Copula density estimation by total variation penalized likelihood with linear equality constraints
A copula density is the joint probability density function (PDF) of a random vector with uniform marginals. An approach to bivariate copula density estimation is introduced that is based on maximum penalized likelihood estimation (MPLE) with a total variation (TV) penalty term. The marginal unity an...
Uloženo v:
| Vydáno v: | Computational statistics & data analysis Ročník 56; číslo 2; s. 384 - 398 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
01.02.2012
Elsevier |
| Edice: | Computational Statistics & Data Analysis |
| Témata: | |
| ISSN: | 0167-9473, 1872-7352 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A copula density is the joint probability density function (PDF) of a random vector with uniform marginals. An approach to bivariate copula density estimation is introduced that is based on maximum penalized likelihood estimation (MPLE) with a total variation (TV) penalty term. The marginal unity and symmetry constraints for copula density are enforced by linear equality constraints. The TV-MPLE subject to linear equality constraints is solved by an augmented Lagrangian and operator-splitting algorithm. It offers an order of magnitude improvement in computational efficiency over another TV-MPLE method without constraints solved by the log-barrier method for the second order cone program. A data-driven selection of the regularization parameter is through K-fold cross-validation (CV). Simulation and real data application show the effectiveness of the proposed approach. The MATLAB code implementing the methodology is available online. |
|---|---|
| Bibliografie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0167-9473 1872-7352 |
| DOI: | 10.1016/j.csda.2011.07.016 |