Generative autoencoder to prevent overregularization of variational autoencoder

In machine learning, data scarcity is a common problem, and generative models have the potential to solve it. The variational autoencoder is a generative model that performs variational inference to estimate a low‐dimensional posterior distribution given high‐dimensional data. Specifically, it optim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ETRI journal Jg. 47; H. 1; S. 80 - 89
Hauptverfasser: Ko, YoungMin, Ko, SunWoo, Kim, YoungSoo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Electronics and Telecommunications Research Institute (ETRI) 01.02.2025
한국전자통신연구원
Schlagworte:
ISSN:1225-6463, 2233-7326
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In machine learning, data scarcity is a common problem, and generative models have the potential to solve it. The variational autoencoder is a generative model that performs variational inference to estimate a low‐dimensional posterior distribution given high‐dimensional data. Specifically, it optimizes the evidence lower bound from regularization and reconstruction terms, but the two terms are imbalanced in general. If the reconstruction error is not sufficiently small to belong to the population, the generative model performance cannot be guaranteed. We propose a generative autoencoder (GAE) that uses an autoencoder to first minimize the reconstruction error and then estimate the distribution using latent vectors mapped onto a lower dimension through the encoder. We compare the Fréchet inception distances scores of the proposed GAE and nine other variational autoencoders on the MNIST, Fashion MNIST, CIFAR10, and SVHN datasets. The proposed GAE consistently outperforms the other methods on the MNIST (44.30), Fashion MNIST (196.34), and SVHN (77.53) datasets.
AbstractList In machine learning, data scarcity is a common problem, and generative models have the potential to solve it. The variational autoencoder is a generative model that performs variational inference to estimate a low‐dimensional posterior distribution given high‐dimensional data. Specifically, it optimizes the evidence lower bound from regularization and reconstruction terms, but the two terms are imbalanced in general. If the reconstruction error is not sufficiently small to belong to the population, the generative model performance cannot be guaranteed. We propose a generative autoencoder (GAE) that uses an autoencoder to first minimize the reconstruction error and then estimate the distribution using latent vectors mapped onto a lower dimension through the encoder. We compare the Fréchet inception distances scores of the proposed GAE and nine other variational autoencoders on the MNIST, Fashion MNIST, CIFAR10, and SVHN datasets. The proposed GAE consistently outperforms the other methods on the MNIST (44.30), Fashion MNIST (196.34), and SVHN (77.53) datasets.
In machine learning, data scarcity is a common problem, and generative models have the potential to solve it. The variational autoencoder is a generative model that performs variational inference to estimate a low-dimensional posterior dis-tribution given high-dimensional data. Specifically, it optimizes the evidence lower bound from regularization and reconstruction terms, but the two terms are imbalanced in general. If the reconstruction error is not sufficiently small to belong to the population, the generative model performance cannot be guaran-teed. We propose a generative autoencoder (GAE) that uses an autoencoder to first minimize the reconstruction error and then estimate the distribution using latent vectors mapped onto a lower dimension through the encoder. We com-pare the Fréchet inception distances scores of the proposed GAE and nine other variational autoencoders on the MNIST, Fashion MNIST, CIFAR10, and SVHN datasets. The proposed GAE consistently outperforms the other methods on the MNIST (44.30), Fashion MNIST (196.34), and SVHN (77.53) datasets.
