ECG using a deep neural network
  publication-title: Nat. Commun.
SSID ssj0001586973
Score 2.2869132
Snippet Deep-learning applications in cardiology typically perform trivial binary classification and are able to discriminate between subjects affected or not affected...
Background: Deep-learning applications in cardiology typically perform trivial binary classification and are able to discriminate between subjects affected or...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage e41195
SubjectTerms algorithms
atrial fibrillation
Cardiac rhythm
China
data collection
Deep learning
Electrocardiography
Multiclass neural network
Repeated structuring & learning procedure
statistical analysis
Vectorcardiography
Title Clinically interpretable multiclass neural network for discriminating cardiac diseases
URI https://dx.doi.org/10.1016/j.heliyon.2024.e41195
https://www.ncbi.nlm.nih.gov/pubmed/39834449
https://www.proquest.com/docview/3157555253
https://www.proquest.com/docview/3200296445
https://pubmed.ncbi.nlm.nih.gov/PMC11742852
https://doaj.org/article/6293cb36330e46e0ac87adf96cb007be
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 2405-8440
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001586973
  issn: 2405-8440
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2405-8440
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001586973
  issn: 2405-8440
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagQogLojyX0spIXLNdO34eC2rFgVYcoNqbFTsTNdUqW3VbpF747czE2WUDEr2gSDkkjmPP2Jlv4vE3jH2wYGPjDPomUteFqiROKWdVQdRhjcKnZv1_yPMv9uzMzef-61aqL4oJy_TAWXCHBu1RiqVBvxuUgVmVnK3qxhtKLW8j0NcXUc-WM5X3Bzvjbfl7y87h5fQCFu3dkjhPpZqCIq6zkTHqOftHNulvzPln6OSWLTp5xp4OIJIf5cbvsgfQPWePT4dl8hfsfGD7XCzueLuJKowL4H38YCLEzInJEivpchw4R_DKaYtuTvNFwdA89aMn8WERZ_WSfT85_vbpczEkUCgSMXkVorZor8G7prG1M9H5RpcNmGQEoKtlo2y8pgMFrGbJigqiA5GMBlXVMZWv2E637OAN41pFQ6vGqFuvKgGVQ6SSKpDelTEmO2HTtSTDVebJCOsAssswiD6Q6EMW_YR9JHlvChPNdX8BlR8G5Yf7lD9hbq2tMCCGjASwqva-979fazfgjKJlkqqD5e0qlAIhrNZSl_8oQ7EtHrEk1vM6j4hNT0pPuUuUx8aNxsqoq-M7XXvRM3sL9A-l0_Lt_xDOHnsiKVnxTBRCv2M7N9e3sM8epR837er6gD20c3fQzxo8n_48_gUn1yBP
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clinically+interpretable+multiclass+neural+network+for+discriminating+cardiac+diseases&rft.jtitle=Heliyon&rft.au=Sbrollini%2C+Agnese&rft.au=Leoni%2C+Chiara&rft.au=Morettini%2C+Micaela&rft.au=Swenne%2C+Cees+A.&rft.date=2025-01-15&rft.pub=Elsevier+Ltd&rft.issn=2405-8440&rft.eissn=2405-8440&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1016%2Fj.heliyon.2024.e41195&rft.externalDocID=S240584402417226X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-8440&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-8440&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-8440&client=summon