Inductive logic programming at 30
Inductive logic programming (ILP) is a form of logic-based machine learning. The goal is to induce a hypothesis (a logic program) that generalises given training examples and background knowledge. As ILP turns 30, we review the last decade of research. We focus on (i) new meta-level search methods,...
Uložené v:
| Vydané v: | Machine learning Ročník 111; číslo 1; s. 147 - 172 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.01.2022
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0885-6125, 1573-0565 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Inductive logic programming (ILP) is a form of logic-based machine learning. The goal is to induce a hypothesis (a logic program) that generalises given training examples and background knowledge. As ILP turns 30, we review the last decade of research. We focus on (i) new meta-level search methods, (ii) techniques for learning recursive programs, (iii) new approaches for predicate invention, and (iv) the use of different technologies. We conclude by discussing current limitations of ILP and directions for future research. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0885-6125 1573-0565 |
| DOI: | 10.1007/s10994-021-06089-1 |