In machine learning, data scarcity is a common problem, and generative models have the potential to solve it. The variational autoencoder is a generative model that performs variational inference to estimate a low-dimensional posterior dis-tribution given high-dimensional data. Specifically, it optimizes the evidence lower bound from regularization and reconstruction terms, but the two terms are imbalanced in general. If the reconstruction error is not sufficiently small to belong to the population, the generative model performance cannot be guaran-teed. We propose a generative autoencoder (GAE) that uses an autoencoder to first minimize the reconstruction error and then estimate the distribution using latent vectors mapped onto a lower dimension through the encoder. We com-pare the Fréchet inception distances scores of the proposed GAE and nine other variational autoencoders on the MNIST, Fashion MNIST, CIFAR10, and SVHN datasets. The proposed GAE consistently outperforms the other methods on the MNIST (44.30), Fashion MNIST (196.34), and SVHN (77.53) datasets. KCI Citation Count: 0
Author Kim, YoungSoo
Ko, YoungMin
Ko, SunWoo
Author_xml – sequence: 1
  givenname: YoungMin
  orcidid: 0000-0003-2779-3170
  surname: Ko
  fullname: Ko, YoungMin
  organization: Jeonju University
– sequence: 2
  givenname: SunWoo
  surname: Ko
  fullname: Ko, SunWoo
  organization: Jeonju University
– sequence: 3
  givenname: YoungSoo
  surname: Kim
  fullname: Kim, YoungSoo
  email: pineland@jj.ac.kr
  organization: Jeonju University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003176255$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNqFkUFr3DAQhUVJoZu05159LjiRZiRZPoaQpguBQNiexaw8WrRxrSA7W9JfX6-3hVIoPQ0zvG9meO9cnA15YCE-KnmpQbkrnkraX4IErCU25o1YASDWDYI9EysFYGqrLb4T5-O4lxKkNm4lHu544EJTOnBFL1PmIeSOSzXl6rnwgYepygcuhXcvPZX0Y1bmocqxOszd0lD_J_hevI3Uj_zhV70QXz_fbm6-1PcPd-ub6_s6aJRQN8poJ1uF0AZuLKN2GnSg1jVbZZBV58BpJVFZUtRi1EEzRNcxx06TwQvx6bR3KNE_heQzpaXusn8q_vpxs_ZKWmca08zi9UncZdr755K-UXldiGWQy85TmVLo2W8VdqRk1FvSOjpL7WymcggstwH18bA57Qolj2Ph6EOaFiOmQqmfj_pjHH6Jwx_j8Mc4Zu7qL-73H_8m7In4nnp-_Z_c324eQYF1gD8Bdrqg-w
CitedBy_id crossref_primary_10_1016_j_microc_2025_114814
crossref_primary_10_1109_ACCESS_2024_3428479
Cites_doi 10.48550/arXiv.1606.05908
10.1109/TPAMI.1979.4766926
10.1561/9781680836233
10.48550/arXiv.1701.00160
10.1109/CVPR.2019.01052
10.1007/s10994-019-05791-5
10.24963/ijcai.2017/273
10.1007/978-0-387-45528-0
10.48550/arXiv.1305.1707
10.1002/gamm.202100008
10.48550/arXiv.1611.02731
10.1109/ACCESS.2020.2977671
10.1126/science.290.5500.2323
10.1109/TPAMI.2013.57
10.48550/arXiv.1903.12436
10.48550/arXiv.1903.05789
10.1109/TIP.2020.2964429
10.48550/arXiv.1611.02648
10.1109/TKDE.2006.17
10.48550/arXiv.1312.6114
10.1111/jawr.12182
10.1609/aaai.v33i01.33015885
10.48550/arXiv.1804.00891
10.48550/arXiv.1711.01558
10.1109/TIT.1968.1054102
ContentType Journal Article
Copyright 1225‐6463/$ © 2024 ETRI
Copyright_xml – notice: 1225‐6463/$ © 2024 ETRI
DBID AAYXX
CITATION
DOA
ACYCR
DOI 10.4218/etrij.2023-0375
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2233-7326
EndPage 89
ExternalDocumentID oai_kci_go_kr_ARTI_10685757
oai_doaj_org_article_b13da10f4ba44f86a90371832e0bc345
10_4218_etrij_2023_0375
ETR212682
Genre article
GrantInformation_xml – fundername: Jeonju University
GroupedDBID -~X
.4S
.DC
0R~
29G
2WC
5GY
5VS
9ZL
AAKPC
AAMMB
ACGFS
ACXQS
ACYCR
ADBBV
ADDVE
ADMLS
AEFGJ
AENEX
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AVUZU
BCNDV
DU5
E3Z
EBS
EDO
EJD
GROUPED_DOAJ
IPNFZ
ITG
ITH
JDI
KQ8
KVFHK
MK~
ML~
O9-
OK1
OVT
RIG
RNS
TR2
TUS
WIN
XSB
AAYXX
ALUQN
CITATION
ID FETCH-LOGICAL-c4302-71548091329ce76e348424ca987b153e1d828410316a1a93f4c4e2f8deefd4a53
IEDL.DBID WIN
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001201292000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1225-6463
IngestDate Sat Oct 25 08:02:08 EDT 2025
Fri Oct 03 12:52:28 EDT 2025
Sat Nov 29 08:11:38 EST 2025
Tue Nov 18 20:55:42 EST 2025
Wed Aug 20 07:26:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4302-71548091329ce76e348424ca987b153e1d828410316a1a93f4c4e2f8deefd4a53
Notes Funding information
This study was supported by a research grant of Jeonju University in 2022.
