Critical comparison of background correction algorithms used in chromatography

The objective of the present work was to make a quantitative and critical comparison of a number of drift and noise-removal algorithms, which were proven useful by other researchers, but which had never been compared on an equal basis. To make a rigorous and fair comparison, a data generation tool i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytica chimica acta Jg. 1201; S. 339605
Hauptverfasser: Niezen, Leon E., Schoenmakers, Peter J., Pirok, Bob W.J.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Netherlands Elsevier B.V 08.04.2022
Schlagworte:
ISSN:0003-2670, 1873-4324, 1873-4324
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The objective of the present work was to make a quantitative and critical comparison of a number of drift and noise-removal algorithms, which were proven useful by other researchers, but which had never been compared on an equal basis. To make a rigorous and fair comparison, a data generation tool is developed in this work, which utilizes a library of experimental backgrounds, as well as peak shapes obtained from curve fitting on experimental data. Several different distribution functions are used, such as the log-normal, bi-Gaussian, exponentially convoluted Gaussian, exponentially modified Gaussian and modified Pearson VII distributions. The tool was used to create a set of hybrid (part experimental, part simulated) data, in which the background and all peak profiles and areas are known. This large data set (500 chromatograms) was analysed using seven different drift-correction and five different noise-removal algorithms (35 combinations). Root-mean square errors and absolute errors in peak area were determined and it was shown that in most cases the combination of sparsity-assisted signal smoothing and asymmetrically reweighted penalized least-squares resulted in the smallest errors for relatively low-noise signals. However, for noisier signals the combination of sparsity-assisted signal smoothing and a local minimum value approach to background correction resulted in lower absolute errors in peak area. The performance of correction algorithms was studied as a function of the density and coverage of peaks in the chromatogram, shape of the background signal, and noise levels. The developed data-generation tool is published along with this article, so as to allow similar studies with other simulated data sets and possibly other algorithms. The rigorous assessment of correction algorithms in this work may facilitate further automation of data-analysis workflows. [Display omitted] •A software application was developed that allows for the comparison of smoothing and drift correction algorithms.•It can generate hybrid (part experimental, part simulated) data for other comparison studies and allows anyone to do so.•The need for a large and varied common data set against which all correction algorithms will be tested is highlighted.
AbstractList The objective of the present work was to make a quantitative and critical comparison of a number of drift and noise-removal algorithms, which were proven useful by other researchers, but which had never been compared on an equal basis. To make a rigorous and fair comparison, a data generation tool is developed in this work, which utilizes a library of experimental backgrounds, as well as peak shapes obtained from curve fitting on experimental data. Several different distribution functions are used, such as the log-normal, bi-Gaussian, exponentially convoluted Gaussian, exponentially modified Gaussian and modified Pearson VII distributions. The tool was used to create a set of hybrid (part experimental, part simulated) data, in which the background and all peak profiles and areas are known. This large data set (500 chromatograms) was analysed using seven different drift-correction and five different noise-removal algorithms (35 combinations). Root-mean square errors and absolute errors in peak area were determined and it was shown that in most cases the combination of sparsity-assisted signal smoothing and asymmetrically reweighted penalized least-squares resulted in the smallest errors for relatively low-noise signals. However, for noisier signals the combination of sparsity-assisted signal smoothing and a local minimum value approach to background correction resulted in lower absolute errors in peak area. The performance of correction algorithms was studied as a function of the density and coverage of peaks in the chromatogram, shape of the background signal, and noise levels. The developed data-generation tool is published along with this article, so as to allow similar studies with other simulated data sets and possibly other algorithms. The rigorous assessment of correction algorithms in this work may facilitate further automation of data-analysis workflows.
The objective of the present work was to make a quantitative and critical comparison of a number of drift and noise-removal algorithms, which were proven useful by other researchers, but which had never been compared on an equal basis. To make a rigorous and fair comparison, a data generation tool is developed in this work, which utilizes a library of experimental backgrounds, as well as peak shapes obtained from curve fitting on experimental data. Several different distribution functions are used, such as the log-normal, bi-Gaussian, exponentially convoluted Gaussian, exponentially modified Gaussian and modified Pearson VII distributions. The tool was used to create a set of hybrid (part experimental, part simulated) data, in which the background and all peak profiles and areas are known. This large data set (500 chromatograms) was analysed using seven different drift-correction and five different noise-removal algorithms (35 combinations). Root-mean square errors and absolute errors in peak area were determined and it was shown that in most cases the combination of sparsity-assisted signal smoothing and asymmetrically reweighted penalized least-squares resulted in the smallest errors for relatively low-noise signals. However, for noisier signals the combination of sparsity-assisted signal smoothing and a local minimum value approach to background correction resulted in lower absolute errors in peak area. The performance of correction algorithms was studied as a function of the density and coverage of peaks in the chromatogram, shape of the background signal, and noise levels. The developed data-generation tool is published along with this article, so as to allow similar studies with other simulated data sets and possibly other algorithms. The rigorous assessment of correction algorithms in this work may facilitate further automation of data-analysis workflows.The objective of the present work was to make a quantitative and critical comparison of a number of drift and noise-removal algorithms, which were proven useful by other researchers, but which had never been compared on an equal basis. To make a rigorous and fair comparison, a data generation tool is developed in this work, which utilizes a library of experimental backgrounds, as well as peak shapes obtained from curve fitting on experimental data. Several different distribution functions are used, such as the log-normal, bi-Gaussian, exponentially convoluted Gaussian, exponentially modified Gaussian and modified Pearson VII distributions. The tool was used to create a set of hybrid (part experimental, part simulated) data, in which the background and all peak profiles and areas are known. This large data set (500 chromatograms) was analysed using seven different drift-correction and five different noise-removal algorithms (35 combinations). Root-mean square errors and absolute errors in peak area were determined and it was shown that in most cases the combination of sparsity-assisted signal smoothing and asymmetrically reweighted penalized least-squares resulted in the smallest errors for relatively low-noise signals. However, for noisier signals the combination of sparsity-assisted signal smoothing and a local minimum value approach to background correction resulted in lower absolute errors in peak area. The performance of correction algorithms was studied as a function of the density and coverage of peaks in the chromatogram, shape of the background signal, and noise levels. The developed data-generation tool is published along with this article, so as to allow similar studies with other simulated data sets and possibly other algorithms. The rigorous assessment of correction algorithms in this work may facilitate further automation of data-analysis workflows.