https://doi.org/10.4218/etrij.2023-0375
ORCID 0000-0003-2779-3170
OpenAccessLink https://doaj.org/article/b13da10f4ba44f86a90371832e0bc345
PageCount 10
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10685757
doaj_primary_oai_doaj_org_article_b13da10f4ba44f86a90371832e0bc345
crossref_citationtrail_10_4218_etrij_2023_0375
crossref_primary_10_4218_etrij_2023_0375
wiley_primary_10_4218_etrij_2023_0375_ETR212682
PublicationCentury 2000
PublicationDate February 2025
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: February 2025
PublicationDecade 2020
PublicationTitle ETRI journal
PublicationYear 2025
Publisher Electronics and Telecommunications Research Institute (ETRI)
한국전자통신연구원
Publisher_xml – name: Electronics and Telecommunications Research Institute (ETRI)
– name: 한국전자통신연구원
References 1968; 14
2020; 8
2017; 30
2021; 34
2021; 44
2013; 35
2021
2019; 12
2022; 23
2008
2019
2018
2006
1979; 3
2017
2016
2019; 108
2004
2013
2016; 29
2014; 50
2005; 18
2000; 290
2020; 29
e_1_2_8_28_1
e_1_2_8_29_1
Oord A. (e_1_2_8_34_1) 2017; 30
e_1_2_8_25_1
Cayton L. (e_1_2_8_15_1) 2008
e_1_2_8_26_1
e_1_2_8_27_1
Sønderby C. K. (e_1_2_8_20_1) 2016; 29
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_7_1
Tran L. (e_1_2_8_30_1) 2022; 23
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_22_1
Higgins I. (e_1_2_8_32_1) 2016
Goodfellow I. (e_1_2_8_3_1) 2016
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_36_1
e_1_2_8_14_1
Dai B. (e_1_2_8_24_1) 2021; 34
e_1_2_8_35_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
McLachlan G. J. (e_1_2_8_13_1) 2004
Mohri M. (e_1_2_8_4_1) 2018
Kingma D. P. (e_1_2_8_23_1) 2016; 29
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_12_1
e_1_2_8_33_1
References_xml – start-page: 1214
  year: 2018
  end-page: 1223
– start-page: 10275
  year: 2019
  end-page: 10284
– volume: 44
  year: 2021
  article-title: An introduction to deep generative modeling
  publication-title: GAMM‐Mitteilungen
– start-page: 2019 5885
  end-page: 5892
– volume: 34
  start-page: 7180
  year: 2021
  end-page: 7192
  article-title: On the value of infinite gradients in variational autoencoder models
  publication-title: Adv. Neural Inf. Process Syst.
– year: 2021
– volume: 30
  year: 2017
  article-title: Neural discrete representation learning
  publication-title: Adv. Neural Inf. Process Syst.
– volume: 50
  start-page: 1226
  year: 2014
  end-page: 1241
  article-title: Evaluation of CFSR climate data for hydrologic prediction in data‐scarce watersheds: an application in the Blue Nile River Basin
  publication-title: J. Am. Water Resour. Assoc.
– volume: 3
  start-page: 306
  year: 1979
  end-page: 307
  article-title: A problem of dimensionality: a simple example
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 35
  start-page: 2765
  year: 2013
  end-page: 2781
  article-title: Sparse subspace clustering: algorithm, theory, and applications
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 29
  year: 2016
  article-title: Ladder variational autoencoders
  publication-title: Adv. Neural Inf. Process Syst.
– volume: 290
  start-page: 2323
  year: 2000
  end-page: 2326
  article-title: Nonlinear dimensionality reduction by locally linear embedding
  publication-title: Science
– volume: 14
  start-page: 55
  year: 1968
  end-page: 63
  article-title: On the mean accuracy of statistical pattern recognizers
  publication-title: IEEE Trans. Inf. Theory
– volume: 29
  year: 2016
  article-title: Improved variational inference with inverse autoregressive flow
  publication-title: Adv. Neural Inf. Process Syst.
– year: 2016
– year: 2018
– start-page: pp. 1965
  year: 2017
  end-page: 1972
– volume: 29
  start-page: 3665
  year: 2020
  end-page: 3680
  article-title: Zero‐VAE‐GAN: generating unseen features for generalized and transductive zero‐shot learning
  publication-title: IEEE Trans. Image Process.
– volume: 23
  start-page: 5010
  year: 2022
  end-page: 5046
  article-title: Cauchy‐Schwarz regularized autoencoder
  publication-title: J. Mach. Learn. Res.
– year: 2008
– start-page: 1558
  year: 2016
  end-page: 1566
– year: 2006
– year: 2004
– volume: 12
  start-page: 307
  year: 2019
  end-page: 392
– year: 2017
– volume: 18
  start-page: 63
  year: 2005
  end-page: 77
  article-title: Training cost‐sensitive neural networks with methods addressing the class imbalance problem
  publication-title: IEEE Trans. Knowl. Data Eng.
– year: 2019
– volume: 8
  start-page: 43992
  year: 2020
  end-page: 44005
  article-title: Variational autoencoder with optimizing Gaussian mixture model priors
  publication-title: IEEE Access
– volume: 108
  start-page: 1329
  year: 2019
  end-page: 1351
  article-title: Data scarcity, robustness and extreme multi‐label classification
  publication-title: Mach. Learn.
– year: 2013
– ident: e_1_2_8_18_1
  doi: 10.48550/arXiv.1606.05908
– ident: e_1_2_8_12_1
  doi: 10.1109/TPAMI.1979.4766926
– ident: e_1_2_8_19_1
  doi: 10.1561/9781680836233
– ident: e_1_2_8_9_1
  doi: 10.48550/arXiv.1701.00160
– ident: e_1_2_8_37_1
– ident: e_1_2_8_39_1
  doi: 10.1109/CVPR.2019.01052
– ident: e_1_2_8_5_1
  doi: 10.1007/s10994-019-05791-5
– ident: e_1_2_8_26_1
  doi: 10.24963/ijcai.2017/273
– volume: 30
  year: 2017
  ident: e_1_2_8_34_1
  article-title: Neural discrete representation learning
  publication-title: Adv. Neural Inf. Process Syst.
– ident: e_1_2_8_2_1
  doi: 10.1007/978-0-387-45528-0
– ident: e_1_2_8_7_1
  doi: 10.48550/arXiv.1305.1707
– ident: e_1_2_8_10_1
  doi: 10.1002/gamm.202100008
– volume: 29
  year: 2016
  ident: e_1_2_8_20_1
  article-title: Ladder variational autoencoders
  publication-title: Adv. Neural Inf. Process Syst.
– volume: 34
  start-page: 7180
  year: 2021
  ident: e_1_2_8_24_1
  article-title: On the value of infinite gradients in variational autoencoder models
  publication-title: Adv. Neural Inf. Process Syst.
– ident: e_1_2_8_28_1
– ident: e_1_2_8_21_1
  doi: 10.48550/arXiv.1611.02731
– ident: e_1_2_8_31_1
  doi: 10.1109/ACCESS.2020.2977671
– volume: 23
  start-page: 5010
  year: 2022
  ident: e_1_2_8_30_1
  article-title: Cauchy‐Schwarz regularized autoencoder
  publication-title: J. Mach. Learn. Res.
– volume-title: Foundations of machine learning
  year: 2018
  ident: e_1_2_8_4_1
– ident: e_1_2_8_16_1
  doi: 10.1126/science.290.5500.2323
– volume-title: beta‐VAE: learning basic visual concepts with a constrained variational framework
  year: 2016
  ident: e_1_2_8_32_1
– ident: e_1_2_8_17_1
  doi: 10.1109/TPAMI.2013.57
– ident: e_1_2_8_36_1
  doi: 10.48550/arXiv.1903.12436
– ident: e_1_2_8_22_1
  doi: 10.48550/arXiv.1903.05789
– ident: e_1_2_8_38_1
  doi: 10.1109/TIP.2020.2964429
– ident: e_1_2_8_27_1
  doi: 10.48550/arXiv.1611.02648
– ident: e_1_2_8_8_1
  doi: 10.1109/TKDE.2006.17
– ident: e_1_2_8_14_1
  doi: 10.48550/arXiv.1312.6114
– volume: 29
  year: 2016
  ident: e_1_2_8_23_1
  article-title: Improved variational inference with inverse autoregressive flow
  publication-title: Adv. Neural Inf. Process Syst.