The objective of the present work was to make a quantitative and critical comparison of a number of drift and noise-removal algorithms, which were proven useful by other researchers, but which had never been compared on an equal basis. To make a rigorous and fair comparison, a data generation tool is developed in this work, which utilizes a library of experimental backgrounds, as well as peak shapes obtained from curve fitting on experimental data. Several different distribution functions are used, such as the log-normal, bi-Gaussian, exponentially convoluted Gaussian, exponentially modified Gaussian and modified Pearson VII distributions. The tool was used to create a set of hybrid (part experimental, part simulated) data, in which the background and all peak profiles and areas are known. This large data set (500 chromatograms) was analysed using seven different drift-correction and five different noise-removal algorithms (35 combinations). Root-mean square errors and absolute errors in peak area were determined and it was shown that in most cases the combination of sparsity-assisted signal smoothing and asymmetrically reweighted penalized least-squares resulted in the smallest errors for relatively low-noise signals. However, for noisier signals the combination of sparsity-assisted signal smoothing and a local minimum value approach to background correction resulted in lower absolute errors in peak area. The performance of correction algorithms was studied as a function of the density and coverage of peaks in the chromatogram, shape of the background signal, and noise levels. The developed data-generation tool is published along with this article, so as to allow similar studies with other simulated data sets and possibly other algorithms. The rigorous assessment of correction algorithms in this work may facilitate further automation of data-analysis workflows. [Display omitted] •A software application was developed that allows for the comparison of smoothing and drift correction algorithms.•It can generate hybrid (part experimental, part simulated) data for other comparison studies and allows anyone to do so.•The need for a large and varied common data set against which all correction algorithms will be tested is highlighted.
ArticleNumber 339605
Author Niezen, Leon E.
Schoenmakers, Peter J.
Pirok, Bob W.J.
Author_xml – sequence: 1
  givenname: Leon E.
  orcidid: 0000-0002-3849-9228
  surname: Niezen
  fullname: Niezen, Leon E.
  email: L.E.Niezen@uva.nl
  organization: Analytical Chemistry Group, van ‘t Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098, XH Amsterdam, the Netherlands
– sequence: 2
  givenname: Peter J.
  orcidid: 0000-0002-9167-7716
  surname: Schoenmakers
  fullname: Schoenmakers, Peter J.
  organization: Analytical Chemistry Group, van ‘t Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098, XH Amsterdam, the Netherlands
– sequence: 3
  givenname: Bob W.J.
  orcidid: 0000-0002-4558-3778
  surname: Pirok
  fullname: Pirok, Bob W.J.
  organization: Analytical Chemistry Group, van ‘t Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098, XH Amsterdam, the Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35300799$$D View this record in MEDLINE/PubMed
BookMark eNqNkcFu1DAQhi3Uim4LD8AF5cgly9iT2LE4oRUFpIpe4Gx5nfGulyRe7ASpb1-vtr1wqDiNRvP9c_i_a3YxxYkYe8dhzYHLj4e1dXYtQIg1opbQvmIr3imsGxTNBVsBANZCKrhi1zkfyio4NK_ZFbYIoLResR-bFObg7FC5OB5tCjlOVfTV1rrfuxSXqS-HlMjNoRzssIuF34-5WjL1VZgqt09xtHPcJXvcP7xhl94Omd4-zRv26_bLz823-u7-6_fN57vaNULPtbdKAUfNkXPXSq99K0np3monJaD2jkvU0HH0qITfYuORWqFEZ7kiR3jDPpz_HlP8s1CezRiyo2GwE8UlGyGbrmuhRfwfFLRuOEJB3z-hy3ak3hxTGG16MM91FUCdAZdizom8cWG2p2rmZMNgOJiTGHMwRYw5iTFnMSXJ_0k-P38p8-mcodLk30DJZBdoctSHkxDTx_BC-hHhtKQb
CitedBy_id crossref_primary_10_1016_j_aca_2024_342724
crossref_primary_10_1016_j_talanta_2024_125635
crossref_primary_10_1021_acscentsci_2c01042
crossref_primary_10_1002_jssc_202300304
crossref_primary_10_1016_j_chroma_2023_464360
crossref_primary_10_1016_j_aca_2024_343287
crossref_primary_10_56530_lcgc_eu_rh7676j5
crossref_primary_10_1016_j_aca_2025_344634
crossref_primary_10_1016_j_compag_2024_109048
crossref_primary_10_1016_j_chroma_2024_465008
crossref_primary_10_1016_j_microc_2025_113121
crossref_primary_10_1016_j_chroma_2023_464223