– ident: e_1_2_8_6_1
  doi: 10.1111/jawr.12182
– ident: e_1_2_8_25_1
  doi: 10.1609/aaai.v33i01.33015885
– ident: e_1_2_8_35_1
  doi: 10.48550/arXiv.1804.00891
– volume-title: Algorithms for manifold learning, eScholarship
  year: 2008
  ident: e_1_2_8_15_1
– ident: e_1_2_8_33_1
  doi: 10.48550/arXiv.1711.01558
– volume-title: Discriminant analysis and statistical pattern recognition
  year: 2004
  ident: e_1_2_8_13_1
– ident: e_1_2_8_29_1
– ident: e_1_2_8_11_1
  doi: 10.1109/TIT.1968.1054102
– volume-title: Deep learning
  year: 2016
  ident: e_1_2_8_3_1
SSID ssj0020458
Score 2.380077
Snippet In machine learning, data scarcity is a common problem, and generative models have the potential to solve it. The variational autoencoder is a generative model...
SourceID nrf
doaj
crossref
wiley
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 80
SubjectTerms autoencoder
data augmentation
dimensionality reduction
generative model
variational autoencoder
전자/정보통신공학
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQxQAD4lOUL0WCgSVtEx92MgJqBUtBqEjdLMexUSlqqtD293PnpFU7IBamKJFPsc6XO7_k8h5jN1JGRmApCiORmxAkl6E2woU6ktLXfA7ai03Ifj8ZDtPXNakv6gmr6IErx7WziOc66jjINIBLhE6JZA7j0HYyw8Gzl3ZkugRTNdSiz38EtTBaQwGCV6Q-gPWsTUJVny1SDQ9J_3WjHnnafqwyk9JtblZ9tents716mxjcV9M7YFt2csh218gDj9hLxRhN6SrQ81lBjJS5LYNZEUwrXqaA2jNLLzZf1r9bBoULFnhWvwJcNzxm773u4PEprOURQgMc85gktEG0nnFqrBSWQwIxGJ0mMsM8ZqMc0RSQjIPQkU65AwM2dklurctB3_ET1pgUE3vKgjjDR1NqNLUpGJcniFMEph7Iohxw_91kraWTlKm5w0nC4kshhiCvKu9VRV5V5NUmu10ZTCvajN-HPpDXV8OI79pfwChQdRSov6Kgya5xzdTYjLw9HT8KNS4VooJnvLMgIVLZZG2_pn9NSXUHb1jSRRKf_cfkztlOTKrBvtf7gjVm5dxesm2zmI2-yysfuD-09e04
  priority: 102
  providerName: Directory of Open Access Journals
Title Generative autoencoder to prevent overregularization of variational autoencoder
URI https://onlinelibrary.wiley.com/doi/abs/10.4218%2Fetrij.2023-0375
https://doaj.org/article/b13da10f4ba44f86a90371832e0bc345
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003176255
Volume 47
WOSCitedRecordID wos001201292000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX ETRI Journal, 2025, 47(1), , pp.80-89
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2233-7326
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020458
  issn: 1225-6463
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2233-7326
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020458
  issn: 1225-6463