crossref_primary_10_1039_D4SC01881H
crossref_primary_10_1080_10408347_2025_2528134
Cites_doi 10.1109/PROC.1967.5434
10.1021/ed100984c
10.1017/S0013091500077853
10.1016/S0021-9673(02)01498-X
10.1366/000370203322554518
10.1016/j.chroma.2014.11.049
10.1016/j.chemolab.2014.09.014
10.1016/j.chroma.2010.04.039
10.1002/jrs.2500
10.1039/c3an00743j
10.1021/ac034173t
10.1016/j.chroma.2011.07.052
10.1016/j.chroma.2006.10.066
10.1016/j.chemolab.2011.11.001
10.1016/j.chroma.2021.462093
10.1214/13-STS417
10.1016/S0003-2670(00)83005-6
10.1016/S0003-2670(00)85337-4
10.1016/j.chroma.2017.05.057
10.1016/j.chemolab.2004.10.003
10.1016/j.chroma.2016.04.054
10.1039/C4AN01061B
10.1016/j.jmr.2006.07.013
10.1016/j.aca.2016.08.046
10.1093/chromsci/35.2.75
10.1021/ac800166w
10.1016/j.chroma.2005.03.072
10.1109/99.388960
10.1039/C5AN01184A
10.1016/0021-9797(82)90124-2
10.1016/j.chroma.2012.07.034
10.1021/ac60214a047
10.1016/j.chroma.2009.12.063
10.1039/b922045c
ContentType Journal Article
Copyright 2022 The Authors
Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2022 The Authors
– notice: Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.aca.2022.339605
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-4324
ExternalDocumentID 35300799
10_1016_j_aca_2022_339605
S0003267022001763
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
6J9
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABFYP
ABGSF
ABJNI
ABLST
ABMAC
ABUDA
ABYKQ
ACBEA
ACCUC
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ACRLP
ADBBV
ADECG
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SCH
SDF
SDG
SDP
SES
SPC
SPCBC
SSJ
SSK
SSU
SSZ
T5K
TN5
TWZ
UPT
WH7
YK3
ZMT
~02
~G-
.GJ
3O-
53G
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABDPE
ABEFU
ABWVN
ABXDB
ACKIV
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AGRDE
AI.
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FA8
FEDTE
FGOYB
HMU
HVGLF
HZ~
H~9
MVM
NHB
R2-
SCB
SEW
T9H
UQL
VH1
WUQ
XOL
XPP
ZCG
ZXP
ZY4
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c429t-fa7701391311c56f9f56e79da9c66039fc16390813f372fb34f3e52728a17ece3
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000773711400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0003-2670
1873-4324
IngestDate Wed Oct 01 14:25:47 EDT 2025
Sun Sep 28 12:05:36 EDT 2025
Wed Feb 19 02:26:09 EST 2025
Tue Nov 18 22:02:23 EST 2025
Sat Nov 29 06:54:52 EST 2025
Fri Feb 23 02:39:40 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords ANN
1D-LC
Pre-processing
SASS
arPLS
MPLS
airPLS
2D
RPLC
asLS
PLS
MairPLS
EMG
MM
SSE
Background correction
DAD
Data processing
Noise filtering
RMSE
RID
FIR
BEADS
2D-LC
1D
LMV
Smoothing
LC
Chemometrics
Language English
License This is an open access article under the CC BY license.
Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c429t-fa7701391311c56f9f56e79da9c66039fc16390813f372fb34f3e52728a17ece3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9167-7716
0000-0002-3849-9228
0000-0002-4558-3778
OpenAccessLink https://dx.doi.org/10.1016/j.aca.2022.339605
PMID 35300799
PQID 2640994130
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2648850533
proquest_miscellaneous_2640994130
pubmed_primary_35300799
crossref_citationtrail_10_1016_j_aca_2022_339605
crossref_primary_10_1016_j_aca_2022_339605
elsevier_sciencedirect_doi_10_1016_j_aca_2022_339605
PublicationCentury 2000
PublicationDate 2022-04-08
PublicationDateYYYYMMDD 2022-04-08
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-08
  day: 08
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Analytica chimica acta
PublicationTitleAlternate Anal Chim Acta
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Carlos Cobas, Bernstein, Martín-Pastor, Tahoces (bib35) 2006; 183
Olivé, Grimalt (bib40) 1991; 249
Ning, Selesnick, Duval (bib14) 2014; 139
Eilers (bib17) 2003; 75
de Rooi, Eilers (bib18) 2012; 117
Samanipour, Dimitriou-Christidis, Gros, Grange, Arey (bib2) 2015; 1375
Liu, Zhou, Yu (bib9) 2015; 140
Lieber, Mahadevan-Jansen (bib26) 2003; 57
Mani-Varnosfaderani, Kanginejad, Gilany, Valadkhani (bib30) 2016; 940
Whittaker (bib32) 1922; 41
Guiochon, Felinger, Golshan-Shirazi, Katti (bib38) 2006
Grimalt, Iturriaga, Olive (bib41) 1987; 201
Savitzky, Golay (bib8) 1964; 36
Zhang, Chen, Liang, Liu, Zhang, Ding, Ye, Zhou (bib36) 2010; 41
Vivó-Truyols, Torres-Lapasió, van Nederkassel, vander Heyden, Massart (bib7) 2005; 1096
McGowan, Langhorst (bib46) 1982; 89
Allen, John, Rutan, Filgueira, Carr (bib1) 2012; 1254
Zhang, Chen, Liang (bib19) 2010; 135
Kalambet, Kozmin, Mikhailova, Nagaev, Tikhonov (bib42) 2011; 25
Friedr, Lipps, Fechner, Kollektivmasslehre (bib43) 1898; 7
Latha, Reichenbach, Tao (bib4) 2011; 1218
Baek, Park, Ahn, Choo (bib24) 2015; 140
Wallis (bib44) 2014; 29
Thekkudan, Rutan (bib23) 2009
Cappadona, Levander, Jansson, James, Cerutti, Pattini (bib28) 2008; 80
(bib45) 1916
Eilers, Boelens (bib16) 2005
Li, Zhan, Wang, Huang, Xu, Zhang, Zheng, Liang, Wang (bib10) 2013; 138
Navarro-Huerta, Torres-Lapasió, López-Ureña, García-Alvarez-Coque (bib13) 2017; 1507
Reichenbach, Ni, Zhang, Ledford (bib20) 2003; 985
Gan, Ruan, Mo (bib27) 2006
Rader, Gold (bib33) 1967; 55
Thekkudan, Rutan, Carr (bib3) 2010; 1217
Mazet, Brie, Idier (bib12) 2015
Peters, Vivó-Truyols, Marriott, Schoenmakers (bib6) 2007; 1156
Fu, Li, Yu, Wang, Lu, Cui, Liu, bin She (bib15) 2016; 1449
Daszykowski, Kaczmarek, vander Heyden, Walczak (bib37) 2007; 85
Graps (bib34) 1995; 2
Mazet, Carteret, Brie, Idier, Humbert (bib11) 2005; 76
Vivó-Truyols, Janssen (bib5) 2010; 1217
Bos, Knol, Molenaar, Niezen, Schoenmakers, Somsen, Pirok (bib25) 2020; 43
Felinger (bib47) 1998
Selesnick (bib21) 2017
Kensert, Collaerts, Efthymiadis, van Broeck, Desmet, Cabooter (bib31) 2021; 1646
Vogt (bib22) 2011; 88
Wahab, O'Haver (bib29) 2020; 43
Phillips, White (bib39) 1997; 35
Zhang (10.1016/j.aca.2022.339605_bib19) 2010; 135
de Rooi (10.1016/j.aca.2022.339605_bib18) 2012; 117
Daszykowski (10.1016/j.aca.2022.339605_bib37) 2007; 85
Eilers (10.1016/j.aca.2022.339605_bib16) 2005
Wallis (10.1016/j.aca.2022.339605_bib44) 2014; 29
Olivé (10.1016/j.aca.2022.339605_bib40) 1991; 249
Ning (10.1016/j.aca.2022.339605_bib14) 2014; 139
Selesnick (10.1016/j.aca.2022.339605_bib21) 2017
Vivó-Truyols (10.1016/j.aca.2022.339605_bib7) 2005; 1096
Peters (10.1016/j.aca.2022.339605_bib6) 2007; 1156
Lieber (10.1016/j.aca.2022.339605_bib26) 2003; 57
Mani-Varnosfaderani (10.1016/j.aca.2022.339605_bib30) 2016; 940
Vivó-Truyols (10.1016/j.aca.2022.339605_bib5) 2010; 1217
Carlos Cobas (10.1016/j.aca.2022.339605_bib35) 2006; 183
Thekkudan (10.1016/j.aca.2022.339605_bib23) 2009
Mazet (10.1016/j.aca.2022.339605_bib11) 2005; 76
Mazet (10.1016/j.aca.2022.339605_bib12) 2015
Savitzky (10.1016/j.aca.2022.339605_bib8) 1964; 36
Fu (10.1016/j.aca.2022.339605_bib15) 2016; 1449
Bos (10.1016/j.aca.2022.339605_bib25) 2020; 43
Thekkudan (10.1016/j.aca.2022.339605_bib3) 2010; 1217
Eilers (10.1016/j.aca.2022.339605_bib17) 2003; 75
Kalambet (10.1016/j.aca.2022.339605_bib42) 2011; 25
McGowan (10.1016/j.aca.2022.339605_bib46) 1982; 89
Guiochon (10.1016/j.aca.2022.339605_bib38) 2006
Gan (10.1016/j.aca.2022.339605_bib27) 2006
Cappadona (10.1016/j.aca.2022.339605_bib28) 2008; 80
Navarro-Huerta (10.1016/j.aca.2022.339605_bib13) 2017; 1507
Reichenbach (10.1016/j.aca.2022.339605_bib20) 2003; 985
Li (10.1016/j.aca.2022.339605_bib10) 2013; 138
Whittaker (10.1016/j.aca.2022.339605_bib32) 1922; 41
Baek (10.1016/j.aca.2022.339605_bib24) 2015; 140
Friedr (10.1016/j.aca.2022.339605_bib43) 1898; 7
Zhang (10.1016/j.aca.2022.339605_bib36) 2010; 41
Kensert (10.1016/j.aca.2022.339605_bib31) 2021; 1646
Phillips (10.1016/j.aca.2022.339605_bib39) 1997; 35
Felinger (10.1016/j.aca.2022.339605_bib47) 1998
Liu (10.1016/j.aca.2022.339605_bib9) 2015; 140
Allen (10.1016/j.aca.2022.339605_bib1) 2012; 1254
Vogt (10.1016/j.aca.2022.339605_bib22) 2011; 88
Wahab (10.1016/j.aca.2022.339605_bib29) 2020; 43
Latha (10.1016/j.aca.2022.339605_bib4) 2011; 1218
Samanipour (10.1016/j.aca.2022.339605_bib2) 2015; 1375
(10.1016/j.aca.2022.339605_bib45) 1916
Graps (10.1016/j.aca.2022.339605_bib34) 1995; 2
Grimalt (10.1016/j.aca.2022.339605_bib41) 1987; 201
Rader (10.1016/j.aca.2022.339605_bib33) 1967; 55
References_xml – volume: 55
  year: 1967
  ident: bib33
  article-title: Digital filter design techniques in the frequency domain
  publication-title: Proc. IEEE
– volume: 88
  year: 2011
  ident: bib22
  article-title: Data filtering in instrumental analyses with applications to optical spectroscopy and chemical imaging
  publication-title: J. Chem. Educ.