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHvTgW1xfFPTgpWqaMWmPKopeVhFFbyFNE1lXthKrv9-ZtC4qiAieSkumDTOZmUyafB9jO0pxKzEVpVxWNgUlVGqs9KnhSsWcL8BEsgnV7-f398VVt5uQzsK0-BDjBTfyjBivycFNGVlIALMSGbEJg8c9Yv9OiccVozCH6Jp3F_1xyUW_AankwlGbSpCiBfehN-x_k_-SlyJ8P2abUfBfJ60x65zN_UN_59lsN-VMjtoxssAm3GiRzXwCIlxily36NIW-xLw2NaFbVi4kTZ08txhPCW31DJG4PnRHN5PaJ2941y0nfhZcZrdnpzcn52lHtZBaEBgTFVUuBBGaFdYp6QTkkIE1Ra5KjImOV1iZAVFCSMNNITxYcJnPK-d8BeZQrLDJUT1yqyzJSnRzZVDUFWB9lWPNIzGMQckrwLl8j-19KFrbDoec6DCeNNYjpCsdNaVJU5o01WO7Y4HnFoLj56bHZLlxM8LOjg_q8KA7V9QlF5XhBx5KA-BzaQqCLcTI5g5KKwBfso1210M7iPJ0faj1MGisMC7wy5JITVWP7Udr_9YlfXpzjdMDmWdrf5ZYZ9MZ0Q3HTeIbbLIJr26TTdm3ZvAStuLywVYc7--tjv-T
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RT9wwDLYGQ2J72GBj2g02KsHDXgq08ZL2kSEQp8FNmg7BW5SmCTpAV5QVfv_stJwOJDRN2lPVKk4jO7bjNP0-gG2lMispFaWZrG2KSqjUWOlTkykVc75AE8km1GhUXFyU8__CdPgQsw039owYr9nBeUOavRwpLbEV2zC52mH675SJXBfgJUosmcXgfDiaFV38IZCLLpq3qUQpOngf7mL3SQePMlME8Kd8Mw3-8bI15p2jt_9jxCvwpl91JvvdNFmFF276Dl7PYRG-h58dADVHv8TctQ0DXNYuJG2T3HYwTwmf9gyRuz70f28mjU_u6a7fUZwXXIOzo8PxwXHasy2kFgWFRcXFC6OE5qV1SjqBBeZoTVmoisKiy2oqzpBZIaTJTCk8WnS5L2rnfI3mm_gAi9Nm6j5Cklfk6cqQqCvR-rqgskdSJMMqq5GW8wPYedC0tj0UOTNi3GgqSVhXOmpKs6Y0a2oAX2cCtx0Kx_NNv7PpZs0YPjs-aMKl7r1RV5moTbbnsTKIvpCmZORCCm5ur7ICqZMtMry-tpMoz9fLRl8HTUXGkN4smddUDWA3mvtvQ9KH41-0QpBF_umfJTZh-Xh8eqJPhqMf6_AqZ_bheGZ8AxbbcOc-w5K9bye_w5c47f8AxOsC1g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VglA58CoVyzMSHLikbeLBTo60dNUV1RahovZmOX5US9FmZdL-fmacsNpWQqgSpyiRx7HGnpfjfB_Ae6UKKykU5YV0NkclVG6sDLkplEoxX6BJZBNqOq3OzurVf2F6fIjlhhtbRvLXbOB-4QJbOVJY4lns4uzHNtN_50zkegfuImXjfKzrdDJdFl38IZCLLlq3uUQpengf7mLnRgfXIlMC8Kd4M4_hetqa4s740f8Y8WN4OGSd2ad-mTyBNT9_Cg9WsAg34bgHoGbvl5nLrmWAS-dj1rXZood5yvi0Z0zc9XH4ezNrQ3ZFd8OO4qrgM_g-PjjZP8wHtoXcoiC3qLh4YZTQsrZeSS-wwhKtqSvVkFv0haPiDJkVQprC1CKgRV-GynkfHJqPYgvW5-3cP4esbMjSlSFRX6MNrqKyR5Inw6ZwSOn8CLb_aFrbAYqcGTF-aipJWFc6aUqzpjRragQflgKLHoXj7033eOqWzRg-Oz1o47kerFE3hXCm2A3YGMRQSVMzciE5N7_bWIHUyTuaeH1hZ0mer-etvoiaiowJvVkyr6kawU6a7n8NSR-cfKMMQVbli1tLvIX7Xz-P9dFk-uUlbJRMPpyOjL-C9S5e-tdwz151s1_xTVr1vwFKxQJR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generative+autoencoder+to+prevent+overregularization+of+variational+autoencoder&rft.jtitle=ETRI+journal&rft.au=%EA%B3%A0%EC%98%81%EB%AF%BC&rft.au=%EA%B3%A0%EC%84%A0%EC%9A%B0&rft.au=%EA%B9%80%EC%98%81%EC%88%98&rft.date=2025-02-01&rft.pub=%ED%95%9C%EA%B5%AD%EC%A0%84%EC%9E%90%ED%86%B5%EC%8B%A0%EC%97%B0%EA%B5%AC%EC%9B%90&rft.issn=1225-6463&rft.eissn=2233-7326&rft.spage=80&rft.epage=89&rft_id=info:doi/10.4218%2Fetrij.2023-0375&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10685757
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1225-6463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1225-6463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1225-6463&client=summon