– volume: 1254
  year: 2012
  ident: bib1
  article-title: Effect of background correction on peak detection and quantification in online comprehensive two-dimensional liquid chromatography using diode array detection
  publication-title: J. Chromatogr. A
– volume: 138
  year: 2013
  ident: bib10
  article-title: Morphological weighted penalized least squares for background correction
  publication-title: Analyst
– volume: 1096
  year: 2005
  ident: bib7
  article-title: Automatic program for peak detection and deconvolution of multi-overlapped chromatographic signals: Part I: peak detection
  publication-title: J. Chromatogr. A
– volume: 140
  year: 2015
  ident: bib9
  article-title: A concise iterative method using the Bezier technique for baseline construction
  publication-title: Analyst
– year: 2006
  ident: bib38
  article-title: Fundamentals of Preparative and Nonlinear Chromatography
– volume: 1217
  year: 2010
  ident: bib5
  article-title: Probability of failure of the watershed algorithm for peak detection in comprehensive two-dimensional chromatography
  publication-title: J. Chromatogr. A
– volume: 43
  year: 2020
  ident: bib29
  article-title: Wavelet transforms in separation science for denoising and peak overlap detection
  publication-title: J. Separ. Sci.
– volume: 249
  year: 1991
  ident: bib40
  article-title: Gram-Charlier and Edgeworth-Cramér series in the characterization of chromatographic peaks
  publication-title: Anal. Chim. Acta
– volume: 89
  year: 1982
  ident: bib46
  article-title: Development and application of an integrated, high-speed, computerized hydrodynamic chromatograph
  publication-title: J. Colloid Interface Sci.
– volume: 76
  year: 2005
  ident: bib11
  article-title: Background removal from spectra by designing and minimising a non-quadratic cost function
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 117
  year: 2012
  ident: bib18
  article-title: Mixture models for baseline estimation
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 1646
  year: 2021
  ident: bib31
  article-title: Deep convolutional autoencoder for the simultaneous removal of baseline noise and baseline drift in chromatograms
  publication-title: J. Chromatogr. A
– volume: 36
  year: 1964
  ident: bib8
  article-title: Smoothing and differentiation of data by simplified least squares procedures
  publication-title: Anal. Chem.
– volume: 35
  year: 1997
  ident: bib39
  article-title: Dependence of chromatogram peak areas obtained by curve-fitting on the choice of peak shape function
  publication-title: J. Chromatogr. Sci.
– volume: 139
  year: 2014
  ident: bib14
  article-title: Chromatogram baseline estimation and denoising using sparsity (BEADS)
  publication-title: Chemometr. Intell. Lab. Syst.
– year: 2005
  ident: bib16
  article-title: Baseline Correction with Asymmetric Least Squares Smoothing
– volume: 135
  year: 2010
  ident: bib19
  article-title: Baseline correction using adaptive iteratively reweighted penalized least squares
  publication-title: Analyst
– volume: 1156
  year: 2007
  ident: bib6
  article-title: Development of an algorithm for peak detection in comprehensive two-dimensional chromatography
  publication-title: J. Chromatogr. A
– year: 2017
  ident: bib21
  article-title: Sparsity-assisted signal smoothing (revisited)
  publication-title: ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
– volume: 1375
  year: 2015
  ident: bib2
  article-title: Analyte quantification with comprehensive two-dimensional gas chromatography: assessment of methods for baseline correction, peak delineation, and matrix effect elimination for real samples
  publication-title: J. Chromatogr. A
– volume: 29
  year: 2014
  ident: bib44
  article-title: The two-piece normal, binormal, or double Gaussian distribution: its origin and rediscoveries
  publication-title: Stat. Sci.
– volume: 2
  year: 1995
  ident: bib34
  article-title: An introduction to wavelets
  publication-title: IEEE Comput. Sci. Eng.
– year: 2015
  ident: bib12
  article-title: Baseline spectrum estimation using half-quadratic minimization
  publication-title: European Signal Processing Conference
– volume: 1217
  year: 2010
  ident: bib3
  article-title: A study of the precision and accuracy of peak quantification in comprehensive two-dimensional liquid chromatography in time
  publication-title: J. Chromatogr. A
– start-page: 216
  year: 1916
  ident: bib45
  article-title: Mathematical contributions to the theory of evolution.—XIX. Second supplement to a memoir on skew variation
  publication-title: Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character
– year: 1998
  ident: bib47
  article-title: Data Analysis and Signal Processing in Chromatography
– volume: 43
  year: 2020
  ident: bib25
  article-title: Recent applications of chemometrics in one- and two-dimensional chromatography
  publication-title: J. Separ. Sci.
– volume: 201
  year: 1987
  ident: bib41
  article-title: An experimental study of the efficiency of different statistical functions for the resolution of chromatograms with overlapping peaks
  publication-title: Anal. Chim. Acta
– volume: 25
  year: 2011
  ident: bib42
  article-title: Reconstruction of chromatographic peaks using the exponentially modified Gaussian function
  publication-title: J. Chemometr.
– volume: 41
  year: 2010
  ident: bib36
  article-title: An intelligent background-correction algorithm for highly fluorescent samples in Raman spectroscopy
  publication-title: J. Raman Spectrosc.
– volume: 1507
  year: 2017
  ident: bib13
  article-title: Assisted baseline subtraction in complex chromatograms using the BEADS algorithm
  publication-title: J. Chromatogr. A
– volume: 80
  year: 2008
  ident: bib28
  article-title: Wavelet-based method for noise characterization and rejection in high-performance liquid chromatography coupled to mass spectrometry
  publication-title: Anal. Chem.
– volume: 985
  start-page: 47
  year: 2003
  end-page: 56
  ident: bib20
  article-title: Image background removal in comprehensive two-dimensional gas chromatography
  publication-title: J. Chromatogr. A
– volume: 7
  year: 1898
  ident: bib43
  publication-title: Phil. Rev.
– year: 2009
  ident: bib23
  article-title: Denoising and Signal-To-Noise Ratio Enhancement: Classical Filtering
– volume: 1449
  year: 2016
  ident: bib15
  article-title: Simple automatic strategy for background drift correction in chromatographic data analysis
  publication-title: J. Chromatogr. A
– volume: 75
  year: 2003
  ident: bib17
  article-title: A perfect smoother
  publication-title: Anal. Chem.
– volume: 140
  year: 2015
  ident: bib24
  article-title: Baseline correction using asymmetrically reweighted penalized least squares smoothing
  publication-title: The Analyst
– volume: 85
  year: 2007
  ident: bib37
  article-title: Robust statistics in data analysis - a review
  publication-title: Basic concepts, Chemometrics and Intelligent Laboratory Systems
– volume: 183
  year: 2006
  ident: bib35
  article-title: A new general-purpose fully automatic baseline-correction procedure for 1D and 2D NMR data
  publication-title: J. Magn. Reson.
– volume: 41
  year: 1922
  ident: bib32
  article-title: On a new method of graduation
  publication-title: Proc. Edinb. Math. Soc.
– volume: 1218
  year: 2011
  ident: bib4
  article-title: Comparative analysis of peak-detection techniques for comprehensive two-dimensional chromatography
  publication-title: J. Chromatogr. A
– volume: 57
  year: 2003
  ident: bib26
  article-title: Automated method for subtraction of fluorescence from biological Raman spectra
  publication-title: Appl. Spectrosc.
– start-page: 82
  year: 2006
  ident: bib27
  article-title: Baseline correction by improved iterative polynomial fitting with automatic threshold
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 940
  year: 2016
  ident: bib30
  article-title: Estimating complicated baselines in analytical signals using the iterative training of Bayesian regularized artificial neural networks
  publication-title: Anal. Chim. Acta
– volume: 55
  year: 1967
  ident: 10.1016/j.aca.2022.339605_bib33
  article-title: Digital filter design techniques in the frequency domain
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1967.5434
– volume: 88
  year: 2011
  ident: 10.1016/j.aca.2022.339605_bib22
  article-title: Data filtering in instrumental analyses with applications to optical spectroscopy and chemical imaging
  publication-title: J. Chem. Educ.
  doi: 10.1021/ed100984c
– volume: 41
  year: 1922
  ident: 10.1016/j.aca.2022.339605_bib32
  article-title: On a new method of graduation
  publication-title: Proc. Edinb. Math. Soc.
  doi: 10.1017/S0013091500077853
– volume: 985
  start-page: 47
  year: 2003
  ident: 10.1016/j.aca.2022.339605_bib20
  article-title: Image background removal in comprehensive two-dimensional gas chromatography
  publication-title: J. Chromatogr. A
  doi: 10.1016/S0021-9673(02)01498-X
– volume: 57
  year: 2003
  ident: 10.1016/j.aca.2022.339605_bib26
  article-title: Automated method for subtraction of fluorescence from biological Raman spectra
  publication-title: Appl. Spectrosc.
  doi: 10.1366/000370203322554518
– volume: 1375
  year: 2015
  ident: 10.1016/j.aca.2022.339605_bib2
  article-title: Analyte quantification with comprehensive two-dimensional gas chromatography: assessment of methods for baseline correction, peak delineation, and matrix effect elimination for real samples
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2014.11.049
– year: 2017
  ident: 10.1016/j.aca.2022.339605_bib21
  article-title: Sparsity-assisted signal smoothing (revisited)
– volume: 139
  year: 2014
  ident: 10.1016/j.aca.2022.339605_bib14
  article-title: Chromatogram baseline estimation and denoising using sparsity (BEADS)
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2014.09.014
– volume: 1217
  year: 2010
  ident: 10.1016/j.aca.2022.339605_bib3
  article-title: A study of the precision and accuracy of peak quantification in comprehensive two-dimensional liquid chromatography in time
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2010.04.039
– volume: 25
  year: 2011
  ident: 10.1016/j.aca.2022.339605_bib42
  article-title: Reconstruction of chromatographic peaks using the exponentially modified Gaussian function
  publication-title: J. Chemometr.
– volume: 41
  year: 2010
  ident: 10.1016/j.aca.2022.339605_bib36
  article-title: An intelligent background-correction algorithm for highly fluorescent samples in Raman spectroscopy
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.2500
– volume: 138
  year: 2013
  ident: 10.1016/j.aca.2022.339605_bib10
  article-title: Morphological weighted penalized least squares for background correction
  publication-title: Analyst
  doi: 10.1039/c3an00743j
– volume: 75
  year: 2003
  ident: 10.1016/j.aca.2022.339605_bib17
  article-title: A perfect smoother
  publication-title: Anal. Chem.
  doi: 10.1021/ac034173t
– volume: 1218
  year: 2011
  ident: 10.1016/j.aca.2022.339605_bib4
  article-title: Comparative analysis of peak-detection techniques for comprehensive two-dimensional chromatography
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2011.07.052
– year: 1998
  ident: 10.1016/j.aca.2022.339605_bib47
– volume: 1156
  year: 2007
  ident: 10.1016/j.aca.2022.339605_bib6
  article-title: Development of an algorithm for peak detection in comprehensive two-dimensional chromatography
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2006.10.066
– volume: 117
  year: 2012
  ident: 10.1016/j.aca.2022.339605_bib18
  article-title: Mixture models for baseline estimation
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2011.11.001
– volume: 1646
  year: 2021
  ident: 10.1016/j.aca.2022.339605_bib31
  article-title: Deep convolutional autoencoder for the simultaneous removal of baseline noise and baseline drift in chromatograms
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2021.462093
– volume: 29
  year: 2014
  ident: 10.1016/j.aca.2022.339605_bib44
  article-title: The two-piece normal, binormal, or double Gaussian distribution: its origin and rediscoveries
  publication-title: Stat. Sci.
  doi: 10.1214/13-STS417
– start-page: 82
  year: 2006
  ident: 10.1016/j.aca.2022.339605_bib27
  article-title: Baseline correction by improved iterative polynomial fitting with automatic threshold
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 249
  year: 1991
  ident: 10.1016/j.aca.2022.339605_bib40
  article-title: Gram-Charlier and Edgeworth-Cramér series in the characterization of chromatographic peaks
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(00)83005-6
– volume: 201
  year: 1987
  ident: 10.1016/j.aca.2022.339605_bib41
  article-title: An experimental study of the efficiency of different statistical functions for the resolution of chromatograms with overlapping peaks
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(00)85337-4
– volume: 1507
  year: 2017
  ident: 10.1016/j.aca.2022.339605_bib13
  article-title: Assisted baseline subtraction in complex chromatograms using the BEADS algorithm
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2017.05.057
– volume: 85
  year: 2007
  ident: 10.1016/j.aca.2022.339605_bib37
  article-title: Robust statistics in data analysis - a review
  publication-title: Basic concepts, Chemometrics and Intelligent Laboratory Systems
– volume: 76
  year: 2005
  ident: 10.1016/j.aca.2022.339605_bib11
  article-title: Background removal from spectra by designing and minimising a non-quadratic cost function
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2004.10.003
– volume: 1449
  year: 2016
  ident: 10.1016/j.aca.2022.339605_bib15
  article-title: Simple automatic strategy for background drift correction in chromatographic data analysis
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2016.04.054
– year: 2005
  ident: 10.1016/j.aca.2022.339605_bib16
– volume: 43
  year: 2020
  ident: 10.1016/j.aca.2022.339605_bib25
  article-title: Recent applications of chemometrics in one- and two-dimensional chromatography
  publication-title: J. Separ. Sci.
– volume: 140
  year: 2015
  ident: 10.1016/j.aca.2022.339605_bib24
  article-title: Baseline correction using asymmetrically reweighted penalized least squares smoothing
  publication-title: The Analyst
  doi: 10.1039/C4AN01061B
– volume: 43
  year: 2020
  ident: 10.1016/j.aca.2022.339605_bib29
  article-title: Wavelet transforms in separation science for denoising and peak overlap detection
  publication-title: J. Separ. Sci.
– year: 2006
  ident: 10.1016/j.aca.2022.339605_bib38
– volume: 183
  year: 2006
  ident: 10.1016/j.aca.2022.339605_bib35
  article-title: A new general-purpose fully automatic baseline-correction procedure for 1D and 2D NMR data
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2006.07.013
– volume: 940
  year: 2016
  ident: 10.1016/j.aca.2022.339605_bib30
  article-title: Estimating complicated baselines in analytical signals using the iterative training of Bayesian regularized artificial neural networks
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2016.08.046
– volume: 35
  year: 1997
  ident: 10.1016/j.aca.2022.339605_bib39
  article-title: Dependence of chromatogram peak areas obtained by curve-fitting on the choice of peak shape function
  publication-title: J. Chromatogr. Sci.
  doi: 10.1093/chromsci/35.2.75
– volume: 80
  year: 2008
  ident: 10.1016/j.aca.2022.339605_bib28
  article-title: Wavelet-based method for noise characterization and rejection in high-performance liquid chromatography coupled to mass spectrometry
  publication-title: Anal. Chem.
  doi: 10.1021/ac800166w
– volume: 1096
  year: 2005
  ident: 10.1016/j.aca.2022.339605_bib7
  article-title: Automatic program for peak detection and deconvolution of multi-overlapped chromatographic signals: Part I: peak detection
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2005.03.072
– volume: 2
  year: 1995
  ident: 10.1016/j.aca.2022.339605_bib34
  article-title: An introduction to wavelets
  publication-title: IEEE Comput. Sci. Eng.
  doi: 10.1109/99.388960
– volume: 140
  year: 2015
  ident: 10.1016/j.aca.2022.339605_bib9
  article-title: A concise iterative method using the Bezier technique for baseline construction
  publication-title: Analyst
  doi: 10.1039/C5AN01184A
– volume: 89
  year: 1982
  ident: 10.1016/j.aca.2022.339605_bib46
  article-title: Development and application of an integrated, high-speed, computerized hydrodynamic chromatograph
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(82)90124-2
– volume: 1254
  year: 2012
  ident: 10.1016/j.aca.2022.339605_bib1
  article-title: Effect of background correction on peak detection and quantification in online comprehensive two-dimensional liquid chromatography using diode array detection
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2012.07.034
– volume: 36
  year: 1964
  ident: 10.1016/j.aca.2022.339605_bib8
  article-title: Smoothing and differentiation of data by simplified least squares procedures
  publication-title: Anal. Chem.
  doi: 10.1021/ac60214a047
– year: 2009
  ident: 10.1016/j.aca.2022.339605_bib23
– volume: 1217
  year: 2010
  ident: 10.1016/j.aca.2022.339605_bib5
  article-title: Probability of failure of the watershed algorithm for peak detection in comprehensive two-dimensional chromatography
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2009.12.063
– start-page: 216
  year: 1916
  ident: 10.1016/j.aca.2022.339605_bib45
  article-title: Mathematical contributions to the theory of evolution.—XIX. Second supplement to a memoir on skew variation
– year: 2015
  ident: 10.1016/j.aca.2022.339605_bib12
  article-title: Baseline spectrum estimation using half-quadratic minimization
– volume: 135
  year: 2010
  ident: 10.1016/j.aca.2022.339605_bib19
  article-title: Baseline correction using adaptive iteratively reweighted penalized least squares
  publication-title: Analyst
  doi: 10.1039/b922045c
– volume: 7
  year: 1898
  ident: 10.1016/j.aca.2022.339605_bib43
  publication-title: Phil. Rev.
SSID ssj0002104
Score 2.4666512
Snippet The objective of the present work was to make a quantitative and critical comparison of a number of drift and noise-removal algorithms, which were proven...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 339605
SubjectTerms Algorithms
automation
Background correction
Chemometrics
Chromatography
data collection
Data processing
hybrids
least squares
Least-Squares Analysis
Noise filtering
Pre-processing
Smoothing
Title Critical comparison of background correction algorithms used in chromatography
URI https://dx.doi.org/10.1016/j.aca.2022.339605
https://www.ncbi.nlm.nih.gov/pubmed/35300799
https://www.proquest.com/docview/2640994130
https://www.proquest.com/docview/2648850533
Volume 1201
WOSCitedRecordID wos000773711400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1873-4324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002104
  issn: 0003-2670
  databaseCode: AIEXJ
  dateStart: 19950110
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbYhgQviDsdMAWJJ6JUqe3E9uOYimBC1SSG6FvkuDbt1iVT0k6DX885uW5MqwCJl6hKfIl8vp58xz4XQt46SVMFhkJgnaYBF5IHKY95oF0YWi3MzEpTFZsQk4mcTtVRE3FdVuUERJbJy0t1_l9FDfdA2Bg6-xfi7gaFG_AbhA5XEDtc_0jwXfECc7XEoJ9qc4ohHFUYW1HpOXREXn7Pof38rPTXpcU8TL6ZFznQ2KuprLtky3r5A8fGEHBMM4CZODq1PlnYn7UO-2xh5PGwP-OZ5zY706dNObbKJdg_7J4fLYq80snv89T_NmweNDsRYMSiA4vst8duhMg0KpcFNK6rgwxtrWWlYAGmArymhmm9q3FDp9fbCyeAL8wTRemQMTC7ov4D1rkVfsHJcC6KnmKgObfIDhWRAm23s_9pPD3svtFg6PK2liJ2aM-7K8-_3ya6jbHcZpFUzOT4IXnQmBTefg2FR-SOzR6TewdtJb8nZNJCwush4eXO6yHh9ZDwekh4CAlvkXnXIfGUfP0wPj74GDR1NAIDbGMVOC0EMn3MrGSi2CkXxVaomVYmjkOmnAFSroAbMscEdSnjjtmICir1SFhj2TOyneWZfUG8mXORC9VMGm54So10FGzaUajNiEcwzYCE7Volpkkyj7VOlknrTXiSwPImuLxJvbwD8q7rcl5nWNnUmLcCSBqKWFO_BNCyqdubVlgJrD2eienM5usyAXsAbCRkchvbSBlh0PqAPK8l3b0pixiwbKV2_-3FXpL7_T_pFdleFWv7mtw1F6tFWeyRLTGVew12fwFGn6l7
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Critical+comparison+of+background+correction+algorithms+used+in+chromatography&rft.jtitle=Analytica+chimica+acta&rft.au=Niezen%2C+Leon+E.&rft.au=Schoenmakers%2C+Peter+J.&rft.au=Pirok%2C+Bob+W.J.&rft.date=2022-04-08&rft.pub=Elsevier+B.V&rft.issn=0003-2670&rft.eissn=1873-4324&rft.volume=1201&rft_id=info:doi/10.1016%2Fj.aca.2022.339605&rft.externalDocID=S0003267022001763
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2670&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2670&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2670&client=summon